JPH0479361B2 - - Google Patents

Info

Publication number
JPH0479361B2
JPH0479361B2 JP14610685A JP14610685A JPH0479361B2 JP H0479361 B2 JPH0479361 B2 JP H0479361B2 JP 14610685 A JP14610685 A JP 14610685A JP 14610685 A JP14610685 A JP 14610685A JP H0479361 B2 JPH0479361 B2 JP H0479361B2
Authority
JP
Japan
Prior art keywords
cellulose acetate
substitution
hydroxyl groups
cellulose
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14610685A
Other languages
Japanese (ja)
Other versions
JPS627701A (en
Inventor
Masahiro Komoritani
Haneshian Sutefuan
Takeshi Sei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP14610685A priority Critical patent/JPS627701A/en
Publication of JPS627701A publication Critical patent/JPS627701A/en
Publication of JPH0479361B2 publication Critical patent/JPH0479361B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、高置換度酢酸セルロースを特定の加
水分解条件で処理することにより、分子中に第2
級水酸基が比較的多量に存在する低置換度酢酸セ
ルロースを製造する方法に関するものである。 〔従来の技術〕 最近分岐多糖には強い生理活性を有するものが
あることが見出されている。例えば松崎らは2酢
酸セルロースに3,4,6−トリ−o−アセチル
−1,2−o−エチルオルトアセチル−α−D−
グルコピラノースを反応させた後脱アセチル化す
ることにより水溶性分岐多糖を得、このものが高
い抗腫瘍性を有するものであることを見出した。
このものは、セルロース主鎖にグルコースが分岐
付加した構造を有しており、その分岐位置は主鎖
グルコースのC6位、即ち第1級水酸基の位置に
結合しているものである(繊維学会第59回年次大
会研究発表会)。 一方天然には、同様に短い分岐鎖を有する多糖
類、例えばグアガム、ローカストビーンガム、タ
マリンドガムなどがあるが、これらもその分岐の
位置は、主鎖多糖の1級水酸基に結合しているも
のである。 〔発明が解決しようとする問題点〕 酢酸セルロースはそれ自身、繊維やプラスチツ
クの素材として工業的に有用であるが、セルロー
スを主鎖とする種々の誘導体の原料としても有用
である。後者の場合、酢酸エステル基は、水酸基
の保護基としての役割を果させることができる。
反応性の遊離水酸基を有し、汎用の有機溶剤に可
溶の2酢酸セルロースは、工業的には3酢酸セル
ロースを酢酸水溶液中で部分加水分解して得られ
るが、この方法によつて得られる2酢酸セルロー
スの遊離水酸基は無水グルコース単位構造のC2
C3,C6にあるが、そのうち第1級水酸基である
C6位の水酸基が最も多い。 このような3酢酸セルロースの部分加水分解条
件をかえることにより、2級水酸基であるC2
はC3位置の水酸基をより多く有する2酢酸セル
ロースを得ることができればそれら2級水酸基か
らの分岐構造を有する新たな多糖類の合成に到る
可能性がある。 〔問題点を解決するための手段〕 発明者らは、高置換度酢酸セルロースの加水分
解条件について鋭意研究した結果、過酸化水素の
存在下アルカリ金属水酸化物を用い、有機溶媒/
水混合溶媒中で反応させることにより、分子中に
C6位水酸基よりもC2,C3位水酸基をより多量に
有する低置換度酢酸セルロースが得られことを見
出して本発明に到つたものである。 即ち本発明は高置換度酢酸セルロースを部分加
水分解して低置換度酢酸セルロースを製造する方
法において、高置換度酢酸セルロースをアルカリ
金属水酸化物と過酸化水素の共存下に処理するこ
とにより、第2級水酸基を優先的に生成しせしめ
ることを特徴とする酢酸セルロースの部分加水分
解法に係わるものである。 本発明に用いられるアルカリ金属水酸化物とし
ては、水酸化ナトリウム、水酸化カリウム及び水
酸化リチウムがあるが、水酸化リチウムが最も適
当である。 アルカリ金属水酸化物の使用量は、高置換度酢
酸セルロースの無水グルコース単位あたり1モル
当量程度とすれば、置換度2程度の酢酸セルロー
スを得るのに好適である。更にアルカリ金属水酸
化物の量を多くすればより低置換度の酢酸セルロ
ースが得られる。 この部分加水分解反応における試薬の活性種は
アルカリ金属バーハイドロオキシド(MOOH)
と考えられるので、過酸化水素はアルカリ金属水
酸化物に対して等モル以上使用するのが好まし
い。 原料とする高置換度酢酸セルロースは一般に塩
化メチレン、クロロホルムなどのハロゲン化炭化
水素に溶解するので、それらに溶解させて反応に
使用する。一方、アルカリ金属水酸化物及び過酸
化水素は水溶液の形で使用する。更に反応に際し
ては、水及びハロゲン化炭化水素に混和性を有す
る溶媒を添加するのが好ましい。この目的で用い
る溶媒としてはテトラヒドロフラン、ジオキサ
ン、ジメトキシエタン、ジメチルホルムアミド、
ジメチルアセトアミド、ジメチルスルホキシド、
ピロリドンなどの中から選択することができる。 〔実施例〕 以下に実施例を挙げて本発明を説明するが、実
施例において、酢酸セルロース試料のアセチル基
置換度及びアセチル基の結合位置に関する分布
は、重水素化ジメチルスルホキシド(C6)溶液
中で測定した13C−NMRスペクトルに基づいて
定量した。 第1図に次式で示される二酢酸セルロースの
13C−NMRスペクトルを示す。 第1図において無水グルコース環の骨格炭素
(C−1〜C−6)シグナルが58〜104ppmの領域
に現れているが、そのうちC−1,C−4及びC
−6炭素はそれぞれ2本ずつに分裂している。こ
れらの分裂は各炭素に隣接する水酸基に結合した
アセチル基の置換基効果によるものであり、各シ
グナルは次の表1のように帰属される。
[Industrial Field of Application] The present invention is a method of treating highly substituted cellulose acetate under specific hydrolysis conditions to add secondary cells into the molecule.
The present invention relates to a method for producing low-substituted cellulose acetate in which a relatively large amount of grade hydroxyl groups is present. [Prior Art] Recently, it has been discovered that some branched polysaccharides have strong physiological activity. For example, Matsuzaki et al.
They obtained a water-soluble branched polysaccharide by reacting glucopyranose and then deacetylating it, and found that this polysaccharide had high antitumor properties.
This product has a structure in which glucose is branched and added to the cellulose main chain, and the branch position is bonded to the C 6 position of the main chain glucose, that is, the position of the primary hydroxyl group (Fiber Science Society 59th Annual Conference Research Presentation). On the other hand, in nature, there are polysaccharides that similarly have short branched chains, such as guar gum, locust bean gum, and tamarind gum, but the branching positions of these are also bonded to the primary hydroxyl group of the main chain polysaccharide. It is. [Problems to be Solved by the Invention] Cellulose acetate itself is industrially useful as a material for fibers and plastics, but it is also useful as a raw material for various derivatives having cellulose as the main chain. In the latter case, the acetate group can serve as a protecting group for the hydroxyl group.
