JPH0643441B2 - Polysaccharide derivative - Google Patents

Polysaccharide derivative

Info

Publication number
JPH0643441B2
JPH0643441B2 JP59076290A JP7629084A JPH0643441B2 JP H0643441 B2 JPH0643441 B2 JP H0643441B2 JP 59076290 A JP59076290 A JP 59076290A JP 7629084 A JP7629084 A JP 7629084A JP H0643441 B2 JPH0643441 B2 JP H0643441B2
Authority
JP
Japan
Prior art keywords
glucan
polysaccharide
polysaccharide derivative
thiophene ring
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59076290A
Other languages
Japanese (ja)
Other versions
JPS60219201A (en
Inventor
肇 浪越
徹 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP59076290A priority Critical patent/JPH0643441B2/en
Publication of JPS60219201A publication Critical patent/JPS60219201A/en
Publication of JPH0643441B2 publication Critical patent/JPH0643441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は新規な多糖類誘導体に関するものであり、詳し
くはチオフエン環又はその縮合環に直結したカルボキシ
ル基を有するカルボン酸の多糖類エステルに関するもの
である。
The present invention relates to a novel polysaccharide derivative, and more particularly to a polysaccharide ester of a carboxylic acid having a carboxyl group directly linked to a thiophene ring or a condensed ring thereof.

従来多糖類のカルボン酸エステルは種々の化合物が知ら
れているが、カルボン酸がチオフエン環に直結したカル
ボキシル基を有するものである場合ごく限られたものし
か知られていない。即ち、セルロース繊維の改質を目的
として合成した例が報告されている〔S.Singh etal,Car
bohydr.Res.,17 353−363(1971)〕が、生成
物はグルコース単位あたりの置換度は1.0以下であり、
一般的な溶媒に溶解しないものである。しかるに本発明
者等は多糖類分子中の水酸基の50%以上がチオフェン環
又はその縮合環に直結したカルボキシル基で置換された
高置換度エステルが、有機溶剤に可溶性であり、吸着
剤、酸素担体、クロマトグラフィー用担体、光学異性体
分離剤、液晶物質等として利用し得る有用な物質である
ことを見出した。
Conventionally, various compounds of carboxylic acid esters of polysaccharides are known, but only a very limited number of carboxylic acid esters are known when the carboxylic acid has a carboxyl group directly linked to a thiophene ring. That is, an example of synthesis for the purpose of modifying cellulose fibers has been reported [S. Singh et al.
bohydr.Res., 17 353-363 (1971)], but the product has a degree of substitution per glucose unit of 1.0 or less,
It does not dissolve in common solvents. However, the present inventors have found that a highly substituted ester in which 50% or more of the hydroxyl groups in the polysaccharide molecule are substituted with a carboxyl group directly linked to a thiophene ring or a condensed ring thereof is soluble in an organic solvent, is an adsorbent, and is an oxygen carrier. It was found that they are useful substances that can be used as a carrier for chromatography, an optical isomer separating agent, a liquid crystal substance and the like.

即ち本発明は、多糖類分子中の水酸基の50%以上が次式 (式中Rはチオフェン環、又はチオフェン環を含む芳香
族縮合環を表わす) で表わされる基で置換されており且つ有機溶剤可溶性で
ある多糖類誘導体に係るものであり、その吸着剤、分離
剤としての機能の優れたものである。
That is, in the present invention, 50% or more of the hydroxyl groups in the polysaccharide molecule are represented by the following formula (Wherein R represents a thiophene ring or an aromatic condensed ring containing a thiophene ring) and is related to a polysaccharide derivative which is substituted with a group and is soluble in an organic solvent. It is an excellent one.

