JPH0643896B2 - Vehicle heading measurement method - Google Patents
Vehicle heading measurement methodInfo
- Publication number
- JPH0643896B2 JPH0643896B2 JP11174085A JP11174085A JPH0643896B2 JP H0643896 B2 JPH0643896 B2 JP H0643896B2 JP 11174085 A JP11174085 A JP 11174085A JP 11174085 A JP11174085 A JP 11174085A JP H0643896 B2 JPH0643896 B2 JP H0643896B2
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- magnetization
- sensor
- geomagnetic
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Traffic Control Systems (AREA)
- Navigation (AREA)
Description
【発明の詳細な説明】 〔1〕産業上の利用分野 本発明は地磁気方位センサによる車輛進行方位計測方法
に関する。本発明によれば車輛自身の着磁によるセンサ
の方位計測誤差を算出し、検出データを補正して正確な
方位を知ることができるため、貨物輸送、救急あるいは
保守などの目的で急行する車輛や一般乗用車の運行を効
率良く行なうことができる。DETAILED DESCRIPTION OF THE INVENTION [1] Field of Industrial Application The present invention relates to a vehicle traveling direction measuring method using a geomagnetic direction sensor. According to the present invention, it is possible to calculate the bearing measurement error of the sensor due to the magnetization of the vehicle itself and to correct the detected data to know the correct bearing, so that the vehicle that is rushed for the purpose of freight transportation, emergency or maintenance, etc. The general passenger car can be operated efficiently.
〔2〕従来技術 車載地磁気方位センサーは車輛に備えられ、地磁気を検
出する事によつて車両等の進行方向を計測する方位計等
のセンサとして利用されるものであつて、トロイダルコ
ア型の磁界フラツクスゲート式のものが知られている。[2] Prior art An in-vehicle geomagnetic direction sensor is provided in a vehicle and is used as a sensor such as an azimuth meter that measures the traveling direction of a vehicle or the like by detecting the geomagnetism. The flat gate type is known.
ところで従来自動車等の車両は踏切を横断すると送電線
の発生する磁界によつて車体フロア等が磁化される特性
を有し、これを一般に踏切着磁という。By the way, a conventional vehicle such as an automobile has a characteristic that a vehicle body floor is magnetized by a magnetic field generated by a power transmission line when it crosses a railroad crossing, which is generally called railroad crossing magnetization.
従つて地磁気センサーを車体に配設する場合には地磁気
センサーが地磁気のみに対し感応し、上記踏切着磁の如
き車体着磁に影響されないようにする事を考慮しなけれ
ばならない。Therefore, when arranging the geomagnetic sensor on the vehicle body, it must be taken into consideration that the geomagnetic sensor is sensitive only to the geomagnetic field and is not affected by the vehicle body magnetization such as the above-mentioned crossing magnetization.
従来の上記車体着磁の影響を排除する方法としては、例
えば特開昭59−228110号公報、特開昭60−4806号公報に
記載されているように着磁された車台を一つの磁石とみ
なし、車体上部に互に近接して配設された少なくとも2
個の地磁気センサーの出力差によつてその着磁量を推定
し、補正する方法が提案されていた。すなわち第2図に
示すように車体着磁を車輛(21)の車台(21a)に発生した
仮想的な磁石(22)として考えれば所定の支持構造によつ
て配設された地磁気センサー(23),(24)の夫々の位置に
おける磁場MG1、MG2の大きさが異なる。従つて地磁
気センサ(23)、(24)の差異に基づいて車体着磁、すなわ
ち磁石(22)の磁気量を推定し、所定の地磁気センサーの
出力を補正する事によつて地磁気のみによつて生ずる本
来の検出信号出力を得ようとするものである。As a conventional method of eliminating the influence of the magnetization of the vehicle body, for example, as disclosed in JP-A-59-228110 and JP-A-60-4806, a magnetized chassis is used as one magnet. Considered, at least 2 placed close to each other on top of the body
A method has been proposed in which the amount of magnetization is estimated and corrected based on the output difference of each geomagnetic sensor. That is, as shown in FIG. 2, if the vehicle body magnetization is considered as a virtual magnet (22) generated in the chassis (21a) of the vehicle (21), a geomagnetic sensor (23) arranged by a predetermined support structure. , (24), the magnitudes of the magnetic fields MG 1 and MG 2 are different. Therefore, the vehicle body is magnetized based on the difference between the geomagnetic sensors (23) and (24), that is, the amount of magnetism of the magnet (22) is estimated, and the output of a predetermined geomagnetic sensor is corrected to determine only the geomagnetism. It is intended to obtain the original detection signal output that occurs.
