JPH0643386A - Temperature compensating structure for light source part or light receiving part - Google Patents
Temperature compensating structure for light source part or light receiving partInfo
- Publication number
- JPH0643386A JPH0643386A JP4217442A JP21744292A JPH0643386A JP H0643386 A JPH0643386 A JP H0643386A JP 4217442 A JP4217442 A JP 4217442A JP 21744292 A JP21744292 A JP 21744292A JP H0643386 A JPH0643386 A JP H0643386A
- Authority
- JP
- Japan
- Prior art keywords
- holding member
- holding
- semiconductor laser
- collimator lens
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Head (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば、光ディスクに
情報を記録又は光ディスクに記録された情報の再生を行
う装置に用いる光ヘッド等の温度補償構造に関し、特に
光源部におけるコリメーションの温度補償に好適な温度
補償構造に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature compensation structure such as an optical head used in an apparatus for recording information on an optical disc or reproducing information recorded on the optical disc, and more particularly to temperature compensation of collimation in a light source section. The present invention relates to a suitable temperature compensation structure.
【0002】[0002]
【従来の技術】従来の光源部の温度補償構造を図3を参
照して説明する。図3において、半導体レーザー1は、
保持部材23に嵌合され、押さえ環24によって固定さ
れている。一方、半導体レーザ1から射出された光を平
行光束にするコリメータレンズ2は、下端部に外側に突
き出た鍔部を有する保持部材25に嵌合され、押さえ環
26によって固定されている。2. Description of the Related Art A conventional temperature compensation structure for a light source will be described with reference to FIG. In FIG. 3, the semiconductor laser 1 is
It is fitted to the holding member 23 and is fixed by the pressing ring 24. On the other hand, the collimator lens 2 that transforms the light emitted from the semiconductor laser 1 into a parallel light flux is fitted into a holding member 25 having a flange portion that projects outward at the lower end, and is fixed by a holding ring 26.
【0003】保持部材23は、保持部材27に対する光
軸に垂直な方向の位置を調整できるように、光軸に対し
垂直な面同士で図示せぬネジによって締結されている。
また、保持部材28は、上端部に内側に突き出た鍔部を
有する円筒形状をなし、保持部材27に対して光軸方向
の位置が調整可能なように、保持部材27の内部に中心
軸と光軸方向が一致するように嵌合され、図示せぬ固定
手段によって保持部材27に固定されている。The holding member 23 is fastened by screws (not shown) between the surfaces perpendicular to the optical axis so that the position of the holding member 23 in the direction perpendicular to the optical axis can be adjusted.
Further, the holding member 28 has a cylindrical shape having a flange portion projecting inward at the upper end, and has a central axis inside the holding member 27 so that the position in the optical axis direction can be adjusted with respect to the holding member 27. It is fitted so that the optical axis directions thereof coincide with each other, and is fixed to the holding member 27 by a fixing means (not shown).
【0004】上記の保持部材25と保持部材28とは、
鍔部が互いに対向するように配置され、間に複数の(図
3では、2個の)サポート29を挾んで、ネジ30によ
って固定されている。バネ座金31は、ネジ30の緩み
どめのため、ネジ30の頭部と保持部材25の間に介装
されている。以上のような構造の光源部は、装置本体3
2に対し保持部材27が図示せぬネジによって締結され
ることにより、支持されている。The holding member 25 and the holding member 28 are
The collar portions are arranged so as to face each other, and a plurality of (two in FIG. 3) supports 29 are sandwiched therebetween and fixed by screws 30. The spring washer 31 is interposed between the head of the screw 30 and the holding member 25 in order to loosen the screw 30. The light source unit having the above structure is provided in the device main body 3
The holding member 27 is supported by being fastened to the No. 2 by a screw (not shown).
