JPH02248844A - Method and apparatus for analyzing asphaltene component in fuel oil - Google Patents

Method and apparatus for analyzing asphaltene component in fuel oil

Info

Publication number
JPH02248844A
JPH02248844A JP6948489A JP6948489A JPH02248844A JP H02248844 A JPH02248844 A JP H02248844A JP 6948489 A JP6948489 A JP 6948489A JP 6948489 A JP6948489 A JP 6948489A JP H02248844 A JPH02248844 A JP H02248844A
Authority
JP
Japan
Prior art keywords
asphaltene
fuel oil
heptane
diluting
diluted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6948489A
Other languages
Japanese (ja)
Other versions
JPH0643959B2 (en
Inventor
Kenichi Sonoda
憲一 園田
Yoichi Nakamura
陽一 中村
Toshiaki Yoshikawa
俊明 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH RES ASSOC HIGHLY RELIAB MARINE PROPUL PLANT
Original Assignee
TECH RES ASSOC HIGHLY RELIAB MARINE PROPUL PLANT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH RES ASSOC HIGHLY RELIAB MARINE PROPUL PLANT filed Critical TECH RES ASSOC HIGHLY RELIAB MARINE PROPUL PLANT
Priority to JP1069484A priority Critical patent/JPH0643959B2/en
Publication of JPH02248844A publication Critical patent/JPH02248844A/en
Publication of JPH0643959B2 publication Critical patent/JPH0643959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To analyze an asphaltene component quickly and handily by comparing a light scattering level in a sol between an asphaltene suspension wherein a low quality fuel oil is diluted and dissolved by n-hepthane and a complete dissolved liquid diluted at the same factor by toluene. CONSTITUTION:A low quality fuel oil of a sample tank 4 is sucked with a pump 5 and diluted and dissolved in a stirring/dissolution tank 7 about 100 times. On the other hand, n-hepthane is injected into a discharge system to be diluted about 2,000 times by capacity and a malten component alone is dissolved to make an asphaltene sol suspension. Absorbance, transmission light absorptivity and turbidity of the suspension are measured with a measuring section. Toluene is injected to other systems and diluted to the same factor as with n-hepthane to dissolve malten and asphaltene completely. The liquid thus obtained is introduced to a measuring section 2 to measure an absorbance, transmission light absorptivity and turbidity thereof. A computation output section 3 estimates an asphaltene component from a difference between measured values. With such an arrangement, an analysis value is found quickly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低質燃料油中のアスファルテン成分を迅速、
かつ簡便に、しかも正確に分析する方法およびその装置
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention rapidly removes asphaltene components from low-quality fuel oil.
The present invention also relates to a method and apparatus for conducting analysis simply and accurately.

〔従来の技術〕[Conventional technology]

燃料油のアスファルテン成分分析は、一般には、石油学
会法(IP143)等に基づく化学実験的手法で行われ
ており、この方法におけるn(ノルマル)へブタンに不
溶で、トルエンに溶解する成分が、アスファルテンと定
義づけられている。
Asphaltene component analysis of fuel oil is generally carried out using a chemical experimental method based on the Japan Petroleum Institute method (IP143), etc. In this method, the component that is insoluble in n (normal) hebutane and soluble in toluene is It is defined as asphaltene.

この石油学会法によるアスファルテン成分試験方法は、
以下のとおりである。
This asphaltene component testing method based on the Japan Petroleum Institute method is as follows:
It is as follows.

(1)燃料油をろ紙上でn−ヘプタンで希釈(15倍)
した後、1時間還流煮沸し、その後、暗所で1.5〜2
.5時間放置冷却する。なお、ろ液はマルテン+n−ヘ
プタンである。
(1) Dilute fuel oil with n-heptane on filter paper (15 times)
After that, boil under reflux for 1 hour, then boil in the dark for 1.5~2 hours.
.. Leave to cool for 5 hours. Note that the filtrate is maltene + n-heptane.

(2)ろ紙上の物質をトルエンで1時間還流ろ過する。(2) Reflux-filter the substance on the filter paper with toluene for 1 hour.

(3)還流ろ過したろ液(アスファルテン+トルエン)
を容器に受け、沸騰水浴上でトルエンを蒸発除去した後
、乾燥具申に入れ、100〜110°Cで30分間乾燥
し、さらにデシケータ中で0゜5〜1時開放冷した後、
重量計測してアスファルテン成分を求める。
(3) Reflux-filtered filtrate (asphaltene + toluene)
was placed in a container, and after evaporating the toluene on a boiling water bath, it was placed in a drying container, dried at 100-110°C for 30 minutes, and further cooled in a desiccator at 0° for 5-1 hour.
Measure the weight to determine the asphaltene component.