〔3〕従来技術の問題点 斯かる従来の方法によれば地磁気の大きさを仮定して計
算を進めなければならず、測定地点による地磁気の大き
さの変動がそのまま方位測定誤差の原因になるという重
大な欠点が存した。本発明者は上記問題に鑑み、これを
有効に解決すべく本発明を成したものである。[3] Problems of the prior art According to the conventional method, calculation must be performed assuming the magnitude of the geomagnetism, and fluctuations in the magnitude of the geomagnetism depending on the measurement point cause the azimuth measurement error. There was a serious drawback. In view of the above problems, the inventor of the present invention has made the present invention to effectively solve the problems.
〔4〕問題点を解決するための手段 本発明の目的は車両の方位計等に使用される車載地磁気
センサの検出出力に有効に補正を施して車体(11)、(11
a)への着磁の影響を排除し、本来の地磁気による出力の
みを検出し得るようにする事にあり、その特徴は通常の
地磁気センサー(14)とは別の地磁気センサ(13)を車体着
磁の影響MG1,MG2の強い方の磁場MG1の中にある箇所に
配設し、まず時刻tにおいて両地磁気センサーの出力の
差異に基づいて車体の着磁の方向を計算し、次に一定時
間後(△t)における両地磁気センサーの出力と時刻tに
おける両地磁気センサーの出力とから車体着磁の大きさ
を計算し、以上の結果より、上記通常の地磁気センサー
の検出出力を補正し、本来の方位を検出するようにした
事にある。(4) Means for Solving Problems The object of the present invention is to effectively correct the detection output of a vehicle-mounted geomagnetic sensor used for a vehicle compass and the like to provide a vehicle body (11), (11
The purpose is to eliminate the influence of magnetization on a) and to detect only the output due to the original geomagnetism, which is characterized by a geomagnetic sensor (13) different from the normal geomagnetic sensor (14). The effect of magnetization is arranged at a location in the stronger magnetic field MG 1 of MG 1 and MG 2 , and first at time t, the direction of magnetization of the vehicle body is calculated based on the difference between the outputs of both geomagnetic sensors, Next, the magnitude of vehicle body magnetization is calculated from the output of both geomagnetic sensors at a certain time (Δt) and the output of both geomagnetic sensors at time t, and from the above results, the detection output of the normal geomagnetic sensor is calculated. It was corrected and the original direction was detected.
以下に第1図を用いて詳述する。Details will be described below with reference to FIG.
第1のセンサ(13)はルーフから直下l1の所にとりつけ
られ、車台(11a)の着磁により強い磁場MG1の中にある。
第2のセンサ(14)はルーフからl2の位置にあつてl2は
l1よりも大きいものとすると、MG1よりも弱い着磁によ
る磁界MG2にある。The first sensor (13) is mounted directly below the roof at l 1 and is in a strong magnetic field MG 1 due to the magnetization of the chassis (11a).
The second sensor (14) is in the magnetic field MG 2 due to magnetization weaker than MG 1 , where l 2 is greater than l 1 at the position l 2 from the roof.
第3図にフラツクスゲート型地磁気方位センサ、第4図
に車体着磁による方位誤差の状態を説明する。第3図に
おいてトロイダルコア(31)には励磁回路(32)があつて、
互いに直交する出力巻線(33)と(34)からはそれぞれ出力
VxとVyとがとり出される。次に第4図の実線で示されて
いる円(42)は地磁気以外の磁界が重畳された状態で車輛
が360度回転した時の検出出力を示していて、点線(41)
で示す真の方位に対応する出力(31)とはその中心がα、
そして偏位量Gだけ方位誤差が生じている。換言する
と、車輛がB点に向いているものとして方位角はθ′と
検出しているが真の方位角はθで、実際の方位はA点に
あつて、角度が方位誤差となる。FIG. 3 illustrates the flux gate type geomagnetic direction sensor, and FIG. 4 illustrates the state of the direction error due to magnetization of the vehicle body. In FIG. 3, the toroidal core (31) has an exciting circuit (32),
Outputs from the mutually orthogonal output windings (33) and (34)
Vx and Vy are taken out. Next, the circle (42) shown by the solid line in FIG. 4 shows the detection output when the vehicle rotates 360 degrees in a state where a magnetic field other than the earth's magnetism is superimposed, and the dotted line (41)
The output (31) corresponding to the true azimuth is the center α,
Then, the azimuth error occurs by the deviation amount G. In other words, the azimuth angle is detected as θ ′ assuming that the vehicle is facing the point B, but the true azimuth angle is θ, and the actual azimuth is at the point A, and the angle is the azimuth error.