【0005】次に、図4を用いて、図3の光源部の温度
補償の説明をする。図4に示すように、半導体レーザー
1の内部には長さ2.45mmのヒートシンク1aがあ
って、その材質は、長さL1 =0.85mmの部分が鉄
(Fe)であり、長さL2 =1.6mmの部分がモリブ
デン(Mo)である。半導体のチップ1bは、ヒートシ
ンク1aの先端に配置されている。ここで、鉄の線膨張
率αFeは、約12×10-6/℃、モリブデンの線膨張率
αMoは、約5.4×10-6/℃である。従って、半導体
レーザー1のヒートシンク1aの温度特性(=単位温度
(1℃)変化あたりの寸法変化)は、 1.6mm×5.4×10-6/℃+0.85mm×12×10-6/℃ =1.884×10-5mm/℃ … (1) となる。Next, the temperature compensation of the light source section shown in FIG. 3 will be described with reference to FIG. As shown in FIG. 4, a heat sink 1a having a length of 2.45 mm is provided inside the semiconductor laser 1, and the material thereof is iron (Fe) at a portion having a length L 1 = 0.85 mm and has a length of The portion of L 2 = 1.6 mm is molybdenum (Mo). The semiconductor chip 1b is arranged at the tip of the heat sink 1a. Here, the linear expansion coefficient α Fe of iron is about 12 × 10 −6 / ° C., and the linear expansion coefficient α Mo of molybdenum is about 5.4 × 10 −6 / ° C. Therefore, the temperature characteristics of the heat sink 1a of the semiconductor laser 1 (= unit temperature (1 ° C.) dimensional change per change) is, 1.6mm × 5.4 × 10 -6 /℃+0.85mm×12×10 -6 / C = 1.884 × 10 −5 mm / ° C. (1)
【0006】コリメータレンズ2は、非球面ガラスレン
ズである。コリメータレンズ2の作動距離の温度特性
は、1.5×10-4mm/℃である。また、コリメータ
レンズ2の作動距離の波長特性(=単位波長(1nm)
変化あたりの寸法変化)は、1.4×10-4mm/nm
であり、半導体レーザー1の出射ビームの波長の温度特
性は、0.20nm/℃である。従って、コリメータレ
ンズ2の作動距離の温度特性は、半導体レーザー1の波
長の温度特性を含めると、結局、 1.5×10-4mm/℃+1.4×10-4mm/nm×0.20nm/℃ =1.78×10-4mm/℃ … (2) となる。The collimator lens 2 is an aspherical glass lens. The temperature characteristic of the working distance of the collimator lens 2 is 1.5 × 10 −4 mm / ° C. Further, the wavelength characteristic of the working distance of the collimator lens 2 (= unit wavelength (1 nm)
Dimensional change per change) is 1.4 × 10 -4 mm / nm
The temperature characteristic of the wavelength of the emitted beam of the semiconductor laser 1 is 0.20 nm / ° C. Therefore, the temperature characteristic of the working distance of the collimator lens 2 is 1.5 × 10 −4 mm / ° C. + 1.4 × 10 −4 mm / nm × 0.1 when the temperature characteristic of the wavelength of the semiconductor laser 1 is included. 20 nm / ° C. = 1.78 × 10 −4 mm / ° C. (2)
【0007】保持部材23と保持部材27、及び保持部
材27と保持部材28とは、位置調整後は互いに締結状
態にある。これらの保持部材23、27、28は同じア
ルミニウム合金(Al合金)でつくられている。以下の
説明では保持部材23、27、28をまとめて第1の保
持部材と呼ぶ。半導体レーザー1の取付基準面1cと、
サポート29と保持部材28との取付基準面29aとの
距離はL3 は8.83mmであり、アルミニウム合金の
線膨張率は、24×10-6/℃である。従って、基準面
1cと基準面29aの間の第1の保持部材の温度特性
は、 8.83mm×24×10-6/℃ =2.1192×10-4mm/℃ … (3) となる。The holding member 23 and the holding member 27, and the holding member 27 and the holding member 28 are in a fastening state with each other after the position adjustment. These holding members 23, 27, 28 are made of the same aluminum alloy (Al alloy). In the following description, the holding members 23, 27, 28 are collectively referred to as the first holding member. Mounting reference surface 1c of the semiconductor laser 1,
The distance between the support 29 and the mounting reference surface 29a between the holding member 28 and L 3 is 8.83 mm, and the linear expansion coefficient of the aluminum alloy is 24 × 10 −6 / ° C. Therefore, the temperature characteristic of the first holding member between the reference surface 1c and the reference surface 29a is 8.83 mm × 24 × 10 −6 / ° C. = 2.1192 × 10 −4 mm / ° C. (3) .
【0008】同様に、保持部材25(以下の説明では、
第2の保持部材と呼ぶ)とサポート29との取付基準面
29bとコリメータレンズ2の取付基準面2aとの間の
距離(L4 =0.5mm)の温度特性は、第2の保持部
材がSUS304(線膨張率=17.2×10-6/℃)
でつくられているので、 0.5mm×17.2×10-6/℃ =8.6×10-6mm/℃ … (4) となる。Similarly, the holding member 25 (in the following description,
(Referred to as a second holding member) and the support 29, the distance between the mounting reference surface 29b of the support 29 and the mounting reference surface 2a of the collimator lens 2 (L 4 = 0.5 mm) shows that the second holding member has a temperature characteristic. SUS304 (coefficient of linear expansion = 17.2 x 10 -6 / ° C)
Therefore, 0.5 mm × 17.2 × 10 −6 / ° C. = 8.6 × 10 −6 mm / ° C. (4)
【0009】サポート29は、長さL5 =1mmであっ
て、低膨張材(LEX15)でつくられている。LEX
15の線膨張率は、1.4×10-6/℃である。従っ
て、サポート29の長さの温度特性は、 1mm×1.4×10-6/℃ =1.4×10-6mm/℃ … (5) となる。尚、図中L6 =0.83mm、L7 =4.55
mmである。The support 29 has a length L 5 = 1 mm and is made of a low expansion material (LEX15). LEX
The linear expansion coefficient of 15 is 1.4 × 10 −6 / ° C. Therefore, the temperature characteristic of the length of the support 29 is 1 mm × 1.4 × 10 −6 / ° C. = 1.4 × 10 −6 mm / ° C. (5) In the figure, L 6 = 0.83 mm, L 7 = 4.55
mm.