また、最近、燃料油をn−ヘプタンで希釈した溶液と、
この溶液から浮遊アスファルテンを除いたマルテン溶液
との吸光度差または吸光度比から、アスファルテンを推
量する方法が提案されている。
In addition, recently, a solution of fuel oil diluted with n-heptane,
A method has been proposed for estimating asphaltenes from the absorbance difference or absorbance ratio with a maltene solution obtained by removing floating asphaltenes from this solution.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

低質燃料油を、たとえば舶用エンジンに用いる場合、燃
料油中のアスファルテン成分によってエンジンの運転状
態を変更・洲節する必要がある。
When low-quality fuel oil is used, for example, in a marine engine, it is necessary to change or control the operating conditions of the engine depending on the asphaltene component in the fuel oil.

このため、燃料油タンクを切り換えた場合などに、船内
でアスファルテン成分を迅速・簡便に分析することが要
求される。
For this reason, it is required to quickly and easily analyze asphaltene components onboard ships when changing fuel oil tanks.

しかしながら、前記の石油学会法では、分析に5〜6時
間以上かかり、また、自動化する場合、溶剤の沸騰水浴
上での蒸発除去や精密重量計測など、非常に自動化が困
難な操作が含まれている。
However, the above-mentioned Petroleum Institute method requires more than 5 to 6 hours for analysis and involves operations that are extremely difficult to automate, such as evaporation of the solvent in a boiling water bath and precise weight measurement. There is.

また、前記の燃料油をn−ヘプタンで希釈した溶液を用
いて吸光度差または吸光度比を測定する方法は、マルテ
ン溶液および希釈溶液の吸光波長を考慮に入れる必要が
あり、本発、明者らの実験によれば、精度があまり良く
ないという不都合がある。
In addition, the method of measuring the absorbance difference or absorbance ratio using a solution prepared by diluting fuel oil with n-heptane requires consideration of the absorption wavelengths of the malten solution and the diluted solution. According to experiments, the disadvantage is that the accuracy is not very good.

本発明は、上記の点に鑑みなされたもので、アスファル
テン成分の定義に忠実に沿った上で、短時間で沈降しな
いアスファルテンの超微粒子を試料液中に生成させ、そ
の光散乱による濁りを計量することで、乾燥・重量計測
などの自動化に困難な工程を光技術に置き換えて、自動
化に適した燃料油中のアスファルテン成分分析方法およ
びその装置を捷供することを目的とするものである。
The present invention was created in view of the above points, and faithfully follows the definition of asphaltene components, generates ultrafine asphaltene particles that do not settle in a short time in a sample liquid, and measures the turbidity caused by light scattering. By doing so, the aim is to replace processes that are difficult to automate, such as drying and weight measurement, with optical technology, and to provide a method and device for analyzing asphaltene components in fuel oil that are suitable for automation.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の燃料油中のアスファルテン成分分析方法は、予
めトルエンまたはキシレン等によりアスファルテンを溶
解させた後、不沈降性のゾル状の超微粒子を生成させて
、完全溶解液と光散乱量を対比させることにより、低質
燃料油中のアスファルテン成分を光学的に定量する手法
である。
The method for analyzing asphaltene components in fuel oil of the present invention involves dissolving asphaltenes in advance using toluene or xylene, etc., then generating non-sedimentable sol-like ultrafine particles, and comparing the amount of light scattering with a completely dissolved solution. This is a method for optically quantifying asphaltene components in low-quality fuel oil.

第8図は、懸濁液(ゾル化液)の吸光度と経過時間との
関係を示している。波長750nm 、 10mのセル
で試料a、b、c、dについて実験を行った。
FIG. 8 shows the relationship between the absorbance of the suspension (solized liquid) and the elapsed time. Experiments were conducted on samples a, b, c, and d in a 10 m cell with a wavelength of 750 nm.

吸光度に変化が見られないのは、微粒子状のアスファル
テンが安定に浮遊していることを示している。
The fact that no change in absorbance is observed indicates that fine particulate asphaltene is stably suspended.