多糖類としては種々の単糖類を構成単位としたものを対
象とすることができるが、直鎖状分子構造を有するも
の、又は分岐を有していても比較的分岐度の小さいもの
が有用である。また構成単位である単糖類の種類、及び
その結合形式もせいぜい2種類程度以下の、比較的単純
な構造のものが特に有用である。それらを例示すればセ
ルロースを含むβ−1,4−グルカン、アミロース、プル
ランを含むα−1,4−グルカン、デキストランを含むα
−1,6−グルカン、カードラン、パキマン、レンチナン
を含むβ−1,3−グルカン、イヌリンを含むβ−2,1−フ
ルクタン、レバンを含むβ−2,6−フルクタン、寒天を
含むガラクタン、アルギン酸を含むポリウナロイド、キ
チン、キトサンを含むグルコサミナン、及びマンナン、
キシランならびにグルコマンナン、ガラクトマンナン、
アラビノガラクタンを含むヘテログリカンなどである。
As the polysaccharide, those having various monosaccharides as structural units can be targeted, but those having a linear molecular structure, or those having a relatively small branching degree even if they have a branch are useful. is there. Further, it is particularly useful that the type of monosaccharide which is a constitutional unit, and the binding form thereof is about 2 or less at most, and that the structure is relatively simple. Examples of them include β-1,4-glucan containing cellulose, amylose, α-1,4-glucan containing pullulan, α containing dextran.
-1,6-glucan, curdlan, pachyman, β-1,3-glucan containing lentinan, β-2,1-fructan containing inulin, β-2,6-fructan containing levan, galactan containing agar, Polyunaloids containing alginic acid, chitin, glucosaminonan containing chitosan, and mannan,
Xylan and glucomannan, galactomannan,
Examples include heteroglycans containing arabinogalactan.

上記の多糖類をエステル化し、本発明の誘導体に導くた
めの反応試薬は、対応するカルボン酸無水物又はカルボ
ン酸ハライドを用いれば良く、例えばチオフエン−2−
カルボニルクロリド、チオフエン−3−カルボニルクロ
リドなどがある。反応触媒としては硫酸、過塩素酸のよ
うなブレンステツド酸、塩化亜鉛のようなルイス酸、ピ
リジン、トリエチルアミン、4−ジメチルアミノピリジ
ン等の塩基が適宜使用できる。
As a reaction reagent for esterifying the above-mentioned polysaccharide and leading to the derivative of the present invention, a corresponding carboxylic acid anhydride or carboxylic acid halide may be used. For example, thiophene-2-
Carbonyl chloride, thiophene-3-carbonyl chloride and the like. As the reaction catalyst, sulfuric acid, Bronsted acid such as perchloric acid, Lewis acid such as zinc chloride, and bases such as pyridine, triethylamine and 4-dimethylaminopyridine can be appropriately used.

本発明の多糖類誘導体の合成にあたり、原料多糖類は一
旦水或いは蟻酸などの溶媒に溶解させたものを別種の溶
媒中に沈澱させて乾燥したもの、水溶液を直接凍結乾燥
したもの、或いは、酢酸エステルのような多糖類エステ
ルを加水分解して得たものなどを原料とすると、反応に
対する活性が大きく有利に使用できる。
In the synthesis of the polysaccharide derivative of the present invention, the raw material polysaccharide is once dissolved in a solvent such as water or formic acid and then precipitated in another solvent and dried, an aqueous solution is directly freeze-dried, or acetic acid. When a material obtained by hydrolyzing a polysaccharide ester such as an ester is used as a raw material, it has a large activity for the reaction and can be advantageously used.

多糖類の種類、重合度によつて反応性は異るが、反応条
件の選択により誘導体の置換度は調節が可能である。
The reactivity varies depending on the type of polysaccharide and the degree of polymerization, but the degree of substitution of the derivative can be adjusted by selecting the reaction conditions.

本発明の多糖類誘導体は種々の形態で利用できる。例え
ば、フイルム状、繊維状、粒子状などに成型して使用す
る。この場合には重合度は比較的高いもの、例えば60
以上のものが、成型品の物理的強度などの点で好まし
い。また、微小シリカゲルに担持して使用するような場
合には重合度の比較的低いもの、例えば10〜80程度
のものの方が、コーテイング性などの点で有利である。
The polysaccharide derivative of the present invention can be used in various forms. For example, it is used after being formed into a film shape, a fiber shape, a particle shape, or the like. In this case, the degree of polymerization is relatively high, for example 60
The above is preferable in terms of physical strength of the molded product. Further, in the case of being used by being supported on fine silica gel, those having a relatively low degree of polymerization, for example, those having a degree of polymerization of about 10 to 80 are more advantageous in terms of coating properties and the like.

以下に実施例をあげて本発明を説明するが本発明はこれ
に限定されるものではない。
The present invention is described below with reference to examples, but the present invention is not limited thereto.