【0010】ところで、半導体レーザー1のヒートシン
ク1a、第2の保持部材25、及びサポート29の膨張
は、コリメータレンズ2と半導体レーザー1のチップ1
bを近付ける方向である。それに対し、第1の保持部材
23、27、28の膨張は、両者を遠ざける方向であ
り、膨張によって力が作用する方向が異なる。そのよう
な方向性を加味して、コリメータレンズ2と半導体レー
ザー1のチップ1bとの間の温度特性を求めると、 式(3)−式(1)−式(4)−式(5) =1.8308×10-4/℃ … (6) となる。By the way, the expansion of the heat sink 1a of the semiconductor laser 1, the second holding member 25, and the support 29 is caused by the collimator lens 2 and the chip 1 of the semiconductor laser 1.
It is a direction to bring b closer. On the other hand, the expansion of the first holding members 23, 27, 28 is a direction in which they are moved away from each other, and the directions in which the force acts due to the expansion are different. When the temperature characteristic between the collimator lens 2 and the chip 1b of the semiconductor laser 1 is obtained by taking such directionality into consideration, the following equation (3) -equation (1) -equation (4) -equation (5) = It becomes 1.8308 × 10 −4 / ° C. (6).
【0011】ここで、式(2)と式(6)を比べてみる
と、ほぼ等しい値となっている。即ち、コリメータレン
ズ2の作動距離の温度特性と、コリメータレンズ2と半
導体レーザー1のチップ1bとの距離の温度特性とがほ
ぼ等しくなっている。従って、温度変化によりコリメー
タレンズの作動距離が変わっても、コリメータレンズ2
と半導体レーザ1のチップ1bとの間の距離が作動距離
の変化分にほぼ等しい量だけ変化することになり、コリ
メーションずれが補償されることになる。Now, comparing equations (2) and (6), the values are almost equal. That is, the temperature characteristic of the working distance of the collimator lens 2 and the temperature characteristic of the distance between the collimator lens 2 and the chip 1b of the semiconductor laser 1 are substantially equal. Therefore, even if the working distance of the collimator lens changes due to temperature change, the collimator lens 2
The distance between the semiconductor laser 1 and the chip 1b of the semiconductor laser 1 changes by an amount substantially equal to the change of the working distance, and the collimation deviation is compensated.
【0012】[0012]
【発明が解決しようとする課題】ところが、このような
従来の温度補償構造においては、以下に説明するような
問題があった。図5は、図4中の保持部材25、サポー
ト29及び保持部材28の部分を簡略に示した図であ
り、図5Aは調整時の常温の状態を、図5Bは高温時の
状態を示している。上述したように保持部材25と保持
部材28の線膨張率が違うため、図に示されるように高
温時においては、サポート29の取り付け位置が保持部
材25と保持部材28とで光軸と直交する方向にずれて
しまう。即ち、保持部材25と28の鍔部において線膨
張率の大きい保持部材28の方が鍔部の突き出し長さが
長くなり、相対的に保持部材28のサポートの取り付け
位置は外側に、保持部材25のサポート取付位置は内側
にずれてしまう。このようなずれは、低温時も同様に生
じる。そして、このずれによって保持部材25と保持部
材28との位置関係、即ち半導体レーザ1とコリメータ
レンズ2との位置関係が温度変化により、崩れてしまう
ことがある。However, such a conventional temperature compensation structure has the following problems. 5A and 5B are diagrams schematically showing the holding member 25, the support 29, and the holding member 28 in FIG. 4. FIG. 5A shows a normal temperature state during adjustment, and FIG. 5B shows a high temperature state. There is. As described above, since the holding member 25 and the holding member 28 have different linear expansion coefficients, the mounting position of the support 29 is orthogonal to the optical axis between the holding member 25 and the holding member 28 at high temperature as shown in the figure. It shifts in the direction. That is, in the flange portions of the holding members 25 and 28, the holding member 28 having a larger coefficient of linear expansion has a longer protruding length of the flange portion, and the mounting position of the support of the holding member 28 is relatively outward, and the holding member 25 is relatively fixed. The support mounting position of is displaced inward. Such a shift also occurs at low temperatures. Due to this deviation, the positional relationship between the holding member 25 and the holding member 28, that is, the positional relationship between the semiconductor laser 1 and the collimator lens 2 may be destroyed due to the temperature change.
【0013】以上のように、従来の温度補償構造におい
ては、光軸方向の位置関係については温度補償がなされ
るものの、光軸に垂直な方向についてはずれが生じやす
いという問題があった。本発明は、この点に鑑みてなさ
れたもので、保持部材の締結部に介装されたサポートの
取付位置が光軸に垂直な方向にずれることがなく、温度
変化があっても発光部材又は光電変換手段と光学部材の
位置関係が崩れることがない温度補償構造を目的とす
る。As described above, in the conventional temperature compensating structure, there is a problem in that the positional relationship in the optical axis direction is temperature-compensated, but the deviation tends to occur in the direction perpendicular to the optical axis. The present invention has been made in view of this point, the mounting position of the support interposed in the fastening portion of the holding member does not shift in the direction perpendicular to the optical axis, and the light emitting member or An object is to provide a temperature compensation structure in which the positional relationship between the photoelectric conversion means and the optical member is not broken.