本発明の方法は、第8図に示すように、沈降しないゾル
状アスファルテンを作ることが前提となっている。
As shown in FIG. 8, the method of the present invention is based on the premise of producing sol-like asphaltene that does not precipitate.

上記の目的を達成するために、本発明の燃料油中のアス
ファルテン成分分析方法は、低質燃料油をn−ヘプタン
で希釈して溶解させたアスファルテン懸濁液と、同し低
質燃料油をトルエンでnヘプタンの場合と同じ倍率に希
釈して完全溶解させた液とをゾル化の状態で光散乱量を
対比測定するものである。
In order to achieve the above object, the method for analyzing asphaltene components in fuel oil of the present invention uses an asphaltene suspension obtained by diluting and dissolving low-quality fuel oil with n-heptane, and the same low-quality fuel oil in toluene. The amount of light scattering is compared and measured in a sol state with a solution diluted to the same ratio as n-heptane and completely dissolved.

また、本発明の方法は、低質燃料油をn−ヘプタンで希
釈して溶解させたアスファルテン懸濁液と、同じ低質燃
料油をトルエンでn−ヘプタンの場合と同じ倍率に希釈
して完全溶解させた液との透過光吸収率差を測定し、光
の散乱(濁り)またはこの透過光吸収率差から低質燃料
油中のアスファルテン成分を推定するものである。
In addition, the method of the present invention involves diluting and dissolving low quality fuel oil with n-heptane into an asphaltene suspension, and diluting the same low quality fuel oil with toluene to the same ratio as n-heptane and completely dissolving it. The asphaltene component in the low-quality fuel oil is estimated from the light scattering (turbidity) or the difference in the transmitted light absorption rate.

さらに、本発明の方法は、上記の方法において、透過光
吸収率差の代りに、濁度差を測定するものである。
Furthermore, in the method of the present invention, a turbidity difference is measured instead of a transmitted light absorption difference in the above method.

そして、本発明の燃料油中のアスファルテン成分分析装
置は、第1図に示すように、低質燃料油をn−ヘプタン
で希釈して溶解させたアスファルテン懸濁液の吸光度、
透過光吸収率または濁度を測定する第1光学的測定部1
と、同じ低質燃料油をトルエンでn−ヘプタンの場合と
同じ倍率に希釈して完全熔解させた液の吸光度、透過光
吸収率または濁度を測定する第2光学的測定部2と、こ
れらの光学的測定部1.2に接続された演算・出力部3
とを包含するものである。なお、演算・出力部3は表示
機能をも含んでいる。4は試料油タンク、5はポンプ、
6は廃油タンクである。7はアスファルテンを前もって
溶解させる撹拌溶解槽である。
As shown in FIG. 1, the asphaltene component analysis device in fuel oil of the present invention can measure the absorbance of an asphaltene suspension obtained by diluting and dissolving low-quality fuel oil with n-heptane,
First optical measurement unit 1 that measures transmitted light absorption rate or turbidity
, a second optical measurement unit 2 for measuring the absorbance, transmitted light absorption rate, or turbidity of a liquid obtained by diluting the same low-quality fuel oil with toluene to the same ratio as n-heptane and completely melting it; Calculation/output section 3 connected to optical measurement section 1.2
This includes: Note that the calculation/output section 3 also includes a display function. 4 is a sample oil tank, 5 is a pump,
6 is a waste oil tank. 7 is a stirring dissolution tank in which asphaltene is dissolved in advance.

〔作用〕[Effect]

試料油タンク4内の低質燃料油、または低質燃料油を予
め少量トルエンにて希釈して流動化し易くした油をポン
プ5で吸引し、撹拌溶解槽7でさらに20〜100倍に
トルエンで希釈・溶解させ、その一部を2系列に吐出す
る。一方の系列にn−ヘプタンを低質燃料油の500〜
2000容量倍になるように注入し希釈して、マルテン
分のみを溶解させてアスファルテンゾル状懸濁液とする
。このアスファルテン懸濁液を第1光学的測定部1に導
入して、吸光度、透過光吸収率または濁度を測定する。
The low-quality fuel oil in the sample oil tank 4, or the oil that has been diluted with a small amount of toluene in advance to make it more fluid, is sucked in by the pump 5, and further diluted 20 to 100 times with toluene in the stirring dissolution tank 7. It is dissolved and a part of it is discharged in two lines. In one series, add n-heptane to 500~
Inject and dilute to 2000 times the volume to dissolve only the malten content to form an asphaltene sol-like suspension. This asphaltene suspension is introduced into the first optical measuring section 1, and the absorbance, transmitted light absorption rate, or turbidity is measured.