Cellulose diacetate, which has reactive free hydroxyl groups and is soluble in general-purpose organic solvents, is industrially obtained by partially hydrolyzing cellulose triacetate in an acetic acid aqueous solution; The free hydroxyl group of cellulose diacetate is C 2 of the anhydroglucose unit structure,
Located at C 3 and C 6 , among which is the primary hydroxyl group
The hydroxyl group at the C6 position is the most abundant. By changing the conditions for partial hydrolysis of cellulose triacetate, cellulose diacetate having more hydroxyl groups at the C 2 or C 3 position, which are secondary hydroxyl groups, can be obtained. This may lead to the synthesis of new polysaccharides containing [Means for Solving the Problems] As a result of intensive research on the hydrolysis conditions of highly substituted cellulose acetate, the inventors found that the hydrolysis conditions for highly substituted cellulose acetate were solved using an alkali metal hydroxide in the presence of hydrogen peroxide, an organic solvent/
By reacting in a water mixed solvent,
The present invention was achieved by discovering that low-substituted cellulose acetate having a larger amount of hydroxyl groups at the C2 and C3 positions than hydroxyl groups at the C6 position can be obtained. That is, the present invention provides a method for producing low-substituted cellulose acetate by partially hydrolyzing highly substituted cellulose acetate, by treating highly substituted cellulose acetate in the coexistence of an alkali metal hydroxide and hydrogen peroxide. The present invention relates to a method for partial hydrolysis of cellulose acetate, which is characterized by preferentially producing secondary hydroxyl groups. Alkali metal hydroxides used in the present invention include sodium hydroxide, potassium hydroxide, and lithium hydroxide, with lithium hydroxide being the most suitable. The amount of alkali metal hydroxide to be used is about 1 molar equivalent per anhydroglucose unit of highly substituted cellulose acetate, which is suitable for obtaining cellulose acetate with a degree of substitution of about 2. Furthermore, by increasing the amount of alkali metal hydroxide, cellulose acetate with a lower degree of substitution can be obtained. The active species of the reagent in this partial hydrolysis reaction is alkali metal bar hydroxide (MOOH).
Therefore, it is preferable to use hydrogen peroxide in an amount equivalent to or more than the alkali metal hydroxide. The highly substituted cellulose acetate used as a raw material is generally soluble in halogenated hydrocarbons such as methylene chloride and chloroform, so it is used in the reaction after being dissolved therein. On the other hand, alkali metal hydroxides and hydrogen peroxide are used in the form of aqueous solutions. Furthermore, during the reaction, it is preferable to add a solvent that is miscible with water and the halogenated hydrocarbon. Solvents used for this purpose include tetrahydrofuran, dioxane, dimethoxyethane, dimethylformamide,
dimethylacetamide, dimethyl sulfoxide,
It can be selected from pyrrolidone and the like. [Example] The present invention will be explained below with reference to examples. In the example, the distribution regarding the degree of acetyl group substitution and the bonding position of the acetyl group of a cellulose acetate sample was determined using a deuterated dimethyl sulfoxide (C 6 ) solution. Quantification was performed based on the 13 C-NMR spectrum measured in the inside. Figure 1 shows the cellulose diacetate shown by the following formula:
13C -NMR spectrum is shown. In Figure 1, the skeletal carbon (C-1 to C-6) signals of the anhydroglucose ring appear in the region of 58 to 104 ppm, among which C-1, C-4 and C-1
-6 carbons are each split into two. These splits are due to the substituent effect of the acetyl group bonded to the hydroxyl group adjacent to each carbon, and each signal is assigned as shown in Table 1 below.