第1のセンサの互いに直交する出力巻線から取り出され
た出力をVx1,Vy1,第2のセンサの出力をVx2,Vy2とす
ると、それらの出力ベクトルは次式で表わされる。Letting Vx 1 and Vy 1 be the outputs extracted from the mutually orthogonal output windings of the first sensor and Vx 2 and Vy 2 be the outputs of the second sensor, their output vectors are represented by the following equations.
こゝにθは車輛回転角、αは車輛着磁による方位の偏位
角、G1,G2はそれぞれ第1と第2のセンサにおける着
磁界MG1、MG2の大きさ(偏位量)、Kはセンサ出力
コイル定数、Bは地磁気の水平成分である。 Here, θ is the vehicle rotation angle, α is the azimuth deviation angle due to vehicle magnetization, and G 1 and G 2 are the magnitudes of the magnetic fields MG 1 and MG 2 at the first and second sensors, respectively. ) And K are sensor output coil constants, and B is the horizontal component of the earth's magnetism.
上の式から式(5)、(6)が得られる。Equations (5) and (6) are obtained from the above equation.
Vx1−Vx2=(G1-G2)cosα……(5) Vy1−Vy2=(G1-G2)sinα……(6) 従つて、 第(7)式のαは車体着磁の方向を表わしている。Vx 1 −Vx 2 = (G 1 −G 2 ) cosα …… (5) Vy 1 −Vy 2 = (G 1 −G 2 ) sinα …… (6) Therefore, The α in the equation (7) represents the direction of car body magnetization.
以上で着磁の方向がわかつたので、次に着磁の大きさを
計算により求める。Now that the direction of magnetization is unknown, the magnitude of magnetization is next calculated.
いまある時刻tにおける第1のセンサの出力をVx1(t)、
Vy1(t)、車両回転角をθ(t)時刻(t+△t)における第1の
センサの出力をVx1(t+△t)、Vy1(t+△t)とおくと、次の
関係式が得られる。The output of the first sensor at a certain time t is Vx 1 (t),
Let Vy 1 (t), the vehicle rotation angle be θx (t) time (t + △ t), and the output of the first sensor be Vx 1 (t + △ t) and Vy 1 (t + △ t). The formula is obtained.
Vx1(t)=KBcosθ(t)+G1cosα……(8) Vy1(t)=KBsinθ(t)+G1sinα……(9) Vx1(t+△t)=aKBcos(θ(t)+△θ)+G1cosα (10) Vy1(t+△t)=aKBsin(θ(t)+△θ)+G1sinα (11) △θ:時刻tから時刻(t+△t)間の車両回転角の変化分 aは地磁気の濃淡を表す係数で次のように求められる。Vx 1 (t) = KB cos θ (t) + G 1 cos α …… (8) Vy 1 (t) = KB sin θ (t) + G 1 sin α …… (9) Vx 1 (t + △ t) = a KB cos (θ ( t) + △ θ) + G 1 cosα (10) Vy 1 (t + △ t) = aKBsin (θ (t) + △ θ) + G 1 sinα (11) △ θ: Time t to time (t + △ t) The change amount a of the vehicle rotation angle during the period is a coefficient representing the intensity of the geomagnetism, and is obtained as follows.