他方の系列にトルエンをn−ヘプタンの場合と同じ倍率
になるように注入し希釈して、マルテンおよびアスファ
ルテンを完全溶解させる。この液を第2光学的測定部2
に導入して、吸光度、透過光吸収率または濁度を測定す
る。
Toluene is injected into the other series at the same ratio as n-heptane and diluted to completely dissolve maltenes and asphaltenes. This liquid is transferred to the second optical measuring section 2.
to measure absorbance, transmitted light absorption, or turbidity.

第1光学的測定部1および第2光学的測定部2で測定し
た値は、演算出力部3に導入され、吸光度差、透過光吸
収率差または濁度差が計測され、この差の値からアスフ
ァルテン成分が推定される。
The values measured by the first optical measurement unit 1 and the second optical measurement unit 2 are introduced into the calculation output unit 3, and the absorbance difference, transmitted light absorption rate difference, or turbidity difference is measured. Asphaltene component is estimated.

一般に、低質燃料油をn−ヘプタン、トルエン等で希釈
する際、希釈倍率が20容量倍未満の場合は、n−ヘプ
タン希釈液およびトルエン希釈液の黒色の度合いが強過
ぎ、吸光度差、透過光吸収率差または濁度差を求めるこ
とができないという不都合がある。
Generally, when diluting low-quality fuel oil with n-heptane, toluene, etc., if the dilution ratio is less than 20 times by volume, the degree of blackness of the n-heptane diluted solution and toluene diluted solution is too strong, and the difference in absorbance and transmitted light There is a disadvantage that it is not possible to determine the difference in absorption rate or the difference in turbidity.

一方、希釈倍率が100容量倍を越える場合は、均一な
アスファルテンの沈澱を作ることが難しく、誤差の増大
をまねく上に、溶剤使用量が増大して不経済であるとい
う不都合がある。そのためにも、希釈処理液は二段階で
処理することが望ましい。
On the other hand, if the dilution ratio exceeds 100 times the volume, it is difficult to produce a uniform asphaltene precipitate, leading to an increase in errors, and the amount of solvent used increases, which is uneconomical. For this reason, it is desirable to process the diluted treatment liquid in two stages.

〔実施例〕〔Example〕

以下、本発明の実施例を挙げて説明する。 Hereinafter, the present invention will be explained by giving examples.

実施例1 本例の方法は、燃料油をn−ヘプタンに溶解したアスフ
ァルテン懸濁液と、燃料油をトルエンに完全溶解した液
とのある波長での吸光度差から、アスファルテン含有量
を推定する方法である。
Example 1 The method of this example is a method for estimating the asphaltene content from the absorbance difference at a certain wavelength between an asphaltene suspension obtained by dissolving fuel oil in n-heptane and a solution obtained by completely dissolving fuel oil in toluene. It is.

第2図に示すように、50−メスフラスコに低を燃料油
2gを秤量し、50+tZになるまでトルエンを加えて
メスアップした。このうち1mlを別の50耐メスフラ
スコに入れ、50−のn−ヘプタンを加えてメスアップ
した(この液をA液という)。
As shown in FIG. 2, 2 g of low fuel oil was weighed in a 50-volume flask, and toluene was added until the volume reached 50+tZ. 1 ml of this was placed in another 50-proof volumetric flask, and 50-ml n-heptane was added to make up the volume (this solution is referred to as solution A).

またζ低質燃料油2gをトルエンでメスアップした液の
うち、1−をさらに別の50−メスフラスコに入れ、5
0−のトルエンを加えてメスアップした(この液をB液
という)。
In addition, 1- of the liquid made up of 2 g of ζ low-quality fuel oil with toluene was added to another 50-volume flask, and 5
The solution was made up by adding 0- toluene (this solution is referred to as solution B).

A液およびB液をそれぞれ十分に撹拌した後、10++
aセルで一般の吸光光度法で用いられる750nmの波
長で吸光度を測定し、A液の吸光度とB液の吸光度との
差よりアスファルテン量を推定した。
After thoroughly stirring liquid A and liquid B, 10++
The absorbance was measured using an a-cell at a wavelength of 750 nm, which is used in a general spectrophotometry method, and the amount of asphaltene was estimated from the difference between the absorbance of the A solution and the absorbance of the B solution.