【表】 表1に示した帰属に基づき次に示す式〜に
より無水グルコース環内の全置換度f及び各置換
位置における置換度(f2,f3及びf6)が求められ
る。 f2=〔C1′〕/〔C1〕+〔C1′〕 − f3=1−f2×〔C4〕/〔C1′〕 − f6=〔C6′〕/〔C6〕+〔C6′〕 − f=f2+f3+f6 − 注 〔C〕はピークCのシグナル強度を表わす。 実施例 1 工業的に生産されており、プラスチツクスの製
造に用いられる置換度2.90の3酢酸セルロース
(アルドリツチ製)1gを塩化メチレン30mlに溶
解しておき、1N水酸化リチウム3ml、30%過酸
化水素水3ml及びテトラヒドロフラン30mlの混合
液を、室温攪拌下に添加した。混合物は均一な溶
液を形成した。この混合物を室温で1時間攪拌し
て反応させた後、水200mlを加えて反応を停止さ
せた。 本反応において使用した3酢酸セルロース中の
無水グルコース単位対水酸化リチウムのモル比は
略1:1である。 反応液を減圧下濃縮して、低沸点溶媒の一部を
除去すると、白色固体沈殿が生成した。固体を炉
別し水、エタノールで洗浄、乾燥した。収量0.88
gであつた。 原料に用いた3酢酸セルロース及び本実施例で
得た部分加水分解試料の置換度分析結果は表2の
とおりであつた。但し表2中の数字は、アセチル
置換度、( )内数字は全遊離水酸基に対する当
該炭素位置の遊離水酸基の割合を示す。
[Table] Based on the assignments shown in Table 1, the total degree of substitution f in the anhydroglucose ring and the degree of substitution (f 2 , f 3 and f 6 ) at each substitution position are determined by the following formulas. f 2 = [C1′] / [C1] + [C1′] − f 3 = 1 − f 2 × [C4] / [C1′] − f 6 = [C6′] / [C6] + [C6′] − f=f 2 +f 3 +f 6 − Note [C] represents the signal intensity of peak C. Example 1 1 g of cellulose triacetate (manufactured by Aldrich) with a degree of substitution of 2.90, which is industrially produced and used in the production of plastics, was dissolved in 30 ml of methylene chloride, and 3 ml of 1N lithium hydroxide and 30% peroxide were dissolved. A mixed solution of 3 ml of hydrogen water and 30 ml of tetrahydrofuran was added under stirring at room temperature. The mixture formed a homogeneous solution. The mixture was stirred at room temperature for 1 hour to react, and then 200 ml of water was added to stop the reaction. The molar ratio of anhydroglucose units to lithium hydroxide in the cellulose triacetate used in this reaction was approximately 1:1. The reaction solution was concentrated under reduced pressure to remove a portion of the low boiling point solvent, producing a white solid precipitate. The solid was separated in a furnace, washed with water and ethanol, and dried. Yield 0.88
It was hot at g. Table 2 shows the results of substitution degree analysis of the cellulose triacetate used as the raw material and the partially hydrolyzed sample obtained in this example. However, the numbers in Table 2 indicate the degree of acetyl substitution, and the numbers in parentheses indicate the ratio of free hydroxyl groups at the carbon position to all free hydroxyl groups.

