JPH0643378A - Rotary structure - Google Patents

Rotary structure

Info

Publication number
JPH0643378A
JPH0643378A JP10112591A JP10112591A JPH0643378A JP H0643378 A JPH0643378 A JP H0643378A JP 10112591 A JP10112591 A JP 10112591A JP 10112591 A JP10112591 A JP 10112591A JP H0643378 A JPH0643378 A JP H0643378A
Authority
JP
Japan
Prior art keywords
contact
rotary shaft
polygon mirror
hollow rotary
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10112591A
Other languages
Japanese (ja)
Inventor
Yukio Itami
幸男 伊丹
Mitsuo Suzuki
光夫 鈴木
Yoshio Hashimoto
芳男 橋本
Takao Abe
隆雄 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Ricoh Co Ltd
Ricoh Co Ltd
Original Assignee
Tohoku Ricoh Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Ricoh Co Ltd, Ricoh Co Ltd filed Critical Tohoku Ricoh Co Ltd
Priority to JP10112591A priority Critical patent/JPH0643378A/en
Publication of JPH0643378A publication Critical patent/JPH0643378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To reduce aberration and vibration due to thermal expansion by increasing an effective contact area by providing a rotor in which plural members are fixed by a frictional force by surface contact, and specifying the surface toughness of the contact plane. CONSTITUTION:A polygonal scanner 11 is fixed in a hole at the lover part of a case 12, and it is equipped with the rotor 16 provided with a hollow rotary shaft 15 fitted in the outer periphery of a fixed shaft 13, and a polygonal mirror 18 is placed on the upper plane of a flange 15a at the upper part of the hollow rotary shaft 15. In such a case, the surface roughness of the mounting reference plane of the polygonal mirror 18 is set at around Rmax1s, and that of the polygonal mirror mounting plane of the hollow rotary shaft 15 with surface contact with the mounting reference plane is set at around Rmax1s. Therefore, since both the surface roughness of the contact planes with surface contact mutually are smaller than Rmax2s, the effective contact area can be increased, and also, the dispersion of the contact plane can be reduced, and a contact frictional force can be increased. Therefore, the rotor 16 can be rotated at high speed, and the aberration of the polygonal mirror 18 for the shaft center of the hollow rotary shaft 15 can be held at a low level.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転構造体、例えば、
レーザプリンタ、デジタルコピア等に用いられるポリゴ
ンスキャナ等の高速回転する回転構造体に関する。
BACKGROUND OF THE INVENTION The present invention relates to rotating structures such as
The present invention relates to a rotating structure that rotates at high speed, such as a polygon scanner used in a laser printer, a digital copier, or the like.

【0002】[0002]

【従来の技術】従来の回転構造体としては、例えば、特
開平1−300216号公報に記載された図4(a)に
示すようなものがある。この動圧空気軸受型のポリゴン
スキャナ1においては、ポリゴンミラー2は回転体3の
中空回転軸4の軸方向中央部にフランジ部4aを設けこ
のフランジ部4aに係止している。しかしながら、この
ような構造では中空回転軸4の加工コストが高くなると
いう問題点がある。
2. Description of the Related Art As a conventional rotary structure, there is, for example, one shown in FIG. 4 (a) described in Japanese Patent Laid-Open No. 1-300216. In this dynamic pressure air bearing type polygon scanner 1, the polygon mirror 2 is provided with a flange portion 4a at the axial center of the hollow rotary shaft 4 of the rotating body 3 and is locked to this flange portion 4a. However, such a structure has a problem that the processing cost of the hollow rotary shaft 4 becomes high.