この操作を、アスファルテン含有量を予め測定している
燃料油a −eについて行った。結果は第1表に示す如
くであった。
This operation was performed on fuel oils a to e whose asphaltene content had been measured in advance. The results were as shown in Table 1.

第     1     表 この結果をプロットすると、第3図に示すようなグラフ
が得られた。第3図から、吸光度差を求めることにより
、アスファルテン含有量を正確に推定することが可能で
あることがわかる。
Table 1 When these results were plotted, a graph as shown in Figure 3 was obtained. FIG. 3 shows that it is possible to accurately estimate the asphaltene content by determining the absorbance difference.

実施例2 低質燃料油(実施例1におけるd)からアスファルテン
成分を分離・濃縮・乾固した。このアスファルテン成分
を0.05〜0,8重量%の範囲でトルエンに希釈して
アスファルテン標準液を作製した。
Example 2 Asphaltene components were separated, concentrated, and dried from low-quality fuel oil (d in Example 1). This asphaltene component was diluted with toluene in a range of 0.05 to 0.8% by weight to prepare an asphaltene standard solution.

このアスファルテン標準液試料1日としてを、第4図に
示すように、ガラスなどの2枚の透明板11.12間に
挾持させて、透過光吸収率を測定した。この結果は第5
図における・印の如くであった。13は発光素子、14
は受光素子、15は照度計、16はスペーサ、17は止
めバサミである。なお、透明板11.12間の間隙は約
15μmであった。通常、この値は10〜20μmとす
るのが望ましい。
This asphaltene standard solution sample was held between two transparent plates 11 and 12 made of glass, etc., as shown in FIG. 4, and the transmitted light absorption rate was measured. This result is the fifth
It was as shown in the figure. 13 is a light emitting element, 14
1 is a light receiving element, 15 is an illumination meter, 16 is a spacer, and 17 is a clip. Note that the gap between the transparent plates 11 and 12 was about 15 μm. Usually, it is desirable that this value be 10 to 20 μm.

つぎに、アスファルテン含有量既知の数種類の低質燃料
油(トルエンで30容量倍に希釈した液)をn−ヘプタ
ンで50容量倍に希釈して溶解させたアスファルテン懸
濁液を試料10として透過光吸収率を測定した。さらに
、同じ低質燃料油をトルエンで50容量倍に希釈して完
全溶解させた液を試料10として透過光吸収率を測定し
た。これらの透過光吸収率の差とアスファルテン分との
関係は、第5図におけるムの如くであった。第5図から
、アスファルテン標準液の曲線と、透過光吸収率差によ
りアスファルテン分を推定した曲線とがほぼ一致するこ
とがわかる。なお、照度計として、シリコンフォトセル
内蔵の標準比視感度を有する照度計(日本光学株式会社
製、トップコーン■ト3)を使用した。
Next, as sample 10, an asphaltene suspension was prepared by diluting several types of low-quality fuel oils with known asphaltene content (a liquid diluted 30 times by volume with toluene) to 50 times by volume with n-heptane. The rate was measured. Furthermore, the same low-quality fuel oil was diluted 50 times by volume with toluene and completely dissolved, and the transmitted light absorption rate was measured using Sample 10. The relationship between the difference in the transmitted light absorption rate and the asphaltene content was as shown in Fig. 5. From FIG. 5, it can be seen that the curve of the asphaltene standard solution and the curve of estimating the asphaltene content based on the difference in transmitted light absorption rate almost match. As the illuminance meter, an illuminance meter (manufactured by Nippon Kogaku Co., Ltd., Top Cone 3) having a standard luminous efficiency with a built-in silicon photocell was used.

実施例3 実施例2と同様にして、アスファルテン標準液を作製し
、この液を試料10として第6図に示すように、2枚の
透明板11.12間に挾持させて、濁度を測定した。こ
の結果は第7図における・印の如くであった。16はス
ペーサ、17は止めバサミ、18はスモークメータ、1
9は白色紙である。なお、透明板11.12間の間隙は
25μmであった0通常、この値はlO〜200Ijm
とするのが望ましい。
Example 3 An asphaltene standard solution was prepared in the same manner as in Example 2, and as shown in FIG. 6, this solution was used as sample 10, and the turbidity was measured by sandwiching it between two transparent plates 11 and 12. did. The results were as indicated by the * mark in FIG. 16 is a spacer, 17 is a stopper, 18 is a smoke meter, 1
9 is white paper. Note that the gap between the transparent plates 11 and 12 was 25 μm. Normally, this value ranges from lO to 200 Ijm.
It is desirable to do so.