【表】 表2からわかる様に本実施例の反応による部分
加水分解生成物は、遊離第2級水酸基を多く含有
するものであつた。 比較例 工業的に生産されており繊維製造に用いられる
置換度2.39の2酢酸セルロース(ダイセル化学工
業製)及び混合セルロースエステル製造に用いら
れる置換度1.72の低置換度酢酸セルロース(ダイ
セル化学工業製)を、実施例1と同様の分析法に
より分析し、置換度分布を求めた。その結果は表
3に示す通りであつた。
[Table] As can be seen from Table 2, the partial hydrolysis product obtained by the reaction of this example contained a large amount of free secondary hydroxyl groups. Comparative examples Industrially produced cellulose diacetate with a degree of substitution of 2.39 used in fiber production (manufactured by Daicel Chemical Industries) and cellulose acetate with a low degree of substitution of 1.72 used in the production of mixed cellulose esters (manufactured by Daicel Chemical Industries) was analyzed by the same analytical method as in Example 1 to determine the substitution degree distribution. The results were as shown in Table 3.

【表】 実施例 2 反応時間を2時間とした以外は、実施例1と同
様にして生成物を得た。収量0.83g。本反応にお
いて酢酸セルロースの無水グルコース単位対水酸
化リチウムのモル比は略1:1である。生成物の
置換度分布は表4にまとめた。 実施例 3 実施例1と同じ3酢酸セルロース1gに対して
実施例1のそれぞれ2.4倍量の水酸化リチウム、
過酸化水素水、テトラヒドロフランを用い、室温
下1時間反応させて反応生成物を得た。収量0.77
g。(無水グルコース単位対水酸化リチウム=略
1:2.4)生成物の置換度分布を表4に示す。 実施例 4 実施例1と同じ2酢酸セルロース1gに対し
て、実施例1のそれぞれ3倍量の水酸化リチウ
ム、過酸化水素水、テトラヒドロフランを用い、
室温下2時間反応させて反応生成物を得た。収量
0.65g。(無水グルコース単位対水酸化リチウム
=略1:3) 生成物の置換度分布を表4に示す。
[Table] Example 2 A product was obtained in the same manner as in Example 1, except that the reaction time was 2 hours. Yield 0.83g. In this reaction, the molar ratio of anhydroglucose units in cellulose acetate to lithium hydroxide is approximately 1:1. The substitution degree distribution of the products is summarized in Table 4. Example 3 2.4 times the amount of lithium hydroxide as in Example 1 for 1 g of cellulose triacetate, the same as in Example 1,
A reaction product was obtained by reacting at room temperature for 1 hour using hydrogen peroxide and tetrahydrofuran. Yield 0.77
g. (Anhydroglucose unit to lithium hydroxide = approximately 1:2.4) Table 4 shows the substitution degree distribution of the product. Example 4 For 1 g of cellulose diacetate, which is the same as in Example 1, three times the amount of lithium hydroxide, hydrogen peroxide, and tetrahydrofuran as in Example 1 was used,
The reaction was carried out at room temperature for 2 hours to obtain a reaction product. yield
0.65g. (Anhydroglucose unit to lithium hydroxide = approximately 1:3) Table 4 shows the substitution degree distribution of the product.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は二酢酸セルロースの13C−NMRスペ
クトルを示す。
Figure 1 shows the 13 C-NMR spectrum of cellulose diacetate.