実施例1 酢酸セルロースをヒドラジンでケン化し、アセトンで洗
浄後乾燥してセルロースを得た。上記セルロース1.5g
に脱水したピリジン70ml、脱水したトリエチルアミン
7.7ml、4−ジメチルアミノピリジン50mgを加え、攪
拌しながらチオフエン2−カルボニルクロリド12.2gを
添加し、100゜Cで5時間攪拌反応した。冷却後エタノ
ール400mlに生成物を攪拌しながら加えて沈殿させ、
グラスフイルターで過後エタノールで良く洗浄した。
真空乾燥した後、塩化メチレン30mlに溶解し、不溶物
を除いた後400mlのエタノールに再沈澱した。沈澱を
過後、エタノールで洗浄し、脱液、乾燥した。生成物
の糖製収量は3.9gであつた。生成物を塩化メチレンに
溶解後、食塩セルに塗布し、乾燥して赤外吸収スペクト
ル分析に付した。得られた赤外吸収スペクトルは第1図
の通りであり、特徴的な吸収帯は次の通りである。
Example 1 Cellulose acetate was saponified with hydrazine, washed with acetone and dried to obtain cellulose. 1.5 g of the above cellulose
70 ml of dehydrated pyridine and dehydrated triethylamine
7.7 ml and 4-dimethylaminopyridine 50 mg were added, and thiophene 2-carbonyl chloride 12.2 g was added with stirring, and the mixture was reacted at 100 ° C. for 5 hours with stirring. After cooling, add the product to 400 ml of ethanol with stirring to precipitate,
After passing through a glass filter, it was thoroughly washed with ethanol.
After vacuum drying, it was dissolved in 30 ml of methylene chloride, the insoluble material was removed, and the precipitate was reprecipitated in 400 ml of ethanol. After passing through the precipitate, it was washed with ethanol, drained and dried. The sugar yield of the product was 3.9 g. The product was dissolved in methylene chloride, applied to a sodium chloride cell, dried and subjected to infrared absorption spectrum analysis. The obtained infrared absorption spectrum is as shown in FIG. 1, and the characteristic absorption bands are as follows.

3100cm-1 芳香族C−H伸縮振動 1720cm-1 カルボン酸エステルのC=O伸縮振動 1360,1420,1520cm-1 チオフエン環伸縮振動 1260cm-1 エステルのC−O伸縮振動 1060〜1160cm-1 セルロースのC−O−Cの伸縮振動 860cm-1 2置換チオフエンのC−H面外変角 セルロースのOHに基づく3450cm-1付近の吸収はほと
んど認められず、ほぼ三置換体であることがわかる。ま
たCDCl3中で測定したプロトンNMRスペクトルの特徴的な
吸収は次の通りである。
3100cm -1 Aromatic C-H stretching vibration 1720cm -1 Carboxyl ester C = O stretching vibration 1360,1420,1520cm -1 Thiophene ring stretching vibration 1260cm -1 Ester C-O stretching vibration 1060 to 1160cm -1 Cellulose Stretching vibration of C-O-C 860 cm -1 2 C-H out-of-plane bending angle of 2-substituted thiophene Absorption around 3450 cm -1 based on OH of cellulose was hardly observed, indicating that the compound is almost a tri-substituted product. The characteristic absorptions of the proton NMR spectrum measured in CDCl 3 are as follows.

6.8〜7.8ppmチオフエン環プロトン 2.8〜5.4ppmセルロースの環及び6位のメチレンのプロ
トン チオフエン環プロトンとセルロースのプロトンの比はほ
ぼ9:7であり、三置換体と一致する。
6.8 to 7.8 ppm Thiophene ring proton 2.8 to 5.4 ppm Cellulose ring and methylene proton at the 6-position The ratio of thiophene ring proton to cellulose proton is approximately 9: 7, which is in agreement with the tri-substituted product.

また硫黄の元素分析を行なつたところ硫黄含量は19.40
%であり、これらを総合して生成物は置換度約3.0のセ
ルロースチオフエン2−カルボキシレートであると推定
される。
In addition, elemental analysis of sulfur revealed that the sulfur content was 19.40.
Taken together, it is estimated that the product is a cellulose thiophene 2-carboxylate with a degree of substitution of about 3.0.