つぎに、アスファルテン含有量既知の数種類の低質燃料
油をn−ヘプタンで50容量倍に希釈して溶解させたア
スファルテン懸濁液を試料10として、濁度を測定した
。さらに同じ低質燃料油をトルエンで50容量倍に希釈
して完全溶解させた液を試料10として濁度を測定した
。これらの濁度の差とアスファルテン分との関係は、第
7図におけるムの如くであった。第7図から、アスファ
ルテン標準液の曲線と、濁度差によりアスファルテン分
を推定した曲線とがほぼ一致することがわかる。なお、
スモークメータとして、ディーゼル自動車排気煙濃度測
定用反射式スモークメータ(ディーゼル機器株式会社製
、DSM−2OA)を使用した。
Next, as a sample 10, an asphaltene suspension prepared by diluting and dissolving several kinds of low-quality fuel oils with known asphaltene contents by 50 times the volume with n-heptane was used to measure the turbidity. Furthermore, the same low quality fuel oil was diluted 50 times by volume with toluene and completely dissolved, and the turbidity was measured using a liquid as sample 10. The relationship between these turbidity differences and asphaltene content was as shown in Figure 7. From FIG. 7, it can be seen that the curve of the asphaltene standard solution and the curve of estimating the asphaltene content based on the turbidity difference almost match. In addition,
As the smoke meter, a reflective smoke meter for measuring the concentration of exhaust smoke from diesel automobiles (manufactured by Diesel Equipment Co., Ltd., DSM-2OA) was used.

〔発明の効果〕〔Effect of the invention〕

本発明は、上記のように構成されているので、つぎのよ
うな効果を奏する。
Since the present invention is configured as described above, it has the following effects.

(])従来方法における乾燥・重量計測などの自動化に
困難な工程を、光学的方法により置き換えているので、
容易に自動化することができる。
(]) Processes that are difficult to automate in conventional methods, such as drying and weight measurement, are replaced with optical methods.
Can be easily automated.

(2)従来の石油学会法では、測定に5〜6時間以上要
していたが、本発明の方法では、乾燥・重量計測などを
行わないので、測定時間が大幅に短縮される。
(2) In the conventional Petroleum Institute method, it took 5 to 6 hours or more for measurement, but in the method of the present invention, drying, weight measurement, etc. are not performed, so the measurement time is significantly shortened.

(3)測定精度がきわめて高い。(3) Extremely high measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料油中のアスファルテン成分分析装
置の一実施例を示すフローシート、第2図は本発明の方
法を光散乱法で行った場合の実施例を示す説明図、第3
閏は波長750rvにおける吸光度差とアスファルテン
との関係を示すグラフ、第4図は本発明の方法を透過照
度測定法で行った場合の実施例で用いた装置の縦断面説
明図、第5図は吸収率とアスファルテン分との関係を示
すグラフ、第6図は本発明の方法を濁度測定法で行った
場合の実施例で用いた装置の縦断面説明図、第7図は濁
度とアスファルテン分との関係を示すグラフ、第8図は
懸濁液(ゾル化液)の吸光度と経過時間との関係を示す
グラフである。 1・・・第1光学的測定部、2・・・第2光学的測定部
、3・・・演算・出力部、4・・・試料油タンク、5・
・・ポンプ、6・・・廃油タンク、7・・・撹拌溶解槽
、1ト・・試料、11.12・・・透明板、13・・・
発光素子、14・・・受光素子、15・・・照度計、1
6・・・スペーサ、17・・・止めバサミ、18・・・
スモークメータ、19・・・白色紙 第 図 第 図 第 図 乃1艮7グθfL机帖1うII及、t、kl第 り 図 アスフ?ルγ7Δト(皇1九) 第 図 スt−7メーク 第 図 り +(1 1り 1人)iルチン#【皇f%)
FIG. 1 is a flow sheet showing an example of an apparatus for analyzing asphaltene components in fuel oil according to the present invention, FIG. 2 is an explanatory diagram showing an example in which the method of the present invention is carried out by a light scattering method,
The leap is a graph showing the relationship between the absorbance difference at a wavelength of 750 rv and asphaltene, Figure 4 is a longitudinal cross-sectional explanatory diagram of the apparatus used in the example when the method of the present invention was carried out by transmitted illumination measurement method, and Figure 5 is a graph showing the relationship between the absorbance difference at a wavelength of 750 rv and asphaltene. A graph showing the relationship between absorption rate and asphaltene content, Figure 6 is a longitudinal cross-sectional explanatory diagram of the apparatus used in the example when the method of the present invention was carried out by turbidity measurement, and Figure 7 is a graph showing the relationship between turbidity and asphaltene content. FIG. 8 is a graph showing the relationship between the absorbance of a suspension (solized liquid) and elapsed time. DESCRIPTION OF SYMBOLS 1... 1st optical measurement part, 2... 2nd optical measurement part, 3... Calculation/output part, 4... Sample oil tank, 5...
... Pump, 6... Waste oil tank, 7... Stirring dissolution tank, 1... Sample, 11.12... Transparent plate, 13...
Light emitting element, 14... Light receiving element, 15... Illuminance meter, 1
6... Spacer, 17... Stopper, 18...
Smoke meter, 19...white paper fig. Le γ7Δt (Kou 19) Fig. St-7 Make No. + (1 1 ri 1 person) I Lutin # [Kou f%)