Claims (1)

【特許請求の範囲】[Claims] 1 高置換度酢酸セルロースを部分加水分解して
低置換度酢酸セルロースを製造する方法におい
て、高置換度酢酸セルロースをアルカリ金属水酸
化物と過酸化水素の共存下に処理することによ
り、第2級水酸基を優先的に生成せしめることを
特徴とする酢酸セルロースの部分加水分解法。
1. In a method for producing low-substituted cellulose acetate by partially hydrolyzing highly substituted cellulose acetate, high-substituted cellulose acetate is treated in the coexistence of an alkali metal hydroxide and hydrogen peroxide to produce A method for partial hydrolysis of cellulose acetate, which is characterized by preferentially generating hydroxyl groups.
JP14610685A 1985-07-03 1985-07-03 Process for partial hydrolysis Granted JPS627701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14610685A JPS627701A (en) 1985-07-03 1985-07-03 Process for partial hydrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14610685A JPS627701A (en) 1985-07-03 1985-07-03 Process for partial hydrolysis

Publications (2)

Publication Number Publication Date
JPS627701A JPS627701A (en) 1987-01-14
JPH0479361B2 true JPH0479361B2 (en) 1992-12-15

Family

ID=15400282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14610685A Granted JPS627701A (en) 1985-07-03 1985-07-03 Process for partial hydrolysis

Country Status (1)

Country Link
JP (1) JPS627701A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143658A (en) * 1984-12-10 1985-07-29 Hitachi Ltd Complementary insulated gate field effect transistor integrated circuit
JPS6410656A (en) * 1987-07-03 1989-01-13 Hitachi Ltd Complementary type semiconductor device
JP2002265501A (en) * 2001-03-14 2002-09-18 Fuji Photo Film Co Ltd Process for preparation of cellulose acylate solution and cellulose acylate film
JP4189372B2 (en) * 2004-10-26 2008-12-03 富士フイルム株式会社 Cellulose acetate, cellulose acetate solution and preparation method thereof
WO2014142166A1 (en) * 2013-03-13 2014-09-18 株式会社ダイセル Low-substituted cellulose acetate
KR102162542B1 (en) * 2013-12-20 2020-10-07 주식회사 다이셀 Nutrient composition having lipid metabolism-improving action
JP6283523B2 (en) * 2014-01-30 2018-02-21 株式会社ダイセル Water-soluble cellulose acetate-based resin composition, water-soluble cellulose acetate composite molded article and method for producing the same
US10300085B2 (en) 2014-03-24 2019-05-28 Daicel Corporation Nutritional composition
JP6187653B1 (en) * 2016-08-12 2017-08-30 富士ゼロックス株式会社 Cellulose acylate, resin composition, and resin molded article
JP2021008565A (en) * 2019-07-01 2021-01-28 株式会社ダイセル Cellulose acetate and manufacturing method of cellulose acetate

Also Published As

Publication number Publication date
JPS627701A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
Shui et al. Synthesis of sodium carboxymethyl cellulose using bleached crude cellulose fractionated from cornstalk
Maim et al. Aliphatic acid esters of cellulose. Preparation by acid-chloride-pyridine procedure
US4278790A (en) Novel cellulose solutions
US4814437A (en) Method for preparation of sulfated polysaccharides by treating the polysaccharide with a reducing agent before sulfation
JPH0479361B2 (en)
Bray et al. Chemistry of tissues: I. Chondroitin from cartilage
Casu et al. Stereoregular acyclic polyalcohols and polyacetates from cellulose and amylose
Whistler et al. Introduction of 3, 6-Anhydro Rings into Amylose and Characterization of the Products1
Adams The constitution of a polyuronide hemicellulose from wheat straw
Perlin et al. A glucan produced by Claviceps purpurea
US6800754B1 (en) Method for producing cellulose sulfoacetate derivatives and products and mixtures thereof
Heinze et al. Synthesis and structure characterization of 2, 3‐O‐carboxymethylcellulose
Forsyth et al. 437. Protozoal polysaccharides. Structure of the polysaccharide produced by the Holotrich Ciliates present in sheep's rumen
JPH04300888A (en) Carboxylic acid oligosaccharide ester sulfate
JP2020196856A (en) Acetylated powdered cellulose, acetylated cellulose fiber, acetylated wood flour, and production method of them and acetylated monosaccharide
US6455691B1 (en) Preparation of chemically reactive polysaccharides
JP2848861B2 (en) Oligomer and method for producing the same
JPH093088A (en) Production of aminodisaccharide and chitin or its analogue polysaccharides
KR100381387B1 (en) Manufacturing method of chitosan derivative
JPS625441B2 (en)
JPS617284A (en) Selective deacetylation of acetyl derivative of saccharide
JPH01249801A (en) Synthesis of polysaccharide ester
JP2529729B2 (en) Method for producing chitosan derivative
SU1571044A1 (en) Method of obtaining acetyl cellulose
SU612933A1 (en) Method of obtaining aceto-mixed cellulose esters