【0014】[0014]
【課題を解決するための手段】請求項1の温度補償構造
は、発光手段又は光電変換手段を保持する第1の保持部
材と、前記発光手段から射出された光束又は前記受光手
段に入射する光束の光路に配置された光学部材を保持す
る第2の保持部材と、前記第1の保持部材とは異なる線
膨張率を有するサポート部材とを備え、前記第1及び第
2の保持部材は前記サポート部材を間に挟んで締結さ
れ、前記サポート部材の締結方向の長さは、前記発光手
段又は光電変換手段と前記光学部材との距離の変化を温
度変化に対して補償するように決定され、かつ、上記の
課題を達成するために、前記第1及び第2の保持部材は
等しい線膨張率を有するように構成されたものである。According to a first aspect of the present invention, there is provided a temperature compensating structure comprising: a first holding member for holding a light emitting means or a photoelectric conversion means; and a light beam emitted from the light emitting means or a light beam incident on the light receiving means. A second holding member for holding the optical member arranged in the optical path, and a support member having a linear expansion coefficient different from that of the first holding member, wherein the first and second holding members are the support. Fastened with a member sandwiched therebetween, the length of the support member in the fastening direction is determined so as to compensate for a change in the distance between the light emitting unit or the photoelectric conversion unit and the optical member against a temperature change, and In order to achieve the above object, the first and second holding members are configured to have equal linear expansion coefficients.
【0015】請求項2の温度補償機構は、前記第1の及
び第2の保持部材の少なくとも一方が、同じ線膨張率を
有する複数の部材で構成されるものである。請求項3の
温度補償構造における前記発光手段は、半導体レーザー
である。請求項4の温度補償構造における前記光電変換
手段はPINフォトダイオードである。In the temperature compensating mechanism of the second aspect, at least one of the first and second holding members is composed of a plurality of members having the same linear expansion coefficient. The light emitting means in the temperature compensation structure according to claim 3 is a semiconductor laser. The photoelectric conversion means in the temperature compensation structure according to claim 4 is a PIN photodiode.
【0016】[0016]
【作用】本発明においては、第1の保持部材と第2の保
持部材の線膨張率を同じにしたので、温度変化時におけ
る締結部分の膨張・収縮が等しく、第1保持部材と第2
保持部材の間に介装されるサポート部材の装着位置が両
保持部材間で光軸と垂直な方向にずれることがない。従
って、温度変化があっても第1の保持部材と第2の保持
部材の位置関係、即ち発光手段又は受光手段とコリメー
タレンズ等の光学部材との位置関係が崩れることがな
い。In the present invention, since the first holding member and the second holding member have the same linear expansion coefficient, the expansion and contraction of the fastening portion are the same when the temperature changes, and the first holding member and the second holding member have the same expansion coefficient.
The mounting position of the support member interposed between the holding members does not shift between the holding members in the direction perpendicular to the optical axis. Therefore, even if there is a temperature change, the positional relationship between the first holding member and the second holding member, that is, the positional relationship between the light emitting means or the light receiving means and the optical member such as the collimator lens is not broken.
【0017】[0017]
【実施例】図1は本発明実施例による温度補償構造を説
明するための断面図であり、光ヘッドの光源部を示して
いる。図1において、半導体レーザー1は、保持部材3
に嵌合され、押さえ環4によって固定されている。一
方、半導体レーザ1から射出された光を平行光束にする
ためのコリメータレンズ2は、下端部に外側に突き出た
鍔部を有する保持部材5に嵌合され、押さえ環6によっ
て固定されている。1 is a sectional view for explaining a temperature compensation structure according to an embodiment of the present invention, showing a light source portion of an optical head. In FIG. 1, the semiconductor laser 1 includes a holding member 3
And is fixed by the pressing ring 4. On the other hand, the collimator lens 2 for making the light emitted from the semiconductor laser 1 into a parallel light flux is fitted to a holding member 5 having a flange portion protruding to the outside at the lower end portion and fixed by a holding ring 6.
【0018】保持部材3は、保持部材7に対する光軸方
向に垂直な方向の位置を調整できるように、光軸に対し
垂直な面同士で図示せぬネジによって締結されている。
また、保持部材8は、上端部に内側に突き出た鍔部を有
する円筒形状をなし、保持部材7に対して光軸方向の位
置が調整可能なように、保持部材7の内部に中心軸と光
軸方向が一致するように嵌合され、図示せぬ固定手段に
よって保持部材7に固定されている。The holding member 3 is fastened by screws (not shown) on the surfaces perpendicular to the optical axis so that the position of the holding member 3 in the direction perpendicular to the optical axis direction can be adjusted.
In addition, the holding member 8 has a cylindrical shape having a flange portion that protrudes inward at the upper end, and has a central axis inside the holding member 7 so that the position in the optical axis direction with respect to the holding member 7 can be adjusted. They are fitted so that the optical axis directions thereof coincide with each other, and are fixed to the holding member 7 by fixing means (not shown).