【0003】そこで、これを改良した図4(b)に示す
ポリゴンスキャナ6が提案されている。図4(b)にお
いて、図4(a)と同じ構成には同じ符号をつける。図
4(b)に示すポリゴンスキャナ6では中空回転軸4の
上端部4bにフランジ部4cを設け、中空回転軸4の上
端部4bの内径部に嵌合する位置決めのためのミラー押
え7を設け、フランジ部4c上にポリゴンミラー2を配
置し、フランジ部4cの取付基準面4A上にポリゴンミ
ラー2の取付面2Aを一致させて面接触させ、これらの
両摩擦面を圧接しミラー押え7によりフランジ部4c上
に押圧して摩擦力を増加し固定するようにしている。こ
こに、ポリゴンミラー2の取付面2Aはミラー面2aの
加工基準面であり、数μm以下の平面ラップ加工され、
その表面粗さはRmax 1s程度である。また、フランジ
部4cの取付基準面4Aは回転軸心に対して直角であ
り、中空回転軸4の内筒面を基準に研削加工され、その
表面の粗さはRmax 5〜6s程度である。
Therefore, an improved polygon scanner 6 shown in FIG. 4B has been proposed. In FIG. 4B, the same components as those in FIG. In the polygon scanner 6 shown in FIG. 4B, a flange portion 4c is provided on the upper end portion 4b of the hollow rotary shaft 4, and a mirror holder 7 for positioning that fits into the inner diameter portion of the upper end portion 4b of the hollow rotary shaft 4 is provided. , The polygon mirror 2 is arranged on the flange portion 4c, the mounting surface 2A of the polygon mirror 2 is aligned and brought into surface contact with the mounting reference surface 4A of the flange portion 4c, and both of these friction surfaces are pressure-contacted by the mirror retainer 7. The flange portion 4c is pressed to increase the frictional force and fix the same. Here, the mounting surface 2A of the polygon mirror 2 is a processing reference surface of the mirror surface 2a, and is subjected to flat lapping of several μm or less,
The surface roughness is about Rmax 1s. Further, the mounting reference surface 4A of the flange portion 4c is perpendicular to the axis of rotation, and is ground by using the inner cylindrical surface of the hollow rotating shaft 4 as a reference, and the surface roughness is about Rmax 5 to 6 s.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のポリゴンスキャナ6にあっては、ポリゴンス
キャナ6の運転に伴って、ポリゴンスキャナ6の温度が
上昇し、ポリゴンミラー2および中空回転軸4が熱膨脹
する。ポリゴンミラー2が中空回転軸4に対して一定の
方向に大きくずれて回転体3は不釣合量が増加し、遂に
は回転体3の振動が増大するという問題点がある。
However, in such a conventional polygon scanner 6, the temperature of the polygon scanner 6 rises with the operation of the polygon scanner 6, and the polygon mirror 2 and the hollow rotary shaft 4 are caused. Heats up. There is a problem in that the polygon mirror 2 is largely displaced in a certain direction with respect to the hollow rotation shaft 4, the unbalance amount of the rotating body 3 increases, and finally the vibration of the rotating body 3 increases.

【0005】発明者らは、この振動の原因につき種々研
究を重ねた結果、ポリゴンミラー2の取付面2Aの表面
粗さは、Rmax 1s程度であるのに対して、中空回転軸
4の取付基準面4Aの表面粗さはRmax 5〜6s程度で
ある。このため、図2(c)にモデルを示すように、ポ
リゴンミラー2と中空回転軸4との有効接触面積が小さ
い。その結果接触摩擦力が小さくなり、かつ接触面上で
のバラツキが大きくなるため、ポリゴンミラー2が中空
回転軸4に対して接触摩擦力が小さい一定の方向にずれ
るためであることを見出した。
As a result of various researches on the cause of this vibration, the inventors have found that the surface roughness of the mounting surface 2A of the polygon mirror 2 is about Rmax 1s, while the mounting reference of the hollow rotating shaft 4 is the standard. The surface roughness of the surface 4A is about Rmax 5 to 6 s. Therefore, as shown in the model in FIG. 2C, the effective contact area between the polygon mirror 2 and the hollow rotary shaft 4 is small. As a result, it has been found that the contact friction force becomes small and the variation on the contact surface becomes large, so that the polygon mirror 2 is displaced with respect to the hollow rotating shaft 4 in a certain direction in which the contact friction force is small.

【0006】[0006]