実施例2 象牙ヤシの種子のはい乳を文献記載〔G.O.Aspinall,eta
l;J.Chem.Soc.,3184(1953)〕の方法で処理し高分子量画
分のマンナンBを得た。セルロースの代りにこのマンナ
ンBの粉末を使用する以外は実施例1とまつたく同様に
行なつた。この結果2gの反応生成物をえた。この生成
物を塩化メチレンに溶解し、食塩セルに塗布し、乾燥し
て赤外スペクトルの測定に付した。得られた赤外吸収ス
ペクトルは第2図の通りであり、特徴的な吸収帯は次の
通りである。
Example 2 Endodon of ivory palm seeds is described in the literature [GO Aspinall, eta.
1; J. Chem. Soc., 3184 (1953)] to obtain a high molecular weight fraction of mannan B. The same procedure as in Example 1 was repeated except that this mannan B powder was used instead of cellulose. As a result, 2 g of a reaction product was obtained. The product was dissolved in methylene chloride, applied to a sodium chloride cell, dried and subjected to infrared spectrum measurement. The obtained infrared absorption spectrum is as shown in FIG. 2, and the characteristic absorption bands are as follows.

3100cm-1 方法族C−H伸縮振動 1730cm-1 カルボン酸エステルのC=O伸縮振動 1360,1420,1530cm-1 チオフエン環環伸縮振動 1260cm-1 エステルのC−O伸縮振動 1060〜1180cm-1 マンナンのC−O−Cの伸縮振動 860cm-1 2置換チオフエンのC−H面外変角 マンナンのOHに基づく3450cm-1付近の吸収はほとん
ど認められず、ほぼ三置換体であることがわかる。また
CDCl3中で測定したプロトンNMRの特徴的な吸収は次の通
りである。
3100cm -1 Method group C-H stretching vibration 1730cm -1 Carboxylic ester C = O stretching vibration 1360,1420,1530cm -1 Thiophene ring ring stretching vibration 1260cm -1 Ester C-O stretching vibration 1060-1180cm -1 Mannan Stretching vibration of C-O-C of 860 cm -1 2 C-H out-of-plane bending angle of 2-substituted thiophene Absorption around 3450 cm -1 based on OH of mannan is hardly recognized, and it is found that the compound is almost trisubstituted. Also
The characteristic absorptions of proton NMR measured in CDCl 3 are as follows.

6.8〜8.2ppmチオフエン環のプロトン 3.0〜5.8ppmマンナンの環および6位のメチレンのプロ
トン チオフエン環プロトンとマンナンのプロトンの比はほぼ
9:7であり三置換体と一致する。この結果、生成物は
マンノースあたりの置換度3.0のマンナン2−チオフエ
ンカルボキシレートと推定される。
6.8 to 8.2 ppm Proton of thiophene ring 3.0 to 5.8 ppm Proton of mannan ring and methylene at the 6-position The ratio of thiophene ring proton to proton of mannan is approximately 9: 7, which is in agreement with the tri-substituted product. As a result, the product is estimated to be mannan 2-thiophenecarboxylate having a degree of substitution of 3.0 per mannose.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は夫々実施例1及び2の多糖誘導体の
赤外吸収スペクトルである。
1 and 2 are infrared absorption spectra of the polysaccharide derivatives of Examples 1 and 2, respectively.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】多糖類分子中の水酸基の50%以上が次式 (式中Rはチオフェン環、又はチオフェン環を含む芳香
族縮合環を表わす) で表わされる基で置換されており且つ有機溶剤可溶性で
ある多糖類誘導体。
1. 50% or more of hydroxyl groups in a polysaccharide molecule are represented by the following formula: (In the formula, R represents a thiophene ring or an aromatic condensed ring containing a thiophene ring) and a polysaccharide derivative which is substituted with a group and is soluble in an organic solvent.
【請求項2】多糖類がセルロースを含むβ−1,4−グ
ルカン、アミロース、プルランを含むα−1,4−グル
カン、デキストランを含むα−1,6−グルカン、カー
ドラン、パキマン、レンチナンを含むβ−1,3−グル
カン、イヌリンを含むβ−2,1−フルクタン、レバン
を含むβ−2,6−フルクタン、寒天を含むガラクタ
ン、アルギン酸を含むポリウナロイド、キチン、キトサ
ンを含むグルコサミナン、及びマンナン、キシランなら
びにグルコマンナン、ガラクトマンナン、アラビノガラ
クタンを含むヘテログリカンからなる化合物群から選ば
れたものである特許請求の範囲第1項記載の多糖類誘導
体。
2. Polysaccharides include β-1,4-glucan containing cellulose, amylose, α-1,4-glucan containing pullulan, α-1,6-glucan containing dextran, curdlan, pakiman and lentinan. Β-1,3-glucan containing, β-2,1-fructan containing inulin, β-2,6-fructan containing levan, galactan containing agar, polyunaloid containing alginic acid, glucosaminonan containing chitin and chitosan, and mannan. The polysaccharide derivative according to claim 1, which is selected from the group of compounds consisting of heteroglycans including xylan, glucomannan, galactomannan, and arabinogalactan.
JP59076290A 1984-04-16 1984-04-16 Polysaccharide derivative Expired - Lifetime JPH0643441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59076290A JPH0643441B2 (en) 1984-04-16 1984-04-16 Polysaccharide derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59076290A JPH0643441B2 (en) 1984-04-16 1984-04-16 Polysaccharide derivative