【0019】上記の保持部材5と保持部材8とは、鍔部
が互いに対向するように配置され、間に複数の(図1で
は、2個の)サポート9を挾んで、ネジ10によって固
定されている。バネ座金11は、ネジ10の緩みどめの
ため、ネジ10の頭部と保持部材5の間に介装されてい
る。以上のような構造の光源部は、装置本体12に対し
保持部材7が図示せぬネジによって締結されることによ
り、支持されている。The holding member 5 and the holding member 8 are arranged such that the collar portions are opposed to each other, and a plurality of (two in FIG. 1) supports 9 are sandwiched therebetween and fixed by screws 10. ing. The spring washer 11 is interposed between the head of the screw 10 and the holding member 5 in order to loosen the screw 10. The light source unit having the above-described structure is supported by fastening the holding member 7 to the device body 12 with screws (not shown).
【0020】次に、図2を用いて、図1の光源部の温度
補償について説明をする。図2に示すように、半導体レ
ーザー1の内部には長さ2.45mmのヒートシンク1
aがあって、その材質は、長さL1 =0.85mmの部
分が鉄(Fe)であり、長さL2 =1.6mmの部分が
モリブデン(Mo)である。半導体のチップ1bは、ヒ
ートシンク1aの先端に配置されている。ここで、鉄の
線膨張率αFeは、約12×10-6/℃、モリブデンの線
膨張率αMoは、約5.4×10-6/℃である。従って、
半導体レーザー1のヒートシンク1aの温度特性(=単
位温度(1℃)変化あたりの寸法変化)は、 1.6mm×5.4×10-6/℃+0.85mm×12×10-6/℃ =1.884×10-5mm/℃ … (11) となる。Next, the temperature compensation of the light source section shown in FIG. 1 will be described with reference to FIG. As shown in FIG. 2, a heat sink 1 having a length of 2.45 mm is provided inside the semiconductor laser 1.
There is a, and the material thereof is iron (Fe) in a portion having a length L 1 = 0.85 mm and molybdenum (Mo) in a portion having a length L 2 = 1.6 mm. The semiconductor chip 1b is arranged at the tip of the heat sink 1a. Here, the linear expansion coefficient α Fe of iron is about 12 × 10 −6 / ° C., and the linear expansion coefficient α Mo of molybdenum is about 5.4 × 10 −6 / ° C. Therefore,
The semiconductor temperature characteristics of the laser 1 of the heat sink 1a (= unit temperature (1 ° C.) dimensional change per change) is, 1.6mm × 5.4 × 10 -6 /℃+0.85mm×12×10 -6 / ℃ = 1.884 × 10 −5 mm / ° C. (11)
【0021】コリメータレンズ2は、非球面ガラスレン
ズである。コリメータレンズ2の作動距離の温度特性
は、1.5×10-4mm/℃である。また、コリメータ
レンズ2の動作距離の波長特性(=単位波長(1nm)
変化あたりの寸法変化)は、1.4×10-4mm/nm
であり、半導体レーザー1の出射ビームの波長の温度特
性は、0.20nm/℃である。従って、コリメータレ
ンズ2の作動距離の温度特性は、半導体レーザー1の波
長の温度特性を含めると、結局、 1.5×10-4mm/℃+1.4×10-4mm/nm×0.20nm/℃ =1.78×10-4mm/℃ … (12) となる。The collimator lens 2 is an aspherical glass lens. The temperature characteristic of the working distance of the collimator lens 2 is 1.5 × 10 −4 mm / ° C. Further, the wavelength characteristic of the working distance of the collimator lens 2 (= unit wavelength (1 nm)
Dimensional change per change) is 1.4 × 10 -4 mm / nm
The temperature characteristic of the wavelength of the emitted beam of the semiconductor laser 1 is 0.20 nm / ° C. Therefore, the temperature characteristic of the working distance of the collimator lens 2 is 1.5 × 10 −4 mm / ° C. + 1.4 × 10 −4 mm / nm × 0.1 when the temperature characteristic of the wavelength of the semiconductor laser 1 is included. 20 nm / ° C. = 1.78 × 10 −4 mm / ° C. (12)
【0022】保持部材3と保持部材7、及び保持部材7
と保持部材8とは、位置関係の調整後は互いに締結状態
にある。また、保持部材3、7、8は、同じSUS30
4というステンレス鋼で作られている。本実施例では、
これらの保持部材3、7、8が第1の保持部材を構成す
る。半導体レーザー1の取付基準面1cと、サポート9
と保持部材8との取付基準面9aとの距離L3 は12.
3mmである。又、SUS304の線膨張率は17.2
×10-6/℃である。従って、第1の保持部材の基準面
1cと基準面9aとの距離の温度特性は、 12.3mm×17.2×10-6/℃ =2.1156×10-4mm/℃ … (13) となる。Holding member 3, holding member 7, and holding member 7
After the positional relationship is adjusted, the holding member 8 and the holding member 8 are in a fastening state with each other. In addition, the holding members 3, 7, and 8 are the same SUS30.
Made of 4 stainless steel. In this embodiment,
These holding members 3, 7 and 8 form a first holding member. Mounting reference surface 1c of semiconductor laser 1 and support 9
The distance L 3 between the mounting reference surface 9a and the holding member 8 is 12.