【発明の目的】本発明は、このような従来技術を背景に
なされたものであり、面接触する部材の接触面の表面粗
さRmax をそれぞれ2s以下にして、接触面内の有効接
触面積を増加して接触摩擦力を増加し、熱膨脹によるず
れを低減し振動を大幅に低減でき、さらに、これらを安
価にできる回転構造体を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made on the basis of such a conventional technique, and the surface roughness Rmax of the contact surfaces of the members to be in surface contact with each other is set to 2 s or less so that the effective contact area in the contact surfaces is increased. It is an object of the present invention to provide a rotating structure capable of increasing the contact frictional force, reducing the displacement due to thermal expansion, and significantly reducing the vibration, and further reducing the cost.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的達成
のため、請求項1では複数の部材からなり少なくとも1
個所は互いに面接触による摩擦力により互いの部材が組
付け固定された回転体を有する回転構造体において、前
記面接触する部材の接触面の表面粗さRmax はそれぞれ
2s以下であることを特徴とし、請求項2では、前記面
接触する部材はポリゴンスキャナにおける前記回転体の
回転軸とポリゴンミラーであり、該ポリゴンミラーを取
付ける前記回転軸の取付面の表面粗さRmax は2s以下
であることを特徴とし、請求項3では請求項2の回転構
造体において、前記回転軸の取付面はラップ加工を施し
たことを特徴としている。
In order to achieve the above object, the present invention comprises, in claim 1, at least one member comprising a plurality of members.
The point is that in a rotary structure having a rotating body in which members are assembled and fixed by frictional force due to surface contact with each other, the surface roughness Rmax of the contact surface of the surface contacting members is 2 s or less, respectively. According to another aspect of the present invention, the surface-contacting member is the rotary shaft of the rotary body in the polygon scanner and the polygon mirror, and the surface roughness Rmax of the mounting surface of the rotary shaft for mounting the polygon mirror is 2 s or less. According to a third aspect of the present invention, in the rotary structure according to the second aspect, the mounting surface of the rotary shaft is lapped.

【0008】[0008]

【作用】本発明の請求項1では、面接触する部材の接触
面の表面粗さRmax がともに2s以下であるので、この
部材の接触面が互いに接触するときの有効接触面積は大
幅に増加するとともにバラツキも小さくなり、互いの接
触摩擦力は、大幅に増加する。
According to the first aspect of the present invention, since the surface roughness Rmax of the contact surfaces of the surface-contacting members are both 2 s or less, the effective contact area when the contact surfaces of the members contact each other is significantly increased. At the same time, the variation becomes smaller, and the mutual contact frictional force is significantly increased.

【0009】請求項2では、ポリゴンミラーを取付ける
回転軸の取付面の表面粗さRmax が2s以下であり、一
方、通常ポリゴンミラーの取付面の表面粗さRmax は約
1sであるので、接触面の表面粗さRmax は2s以下と
なり、接触摩擦力は大幅に増加する。請求項3では、接
触面の表面加工がラップ加工であり安価にできる。
In the second aspect, the surface roughness Rmax of the mounting surface of the rotary shaft on which the polygon mirror is mounted is 2 s or less, while the surface roughness Rmax of the mounting surface of the polygon mirror is approximately 1 s. Has a surface roughness Rmax of 2 s or less, and the contact friction force is significantly increased. According to the third aspect, the surface processing of the contact surface is lapping, which can be inexpensive.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。図1〜3は本発明に請求項1〜3に係る回転構造体
の一実施例を示す図である。まず、構成について説明す
る。図1において、11は回転構造体であるポリゴンスキ
ャナであり、ポリゴンスキャナ11はケース12の下部の孔
に圧入固着または焼きばめなどにより固定され、外周に
2対のヘリングボーン溝13aを有する柱状の固定軸13
と、固定軸13の外周に嵌合する中空回転軸15を有する回
転体16と、を備えている。中空回転軸15の下部の外周に
は菅状のロータマグネット17およびバランスリング17A
が取付けられ、ロータマグネット17の外方にはコイル、
スロット鉄心、ホール素子等で構成され、いわゆるイン
ナーロータ型のモータであり、励磁切り換えによりロー
タマグネット17をすなわち回転体16を高速回転するよう
になされている。回転体16の高速回転により回転体16と
固定軸13との間の間隙の圧力が高まり動圧軸受を形成
し、非接触にラジアル方向に回転体を支持する。中空回
転軸15の上部にはフランジ部15aが設けられ、フランジ
部15aの上面に回転多面鏡であるポリゴンミラー18が載
置されている。ポリゴンミラー18の上側には中空回転軸
15の内周部に嵌合して位置決めされた円板状のミラー押
え20が設けられ、ミラー押え20によりポリゴンミラー18
を中空回転軸15の軸心と同軸に位置決めし、ポリゴンミ
ラー18の上方から、中空回転軸15のフランジ部15a側に
押圧し、複数のネジ21によりフランジ部15aに係止して
いる。ポリゴンミラー18、ミラー押え20、中空回転軸1
5、ロータマグネット17およびバランスリング17Aは回
転体16を構成している。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are views showing an embodiment of the rotary structure according to claims 1 to 3 of the present invention. First, the configuration will be described. In FIG. 1, reference numeral 11 denotes a polygon scanner which is a rotating structure, and the polygon scanner 11 is fixed to a hole in the lower portion of the case 12 by press fitting or shrink fitting, and has a columnar shape having two pairs of herringbone grooves 13a on the outer circumference. Fixed shaft of 13
And a rotating body 16 having a hollow rotating shaft 15 fitted on the outer periphery of the fixed shaft 13. A tubular rotor magnet 17 and a balance ring 17A are provided on the outer periphery of the lower portion of the hollow rotary shaft 15.
Is attached to the outside of the rotor magnet 17, a coil,
It is a so-called inner rotor type motor composed of a slot iron core, a Hall element and the like, and is adapted to rotate the rotor magnet 17 or the rotating body 16 at high speed by switching the excitation. The high speed rotation of the rotating body 16 increases the pressure in the gap between the rotating body 16 and the fixed shaft 13 to form a dynamic pressure bearing, and supports the rotating body in the radial direction without contact. A flange portion 15a is provided on the upper part of the hollow rotary shaft 15, and a polygon mirror 18, which is a rotary polygon mirror, is placed on the upper surface of the flange portion 15a. Above the polygon mirror 18 is a hollow rotary shaft.
A disk-shaped mirror retainer 20 fitted and positioned on the inner peripheral portion of 15 is provided, and the polygon retainer 20 is provided by the polygon retainer 20.
Is positioned coaxially with the axis of the hollow rotary shaft 15, is pressed from above the polygon mirror 18 toward the flange portion 15a of the hollow rotary shaft 15, and is locked to the flange portion 15a by a plurality of screws 21. Polygon mirror 18, mirror retainer 20, hollow rotary shaft 1
5, the rotor magnet 17 and the balance ring 17A constitute the rotating body 16.