(10)、(11)式はそれぞれ、 Vx1(t+△t)=aKB{cosθ(t)cos△θ -sinθ(t)sin△θ}+G1cosα……(イ) Vy1(t+△t)=aKB{sinθ(t)cos△θ +conθ(t)sin△θ}+G1sinα……(ロ) (8)、(9)式より、 KBcosθ(t)=Vx1(t)-G1cosα……(ハ) KBsinθ(t)=Vy1(t)-G1sinα……(ニ) (ハ)、(ニ)を(イ)に代入し整理すると、 (ハ)、(ニ)を(ロ)に代入し整理すると、 (12)式を(13)式に代入し整理すると、 Ia2+Ja+L=0……(14) ここに、 J=Vx1(t+△t)(-sinαcos△θ-cosαsin△θ) +sinα(Vy1(t)sin△θ-Vx1(t)cos△θ) -Vy1(t+△t)(sinαsin△θ-cosαcos△θ) -cosα(-Vy1(t)cos△θ-Vx1(t)sin△θ) =-Vx1(t+△t)(sinαcos△θ+cosαsin△θ) +Vy1(t)(sinαsin△θ+cosαcos△θ) +Vx1(t)(sinαsin△θ+sinαcos△θ) -Vy1(t+△t)(sinαsin△θ-cosαcos△θ) =-Vx1(t+△t)sin(α+△θ) +Vy1(t)cos(α-△θ) -Vx1(t)sin(α-△θ) +Vx1(t+△t)cos(α+△θ)……(15) I= Vy1(t)sin△θ-Vx1(t)cos△θ)(-sinαcos△θ -cosαsin△θ)+(Vy1(t)cos△θ+Vx1(t)sin△θ) ・(sinαsin△θ-cosαcos△θ) =-Vy1(t)cosαsin2△θ+Vx1(t)sinαcos2△θ -Vy1(t)cosαcos2△θ+Vx1(t)sinαsin2△θ =Vx1(t)sinα-Vy1(t)cosα……(16) L=Vx1(t+△t)sinα-Vy1(t+△t)cosα……(17) (14)式より 以上によりG1とαが求まるので、時刻tの車両方位θ
(t)は、 時刻(t+△t)の車両方位θ(t+△t)は、 なお、変位量G2についても全く同様に求まる。Equations (10) and (11) are Vx 1 (t + △ t) = aKB {cosθ (t) cos △ θ -sinθ (t) sin △ θ} + G 1 cosα ...... (b) Vy 1 (t + △ t) = a KB {sin θ (t) cos △ θ + con θ (t) sin △ θ} + G 1 sin α …… (b) From equations (8) and (9), KBcosθ (t) = Vx 1 (t ) -G 1 cos α …… (c) KB sin θ (t) = Vy 1 (t) -G 1 sin α …… (d) (c) and (d) are assigned to (a) and rearranged, Substituting (c) and (d) into (b) and rearranging, Substituting Eq. (12) into Eq. (13) and rearranging, Ia 2 + Ja + L = 0 …… (14) where J = Vx 1 (t + △ t) (-sinαcos △ θ-cosαsin △ θ) + sin α (Vy 1 (t) sin △ θ-Vx 1 (t) cos △ θ) -Vy 1 (t + △ t) (sin αsin △ θ-cos α cos △ θ) -cos α (-Vy 1 (t) cos △ θ-Vx 1 (t) sin △ θ) = -Vx 1 (t + △ t) (sin αcos △ θ + cos αsin △ θ) + Vy 1 (t) (sin αsin △ θ + cos αcos △ θ) + Vx 1 (t ) (sinαsin △ θ + sinαcos △ θ) -Vy 1 (t + △ t) (sinαsin △ θ-cosαcos △ θ) = -Vx 1 (t + △ t) sin (α + △ θ) + Vy 1 (t) cos (α- △ θ) -Vx 1 (t) sin (α- △ θ) + Vx 1 (t + △ t) cos (α + △ θ) …… (15) I = Vy 1 (t) sin △ θ- Vx 1 (t) cos △ θ) (-sin αcos △ θ -cos αsin △ θ) + (Vy 1 (t) cos △ θ + Vx 1 (t) sin △ θ) ・ (sin αsin △ θ-cos αcos △ θ) = -Vy 1 (t) cos α sin 2 △ θ + Vx 1 (t) sin αcos 2 △ θ -Vy 1 (t) cos αcos 2 △ θ + Vx 1 (t) sin αsin 2 △ θ = Vx 1 (t) sin α-Vy 1 (t) cosα …… (16) L = Vx 1 (t + △ t) sinα-Vy1 (t + △ t) cosα …… (17) From equation (14) Since G1 and α are obtained from the above, the vehicle direction θ at time t
(t) is Vehicle direction θ (t + △ t) at time (t + △ t) is The amount of displacement G 2 can be obtained in exactly the same way.