Claims (1)

【特許請求の範囲】 1 低質燃料油をn−ヘプタンで希釈して溶解させたア
スファルテン懸濁液と、同じ低質燃料油をトルエンでn
−ヘプタンの場合と同じ倍率に希釈して完全溶解させた
液とをゾル化の状態で光散乱量を対比測定することを特
徴とする燃料油中のアスファルテン成分分析方法。 2 低質燃料油をn−ヘプタンで希釈して溶解させたア
スファルテン懸濁液と、同じ低質燃料油をトルエンでn
−ヘプタンの場合と同じ倍率に希釈して完全溶解させた
液との透過光吸収率差を測定し、光の散乱またはこの透
過光吸収率差から低質燃料油中のアスファルテン成分を
推定することを特徴とする燃料油中のアスファルテン成
分分析方法。 3 透過光吸収率差の代りに、濁度差を測定することを
特徴とする請求項2記載の燃料油中のアスファルテン成
分分析方法。 4 低質燃料油をn−ヘプタンで希釈して溶解させたア
スファルテン懸濁液の吸光度、透過光吸収率または濁度
を測定する第1光学的測定部(1)と、同じ低質燃料油
をトルエンでn−ヘプタンの場合と同じ倍率に希釈して
完全溶解させた液の吸光度、透過光吸収率または濁度を
測定する第2光学的測定部(2)と、これらの光学的測
定部(1、2)に接続された演算・出力部(3)とを包
含することを特徴とする燃料油中のアスファルテン成分
分析装置。
[Claims] 1. An asphaltene suspension obtained by diluting and dissolving low-quality fuel oil with n-heptane and the same low-quality fuel oil diluting and dissolving with n-heptane.
- A method for analyzing asphaltene components in fuel oil, which comprises comparing and measuring the amount of light scattering in a sol state with a solution completely dissolved by diluting it to the same ratio as in the case of heptane. 2 An asphaltene suspension obtained by diluting and dissolving low-quality fuel oil with n-heptane and the same low-quality fuel oil diluting with toluene
-Measure the difference in transmitted light absorption with a liquid completely dissolved by diluting it to the same ratio as in the case of heptane, and estimate the asphaltene component in low-quality fuel oil from light scattering or this difference in transmitted light absorption. Characteristic method for analyzing asphaltene components in fuel oil. 3. The method for analyzing asphaltene components in fuel oil according to claim 2, characterized in that a turbidity difference is measured instead of a transmitted light absorption difference. 4. The first optical measuring section (1) measures the absorbance, transmitted light absorption rate, or turbidity of an asphaltene suspension obtained by diluting and dissolving low-quality fuel oil with n-heptane, and a second optical measurement section (2) that measures the absorbance, transmitted light absorption, or turbidity of a solution completely dissolved by diluting it to the same ratio as in the case of n-heptane, and these optical measurement sections (1, An apparatus for analyzing asphaltene components in fuel oil, characterized in that it includes a calculation/output section (3) connected to (2).
JP1069484A 1989-03-22 1989-03-22 Method and apparatus for analyzing asphaltene components in fuel oil Expired - Lifetime JPH0643959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1069484A JPH0643959B2 (en) 1989-03-22 1989-03-22 Method and apparatus for analyzing asphaltene components in fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1069484A JPH0643959B2 (en) 1989-03-22 1989-03-22 Method and apparatus for analyzing asphaltene components in fuel oil