【0011】ミラー押え20の中央部には環状の磁石22b
が取付けられ、中心部には回転体16の内外を連通する微
細な軸孔23が設けられている。また、ミラー押え20の外
周部にバランス修正溝20Aが設けられている。回転体16
は回転時の不釣合による振動を小さくするため、上下の
バランス修正溝20Aおよびバランスリング17Aで数mg
(約8mg)以下の不釣合量をバランス修正することがで
きる。磁石22bに対向して軸方向の上下、すなわち、固
定軸13の上部には磁石22cが、ポリゴンスキャナ11の上
蓋には磁石22aが取付けられている。磁石22a、磁石22
b、磁石22cの磁極は互いに向いあう面を同極とし、磁
石22bは上下から反発されて浮上し回転体16は非接触に
支持されている。
An annular magnet 22b is provided at the center of the mirror retainer 20.
Is attached, and a fine shaft hole 23 that communicates the inside and outside of the rotating body 16 is provided in the center portion. A balance correction groove 20A is provided on the outer peripheral portion of the mirror presser 20. Rotating body 16
Is a few mg in the upper and lower balance correction grooves 20A and balance ring 17A in order to reduce vibration due to imbalance during rotation.
It is possible to correct the unbalanced amount (about 8 mg) or less. A magnet 22c is attached above and below the fixed shaft 13 in the axial direction facing the magnet 22b, and a magnet 22a is attached to the upper lid of the polygon scanner 11. Magnet 22a, magnet 22
b, the magnetic poles of the magnet 22c have mutually facing surfaces having the same pole, the magnet 22b is repelled from above and below and floats, and the rotor 16 is supported in a non-contact manner.

【0012】図2において、ポリゴンミラー18は軸孔が
形成されており、この内周18aは中空回転軸15に取付け
るときのラジアル方向の位置決め基準である。ポリゴン
ミラー18は高純度のアルミニウムからなり、ミラー面18
bは超精密切削加工により形成されている。ポリゴンミ
ラー18の取付け基準面(加工基準面でもある)18c及び
その裏面18dの外周部には、ミラー面18bに向かうテー
パ部18eが形成され、積み重ね加工時の切粉による疵の
発生を防止するとともに、回転時の風損を低減してい
る。
In FIG. 2, the polygon mirror 18 has a shaft hole formed therein, and the inner circumference 18a serves as a radial positioning reference when the polygon mirror 18 is attached to the hollow rotary shaft 15. The polygon mirror 18 is made of high-purity aluminum and has a mirror surface 18
b is formed by ultra-precision cutting. A taper portion 18e toward the mirror surface 18b is formed on the outer peripheral portion of the attachment reference surface (also the processing reference surface) 18c of the polygon mirror 18 and the back surface 18d thereof to prevent the occurrence of flaws due to chips during stacking processing. At the same time, wind loss during rotation is reduced.