It is 3 mm. The coefficient of linear expansion of SUS304 is 17.2.
× 10 −6 / ° C. Therefore, the temperature characteristic of the distance between the reference surface 1c and the reference surface 9a of the first holding member is 12.3 mm × 17.2 × 10 −6 / ° C. = 2.1156 × 10 −4 mm / ° C. (13) ).
【0023】同様に、保持部材5(本発明における第2
の保持部材を構成する)とサポート9との取付基準面9
bとコリメータレンズ2の取付基準面2aとの距離(L
4 =0.5mm)の温度特性は、第2の保持部材が第1
の保持部材と同じSUS304でつくられているので、 0.5mm×17.2×10-6/℃ =8.6×10-6mm/℃ … (14) となる。Similarly, the holding member 5 (second part of the present invention)
(Which constitutes the holding member of) and the mounting reference surface 9 of the support 9
b and the mounting reference surface 2a of the collimator lens 2 (L
4 = 0.5 mm), the second holding member has the first
Since it is made of SUS304, which is the same as the holding member of No. 3, 0.5 mm × 17.2 × 10 −6 / ° C. = 8.6 × 10 −6 mm / ° C. (14)
【0024】サポート9は、長さL5 が4.47mmで
あって、低膨張材(LEX15)でつくられている。L
EX15の線膨張率は、1.4×10-6/℃である。従
って、サポート9の長さの温度特性は、 4.47mm×1.4×10-6/℃ =6.258×10-6mm/℃ … (15) となる。尚、図中L6 =0.83mm、L7 =4.55
mmである。The support 9 has a length L 5 of 4.47 mm and is made of a low expansion material (LEX15). L
The coefficient of linear expansion of EX15 is 1.4 × 10 −6 / ° C. Therefore, the temperature characteristic of the length of the support 9 is 4.47 mm × 1.4 × 10 −6 / ° C. = 6.258 × 10 −6 mm / ° C. (15) In the figure, L 6 = 0.83 mm, L 7 = 4.55
mm.
【0025】ところで、半導体レーザー1のヒートシン
ク1a、第2の保持部材と、及びサポート9の膨張は、
コリメータレンズ2と半導体レーザー1のチップ1bを
近づける方向である。それに対し、第1の保持部材の膨
張は、コリメータレンズ2と半導体レーザー1のチップ
1bを遠ざける方向であり、膨張時に作用する力の方向
が異なる。そのような方向性を加味して、コリメータレ
ンズ2と半導体レーザー1のチップ1bとの距離の温度
特性を求めると、 式(13)−式(11)−式(14)−式(15) =1.77862×10-4mm/℃ … (16) となる。By the way, the expansion of the heat sink 1a of the semiconductor laser 1, the second holding member, and the support 9 is
This is a direction in which the collimator lens 2 and the chip 1b of the semiconductor laser 1 are brought close to each other. On the other hand, the expansion of the first holding member is a direction in which the collimator lens 2 and the chip 1b of the semiconductor laser 1 are moved away from each other, and the directions of the forces acting at the time of expansion are different. When the temperature characteristic of the distance between the collimator lens 2 and the chip 1b of the semiconductor laser 1 is calculated in consideration of such directionality, the formula (13) -formula (11) -formula (14) -formula (15) = 1.77862 × 10 −4 mm / ° C. (16)
【0026】ここで、式(12)と式(16)とを比べ
てみると、ほぼ等しい値となっている。即ち、コリメー
タレンズ2の作動距離の温度特性と、コリメータレンズ
2と半導体レーザー1のチップ1bとの距離の温度特性
とがほぼ等しくなっている。従って、温度変化によりコ
リメータレンズ2の作動距離が変わっても、コリメータ
レンズ2と半導体レーザ1のチップ1bとの間の距離が
作動距離の変化分にほぼ等しい量だけ変化することにな
り、コリメーションずれが補償されていることになる。Here, comparing equations (12) and (16), the values are almost equal. That is, the temperature characteristic of the working distance of the collimator lens 2 and the temperature characteristic of the distance between the collimator lens 2 and the chip 1b of the semiconductor laser 1 are substantially equal. Therefore, even if the working distance of the collimator lens 2 changes due to a temperature change, the distance between the collimator lens 2 and the chip 1b of the semiconductor laser 1 changes by an amount substantially equal to the change in the working distance, resulting in collimation deviation. Will be compensated.