Publications (2)

Publication Number Publication Date
JPH02248844A true JPH02248844A (en) 1990-10-04
JPH0643959B2 JPH0643959B2 (en) 1994-06-08

Family

ID=13404025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1069484A Expired - Lifetime JPH0643959B2 (en) 1989-03-22 1989-03-22 Method and apparatus for analyzing asphaltene components in fuel oil

Country Status (1)

Country Link
JP (1) JPH0643959B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672873A (en) * 1995-07-13 1997-09-30 Cosmo Research Institute Method and apparatus for quantitative determination of components in residual fuel oils
CN108827895A (en) * 2018-05-30 2018-11-16 上海宝钢工业技术服务有限公司 The measuring method of asphalt smoke concentration in uncontrollable discharge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236168B2 (en) 2009-10-13 2012-08-07 Exxonmobil Research And Engineering Company Onset haze measurement apparatus and procedure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524671A (en) * 1978-08-10 1980-02-21 Toyobo Co Ltd Contamination meter for rinsing water
JPS62110135A (en) * 1985-11-08 1987-05-21 Cosmo Co Ltd Method and apparatus for quantifying concentration of asphaltene
JPS62232537A (en) * 1986-04-02 1987-10-13 Mazda Motor Corp Apparatus for detecting fuel component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524671A (en) * 1978-08-10 1980-02-21 Toyobo Co Ltd Contamination meter for rinsing water
JPS62110135A (en) * 1985-11-08 1987-05-21 Cosmo Co Ltd Method and apparatus for quantifying concentration of asphaltene
JPS62232537A (en) * 1986-04-02 1987-10-13 Mazda Motor Corp Apparatus for detecting fuel component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672873A (en) * 1995-07-13 1997-09-30 Cosmo Research Institute Method and apparatus for quantitative determination of components in residual fuel oils
CN108827895A (en) * 2018-05-30 2018-11-16 上海宝钢工业技术服务有限公司 The measuring method of asphalt smoke concentration in uncontrollable discharge

Also Published As

Publication number Publication date
JPH0643959B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
AU2003251963B2 (en) Asphaltene aggregation in petroleum oil mixtures determined by small angle light scattering
Worsfold et al. Determination of phosphorus in natural waters: A historical review
US9005988B2 (en) Method to assess multiphase fluid compositions
EP0551145B1 (en) Determination of asphaltene content and device therefor
CN103238060B (en) For measuring the method and apparatus of the systematic parameter alleviating crude(oil)unit corrosion
CN1957243B (en) Method for detecting the flocculation threshold of a colloidal medium, method for determining stability of mixture containing asphalt
CN103196776A (en) Measuring method of catalytic cracking slurry solid content
CN106053751A (en) Water quality monitoring system
JP2866604B2 (en) Method and apparatus for measuring insoluble matter concentration in oil
WO2009067043A1 (en) Method for measuring particle size in a liquid and device for carrying out said method
CN108254521A (en) A kind of combined type COD water quality in-line analyzer and its detecting system and method
JPH02248844A (en) Method and apparatus for analyzing asphaltene component in fuel oil
Tapp et al. Apparatus for continuous-flow underway spectrophotometric measurement of surface water pH
Yuan et al. Determination of cadmium at the nanogram per liter level in seawater by graphite furnace AAS using cloud point extraction
CN205643150U (en) COD short -term test appearance
Shull et al. Rapid modified eriochrome cyanine R method for determination of aluminum in water
CN104977267A (en) Method for analyzing flocculation-ultrafiltration membrane pollution state and using amount of flocculating agent
Luthy Manual of methods: preservation and analysis of coal gasification wastewaters
Gooberman Molecular weight distributions of polystyrene samples by turbidimetric titration
CN104297182B (en) Method for determining low-concentration protein in secondary output water of sewage plant
CN100535637C (en) Continuous detecting method for lead-cadmium in plastic sample
CN102156104B (en) Quantitative evaluation method for solvent resistance of organic pigment
CN106596476A (en) Solid-liquid separation evaluation method for waste drilling fluid
CN104634750B (en) Method for determining protein solubility based on ultrasonic dispersion, differential centrifugation and spectrum technologies
CN207703842U (en) A kind of combined type COD water quality in-line analyzer and its detecting system