(6)実施例 本発明の実施例(1)、(2)、(3)を次の表にまとめて示
す。(6) Examples Examples (1), (2) and (3) of the present invention are summarized in the following table.
〔7〕発明の効果 本発明では車体着磁の影響の異なる複数の位置に複数の
地磁気方位センサを配置し、それぞれの出力差から着磁
に起因する検出データの偏位角α(着磁の方向)を求
め、さらにある時刻(t)とそれから(△t)の時間を経過し
た時刻におけるセンサ出力とから、偏位量(着磁の大き
さ)Gを算出し、αとGを用いて地磁気センサの出力を
補正するので、車体着磁の影響を除去した正確な車輛方
位データが得られる。 [7] Effects of the Invention In the present invention, a plurality of geomagnetic direction sensors are arranged at a plurality of positions where the influence of vehicle body magnetization is different, and the deviation angle α (detection of the magnetization Direction), and the deviation amount (magnitude of magnetization) G is calculated from the sensor output at a certain time (t) and the time (Δt) after that, and α and G are used. Since the output of the geomagnetic sensor is corrected, accurate vehicle azimuth data without the influence of vehicle body magnetization can be obtained.
第1図は本発明の計測方法を実施するための構成を示す
図である。 第2図は従来の計測方法を説明する図である。 第3図はフラツクスゲート型地磁気センサの構成を示す
図である。 第4図は車体着磁による方位誤差の状態を示すための図
である。 11:車両 11a:車台 12:磁石 13:第1のセンサ 14:第2のセンサ 21:車輛 21a:車台 22:磁石 23,24:地磁気センサ 31:トロイダルコア 32:耐磁巻線 33,34:出力コイル 41:真の方位に係わる出力ベクトル 42:計測方位に係わる出力ベクトルFIG. 1 is a diagram showing a configuration for carrying out the measuring method of the present invention. FIG. 2 is a diagram for explaining a conventional measuring method. FIG. 3 is a diagram showing the configuration of the flux gate type geomagnetic sensor. FIG. 4 is a diagram showing a state of a heading error due to magnetization of the vehicle body. 11: Vehicle 11a: Chassis 12: Magnet 13: First sensor 14: Second sensor 21: Vehicle 21a: Chassis 22: Magnet 23, 24: Geomagnetic sensor 31: Toroidal core 32: Magnetic resistance winding 33, 34: Output Coil 41: Output vector related to true direction 42: Output vector related to measurement direction
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−4806(JP,A) 特開 昭59−44614(JP,A) 特開 昭58−115376(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-4806 (JP, A) JP-A-59-44614 (JP, A) JP-A-58-115376 (JP, A)
Claims (3)
測を行なう方法であつて、車輛の車体着磁による磁界の
強さの異なる複数の位置にそれぞれ地磁気方位センサを
配置し、これら複数のセンサの地磁気ならびに車体着磁
により誘起される出力を時刻(t)と時刻(t+△t)の
それぞれの時刻において計測して車体着磁による偏位角
αと偏位量Gとを算出し、両者に基づいて、時刻(t)に
おける車輛回転角θ(t)を次式により求め車輛の進行方
位とすることを特徴とする車輛進行方位計測方法。 こゝにVx,Vyは車体着磁による磁界の強い位置に配置さ
れた地磁気センサの出力である。1. A method of measuring a traveling direction of a vehicle by a geomagnetic direction sensor, wherein the geomagnetic direction sensor is arranged at each of a plurality of positions having different magnetic field strengths due to magnetization of the vehicle body. The outputs induced by the geomagnetism and the vehicle body magnetization are measured at the time (t) and the time (t + Δt) respectively to calculate the deviation angle α and the deviation amount G due to the vehicle body magnetization. Based on the above, a vehicle traveling azimuth measuring method is characterized in that the vehicle rotation angle θ (t) at time (t) is obtained by the following equation and used as the traveling azimuth of the vehicle. Here, Vx and Vy are the outputs of the geomagnetic sensor placed in the position where the magnetic field due to the magnetization of the vehicle body is strong.