【0027】図6は、図1の保持部材5、サポート9及
び保持部材8の部分を簡略に示した図であり、図6Aは
調整時の常温の状態を、図6Bは高温時の状態を示して
いる。上述したように保持部材5と保持部材8の線膨張
率は同じであるため、対向する鍔部において温度変化の
際の膨張・収縮量は等しく、サポート9の取り付け位置
が保持部材5と保持部材8とで光軸と直交する方向にず
れることがない。従って、保持部材5と保持部材8との
位置関係、即ち半導体レーザ1とコリメータレンズ2と
の位置関係が温度変化によって崩れてしまうことがな
く、半導体レーザ1からの光はコリメータレンズ2によ
って常に正確に平行光束とされる。FIG. 6 is a diagram showing the holding member 5, the support 9 and the holding member 8 in FIG. 1 in a simplified manner. FIG. 6A shows a normal temperature state during adjustment, and FIG. 6B shows a high temperature state. Shows. As described above, since the holding member 5 and the holding member 8 have the same linear expansion coefficient, the amount of expansion / contraction when the temperature changes in the facing flange portions is equal, and the mounting position of the support 9 is the holding member 5 and the holding member. 8 does not shift in the direction orthogonal to the optical axis. Therefore, the positional relationship between the holding member 5 and the holding member 8, that is, the positional relationship between the semiconductor laser 1 and the collimator lens 2 is not broken by the temperature change, and the light from the semiconductor laser 1 is always accurate by the collimator lens 2. Is a parallel light flux.
【0028】尚、上記の実施例では、光ヘッドの光源部
について説明したが、本発明は受光部にも同様に適用で
きるものである。例えば、結像レンズ(光学部材)とP
INフォトダイオード(光電変換手段)からなる信号検
出部においては、図1のコリメータレンズ2を結像レン
ズで、半導体レーザ1をフォトダイオードで置き換えて
考えれば良い。この場合、温度変化によって結像レンズ
とフォトダイオードの位置関係が崩れることがなく、温
度変化によるフォーカスエラーを防止することができ
る。Although the light source section of the optical head has been described in the above embodiment, the present invention is also applicable to the light receiving section. For example, an imaging lens (optical member) and P
In the signal detection unit including an IN photodiode (photoelectric conversion means), the collimator lens 2 in FIG. 1 may be replaced with an imaging lens, and the semiconductor laser 1 may be replaced with a photodiode. In this case, the positional relationship between the imaging lens and the photodiode is not destroyed by the temperature change, and the focus error due to the temperature change can be prevented.
【0029】[0029]
【発明の効果】本発明は以上説明したとおり、発光手段
又は光電変換手段を保持する第1の保持手段と、光学部
材を保持する第2の保持手段の線膨張率を等しくしてい
るので、両部材の締結部分に介装されるサポート部材の
取付位置が第1の保持部材と第2の保持部材の間でずれ
ることがない。従って、温度変化があっても両保持部材
の位置関係が崩れることがなく、温度変化に起因する光
源部又は受光部の光学特性の劣化を回避できる。As described above, according to the present invention, the first holding means for holding the light emitting means or the photoelectric conversion means and the second holding means for holding the optical member have the same linear expansion coefficient. The mounting position of the support member interposed between the fastening portions of both members does not shift between the first holding member and the second holding member. Therefore, even if there is a temperature change, the positional relationship between both holding members is not broken, and deterioration of the optical characteristics of the light source unit or the light receiving unit due to the temperature change can be avoided.
【図1】本発明実施例による温度補償構造を含む光源部
の構成を説明するための断面図である。FIG. 1 is a cross-sectional view illustrating a structure of a light source unit including a temperature compensation structure according to an exemplary embodiment of the present invention.
【図2】本発明実施例における温度補償を説明するため
の断面図である。FIG. 2 is a sectional view for explaining temperature compensation in the embodiment of the present invention.
【図3】従来の温度補償構造による光源部を説明するた
めの断面図である。FIG. 3 is a sectional view illustrating a light source unit having a conventional temperature compensation structure.
【図4】従来の光源部の温度補償を説明するための断面
図である。FIG. 4 is a cross-sectional view for explaining temperature compensation of a conventional light source unit.
【図5】図4の光源部における問題点を説明するための
部分断面図であり、図5Aが常温時の状態を、図5Bは
高温時の状態を示す。5A and 5B are partial cross-sectional views for explaining problems in the light source unit of FIG. 4, FIG. 5A showing a state at room temperature and FIG. 5B showing a state at high temperature.
【図6】図1の実施例における作用を説明するための図
であり、図4Aが常温時の状態を、図4Bは高温時の状
態を示す。6A and 6B are views for explaining the operation in the embodiment of FIG. 1, in which FIG. 4A shows a state at room temperature and FIG. 4B shows a state at high temperature.
1…半導体レーザ、1a…ヒートシンク、1b…半導体
チップ、2…コリメータレンズ、3,7,8…第1の保
持部材、4,6…押え環、5…第2の保持部材、9…サ
ポート、10…ねじ、11…バネ座金、12…装置本
体。DESCRIPTION OF SYMBOLS 1 ... Semiconductor laser, 1a ... Heat sink, 1b ... Semiconductor chip, 2 ... Collimator lens, 3,7,8 ... 1st holding member, 4, 6 ... Press ring, 5 ... 2nd holding member, 9 ... Support, 10 ... Screw, 11 ... Spring washer, 12 ... Device main body.