Publications (2)

Publication Number Publication Date
JPS60219201A JPS60219201A (en) 1985-11-01
JPH0643441B2 true JPH0643441B2 (en) 1994-06-08

Family

ID=13601196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59076290A Expired - Lifetime JPH0643441B2 (en) 1984-04-16 1984-04-16 Polysaccharide derivative

Country Status (1)

Country Link
JP (1) JPH0643441B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352432A (en) * 1986-07-03 1994-10-04 Advanced Magnetics, Inc. Hepatocyte specific composition and their use as diagnostic imaging agents
US5554386A (en) * 1986-07-03 1996-09-10 Advanced Magnetics, Inc. Delivery of therapeutic agents to receptors using polysaccharides
US5679323A (en) * 1986-07-03 1997-10-21 Advanced Magnetics, Inc. Hepatocyte-specific receptor-mediated endocytosis-type compositions
US5882520A (en) * 1995-10-26 1999-03-16 The University Of Montana Use of arabinogalactan in aqueous two phase extractions
CN107383225A (en) * 2017-06-29 2017-11-24 华东师范大学 A kind of anti-tumor drug levulan carboxylate and its synthetic method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.Singhetal,Carbohydr.Res.,17,p353−363(1971)

Also Published As

Publication number Publication date
JPS60219201A (en) 1985-11-01

Similar Documents

Publication Publication Date Title
Furuike et al. Preparation of chitosan hydrogel and its solubility in organic acids
Heinze et al. 4.2 Chemical characteristics of cellulose acetate
Kaifu et al. Studies on chitin. V. formylation, propionylation, and butyrylation of chitin
Hettegger et al. Silane meets click chemistry: towards the functionalization of wet bacterial cellulose sheets
Gomez-Bujedo et al. Preparation of cellouronic acids and partially acetylated cellouronic acids by TEMPO/NaClO oxidation of water-soluble cellulose acetate
CA2147224C (en) Partially acylated .beta.-cyclodextrins
Petzold et al. Silylation of cellulose and starch–selectivity, structure analysis, and subsequent reactions
Mandal et al. Structure of the D-galactan isolated from Aloe barbadensis Miller
JP2004156004A (en) Organopolysiloxane-modified polysaccharide and process for producing the same
RU2067587C1 (en) Method of carbohydrate silylation
Draczynski Synthesis and solubility properties of chitin acetate/butyrate copolymers
Schweiger Acetylation of alginic acid. I. Preparation and viscosities of algin acetates
JPS60219202A (en) Polysaccharide derivative
JPH0643441B2 (en) Polysaccharide derivative
Kochetkov et al. The synthesis of a (1→ 3)-glucan related to laminaran
Levdansky et al. Sulfation of xylan with sulfamic acid in N, N-dimethylformamide
JPS60217201A (en) Polysaccharide derivative
JPH0479361B2 (en)
Petzold et al. Regioselective functionalization of starch: Synthesis and 1H NMR characterization of 6-O-silyl ethers
JPS60223801A (en) Polysaccharide derivative
JPS60223802A (en) Polysaccharide derivative
JPS5829801A (en) Production of n-acylated chitosan
US6455691B1 (en) Preparation of chemically reactive polysaccharides
Heinze et al. Recent advances in cellulose chemistry
JPS60217202A (en) Polysaccharide derivative