磁の影響の強い位置に配置された第1のセンサと、車体
着磁の影響の弱い位置に配置された第2のセンサとから
なり、第1のセンサの出力Vx1,Vy1,および第2のセン
サの出力Vx2,Vy2とを、時刻(t)および(t+△t)に
おいて測定し、その値から次式により、車体着磁による
偏位角(α)と偏位量(G)を算出することを特徴とする特
許請求の範囲第1項記載の車輛進行方位計測方法。 こゝにaは地磁気の濃淡を表わす係数、 △θは時間△tの間の車輛回転角の変化量2. A geomagnetic sensor arranged on a vehicle comprises a first sensor arranged at a position strongly influenced by body magnetization and a second sensor arranged at a position weakly influenced by body magnetization. Then, the outputs Vx 1 and Vy 1 of the first sensor and the outputs Vx 2 and Vy 2 of the second sensor are measured at time (t) and (t + Δt), and from the values, The vehicle advancing direction measuring method according to claim 1, wherein the deviation angle (α) and the deviation amount (G) due to vehicle body magnetization are calculated. Here, a is a coefficient that expresses the intensity of the geomagnetism, and Δθ is the amount of change in the vehicle rotation angle during time Δt.
よつて検出されることを特徴とする特許請求の範囲第1
項及び第2項記載の車輛進行方位計測方法。3. The vehicle rotation angle (θ) is detected by measuring the wheel speed.
The vehicle traveling direction measuring method according to the above paragraphs and 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11174085A JPH0643896B2 (en) | 1985-05-23 | 1985-05-23 | Vehicle heading measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11174085A JPH0643896B2 (en) | 1985-05-23 | 1985-05-23 | Vehicle heading measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61269015A JPS61269015A (en) | 1986-11-28 |
JPH0643896B2 true JPH0643896B2 (en) | 1994-06-08 |
Family
ID=14568984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11174085A Expired - Lifetime JPH0643896B2 (en) | 1985-05-23 | 1985-05-23 | Vehicle heading measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0643896B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63196811A (en) * | 1987-02-10 | 1988-08-15 | Sumitomo Electric Ind Ltd | Magnetization correction method of earth magnetism azimuth sensor |
JP2505795B2 (en) * | 1987-03-03 | 1996-06-12 | 住友電気工業株式会社 | Vehicle heading measurement method |
-
1985
- 1985-05-23 JP JP11174085A patent/JPH0643896B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61269015A (en) | 1986-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0640207B1 (en) | Calibration method for a relative heading sensor | |
JPH0429010B2 (en) | ||
US4751783A (en) | Azimuth determination apparatus | |
US5023799A (en) | Vehicular traveling direction measuring system | |
JPS61502413A (en) | Method for detecting the traveling direction of a vehicle using an electronic compass | |
JPH061191B2 (en) | A method for determining the strike direction of a vehicle using an electronic compass | |
JPS60135814A (en) | Azimuth detecting apparatus | |
JPH0643896B2 (en) | Vehicle heading measurement method | |
JPH061195B2 (en) | Magnetization using a digital map. Geomagnetic deviation area detection method | |
JP2723352B2 (en) | In-vehicle navigation system | |
JPH0749960B2 (en) | Geomagnetic azimuth measuring device | |
JPS6290508A (en) | Direction detector of moving body | |
JPS62255814A (en) | Correcting method for vehicle azimuth error | |
JP2505795B2 (en) | Vehicle heading measurement method | |
JPS59228110A (en) | Vehicle mounted geomagnetism sensor | |
JPS5928679A (en) | Dagausser for vehicle | |
JPH0531086B2 (en) | ||
JPH0833299B2 (en) | Vehicle compass | |
JPS61269014A (en) | Correction for geomagnetic bearing sensor | |
JPS61215915A (en) | Azimuth detecting device | |
JP3134603B2 (en) | Magnetometer | |
JPH0642172Y2 (en) | Vehicle direction detector | |
JPS6251778B2 (en) | ||
JPS61193016A (en) | Azimuth detecting device | |
JPH0319927B2 (en) |