Claims (4)
1の保持部材と、前記発光手段から射出された光束又は
前記受光手段に入射する光束の光路に配置された光学部
材を保持する第2の保持部材と、前記第1の保持部材と
は異なる線膨張率を有するサポート部材とを備え、 前記第1及び第2の保持部材は前記サポート部材を間に
挟んで締結され、 前記サポート部材の締結方向の長さは、前記発光手段又
は光電変換手段と前記光学部材との距離を温度変化に対
して補償するように決定され、 かつ、前記第1及び第2の保持部材は等しい線膨張率を
有することを特徴とする光源部又は受光部の温度補償構
造。1. A first holding member for holding a light emitting means or a photoelectric conversion means, and a second holding member for holding an optical member arranged in an optical path of a light flux emitted from the light emitting means or a light flux incident on the light receiving means. Holding member and a support member having a linear expansion coefficient different from that of the first holding member, the first and second holding members are fastened with the support member interposed therebetween, The length in the fastening direction is determined so as to compensate for the distance between the light emitting means or the photoelectric conversion means and the optical member with respect to temperature change, and the first and second holding members have the same linear expansion coefficient. A temperature compensating structure for a light source unit or a light receiving unit.
も一方は、同じ線膨張率を有する複数の部材からなるこ
とを特徴とする温度補償機構。2. The temperature compensating mechanism, wherein at least one of the first and second holding members comprises a plurality of members having the same linear expansion coefficient.
ことを特徴とする請求項1に記載の光源部又は受光部の
温度補償構造。3. The temperature compensating structure for a light source unit or a light receiving unit according to claim 1, wherein the light emitting means is a semiconductor laser.
ードであることを特徴とする請求項1に記載の温度補償
構造。4. The temperature compensating structure according to claim 1, wherein the photoelectric conversion means is a PIN photodiode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4217442A JPH0643386A (en) | 1992-07-24 | 1992-07-24 | Temperature compensating structure for light source part or light receiving part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4217442A JPH0643386A (en) | 1992-07-24 | 1992-07-24 | Temperature compensating structure for light source part or light receiving part |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0643386A true JPH0643386A (en) | 1994-02-18 |
Family
ID=16704300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4217442A Pending JPH0643386A (en) | 1992-07-24 | 1992-07-24 | Temperature compensating structure for light source part or light receiving part |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0643386A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5864739A (en) * | 1997-01-10 | 1999-01-26 | Fujitsu Limited | Light source package incorporating thermal expansion compensating device and image forming apparatus using the same |
KR100374598B1 (en) * | 2000-03-14 | 2003-03-04 | 삼성전자주식회사 | Laser scanning unit |
EP1511022A1 (en) * | 2002-05-31 | 2005-03-02 | Matsushita Electric Industrial Co., Ltd. | Lens support mechanism, optical head device and optical information processor |
US9885602B2 (en) | 2015-12-28 | 2018-02-06 | Panasonic Intellectual Property Management Co., Ltd. | Particle sensor |
-
1992
- 1992-07-24 JP JP4217442A patent/JPH0643386A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5864739A (en) * | 1997-01-10 | 1999-01-26 | Fujitsu Limited | Light source package incorporating thermal expansion compensating device and image forming apparatus using the same |
KR100374598B1 (en) * | 2000-03-14 | 2003-03-04 | 삼성전자주식회사 | Laser scanning unit |
EP1511022A1 (en) * | 2002-05-31 | 2005-03-02 | Matsushita Electric Industrial Co., Ltd. | Lens support mechanism, optical head device and optical information processor |
EP1511022A4 (en) * | 2002-05-31 | 2008-12-24 | Panasonic Corp | Lens support mechanism, optical head device and optical information processor |
US9885602B2 (en) | 2015-12-28 | 2018-02-06 | Panasonic Intellectual Property Management Co., Ltd. | Particle sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5313333A (en) | Method and apparatus for combined active and passive athermalization of an optical assembly | |
KR100442905B1 (en) | An objective lens assembly, an apparatus for assembling/adjusting an objective lens assembly, an optical head, and an optical recording/reproduction apparatus | |
KR910004265B1 (en) | Semiconductor laser system and manufacture method and light head | |
JP2662105B2 (en) | Contact sensor, image scanner and facsimile | |
JPS61162014A (en) | Light source device for parallel laser beam | |
US20040170109A1 (en) | Optical pickup | |
JP6753478B2 (en) | Optical module | |
JPH0643386A (en) | Temperature compensating structure for light source part or light receiving part | |
US20050036433A1 (en) | Fixing structure for optical element and optical head device | |
EP1367575B1 (en) | Multi-beam semiconductor laser unit and optical head device | |
US6310852B1 (en) | Optical recording/reproducing apparatus | |
JP2003248144A (en) | Optical transmission module and optical communication system using the same | |
GB2215900A (en) | Optical recording and/or reproducing apparatus | |
JP3178152B2 (en) | Semiconductor laser device | |
JPH087313A (en) | Optical head | |
JPH08111027A (en) | Optical pickup device | |
JPH0433550Y2 (en) | ||
JPH11202232A (en) | Multibeam scanning device | |
JPH02281433A (en) | Optical head | |
JPS6339148A (en) | Temperature compensator for optical head | |
JP2003187461A (en) | Optical pickup | |
JPH07105054B2 (en) | Optical head device | |
JPH04144474A (en) | Semiconductor laser collimeter device | |
JPS6177148A (en) | Light source device having reduced angle deviation of outgoing light with temperature | |
JPH0778903B2 (en) | Light head |