【0013】このポリゴンスキャナ11は、レーザ光走査
時に各ミラー面間の走査ピッチむらを生じないように、
全てのミラー面18bが回転軸中心に対して一定角度に組
付けられ、各ミラー面間での角度バラツキが角度で数1
0秒以下と極めて小さくなっている。そのために、ポリ
ゴンミラー単品においてもミラー面18bは、取付基準面
18cに対して一定角度で形成され、各ミラー面間での角
度バラツキが極めて小さくなっている。さらに、中空回
転軸15のポリゴンミラー取付面15bは回転軸心に対して
直角に形成され、回転軸心に対する直角度すなわちフラ
ンジ部15aの外周線の上下の振れでは数μm以下となっ
ている。
This polygon scanner 11 is designed to prevent uneven scanning pitch between mirror surfaces during laser light scanning.
All the mirror surfaces 18b are assembled at a constant angle with respect to the center of the rotation axis, and the angle variation between the mirror surfaces is several 1 in terms of angle.
It is extremely small, 0 seconds or less. For this reason, the mirror surface 18b is a mounting reference surface even in the case of a single polygon mirror.
It is formed at a constant angle with respect to 18c, and the angle variation between the mirror surfaces is extremely small. Further, the polygon mirror mounting surface 15b of the hollow rotary shaft 15 is formed at a right angle to the rotary shaft center, and the perpendicularity to the rotary shaft center, that is, the vertical deflection of the outer peripheral line of the flange portion 15a is several μm or less.

【0014】ポリゴンミラー18のミラー面18bは取付基
準面18cに対して一定角度で形成するために取付基準面
18cは加工基準面ともなっており、数μm以下の平面度
に平面ラップ加工され、その表面粗さはRmax 1s程度
になっている。また、回転軸15のポリゴンミラー取付面
15bは回転軸心に対して直角に形成するために、動圧空
気軸受を形成する為に数μm以下の円筒度すなわち、軸
心に対する周面の径方向の振れの大きさが数μm以下に
なるように仕上げられ回転軸内筒面を加工基準として研
削およびラップ加工されており、その表面粗さはRmax
1s程度に仕上げられている。
Since the mirror surface 18b of the polygon mirror 18 is formed at a constant angle with respect to the mounting reference surface 18c, the mounting reference surface is formed.
18c also serves as a processing reference surface, and is flat-lapped to a flatness of several μm or less, and its surface roughness is about Rmax 1s. Also, the polygon mirror mounting surface of the rotating shaft 15
Since 15b is formed at right angles to the rotation axis, cylindricity of several μm or less is required to form a dynamic pressure air bearing, that is, the radial deflection of the peripheral surface with respect to the axis is less than several μm. It is finished so that it is ground and lapped with the inner surface of the rotating shaft as the processing reference, and its surface roughness is Rmax.
It is finished in about 1s.

【0015】次に、作用について説明する。本発明で
は、ポリゴンミラー18の取付基準面18cの表面粗さR18
はRmax 1s程度でこの取付基準面18cに面接触する中
空回転軸15のポリゴンミラー取付面15bの表面粗さR15
はRmax 1s程度であり、互いに面接触する接触面の表
面粗さがRmax 2sよりともに小さいので、有効接触面
積が大きくなるとともに接触面のバラツキも小さくな
り、ポリゴンミラー18と中空回転軸15との接触摩擦力は
大きくなる。このため、回転体16が高速回転し、ポリゴ
ンミラー18および中空回転軸15が高温となりこれらがと
もに高温となり熱膨脹しようとするが、これらは大きな
接触摩擦力により圧接されており、中空回転軸15の軸心
に対するポリゴンミラー18のズレは極めて小さく回転体
16の不釣合量は平均約2.5 mgとなった。これは許容不釣
合量8.0 mg以下で極めて優れた結果を得た。
Next, the operation will be described. In the present invention, the surface roughness R 18 of the mounting reference surface 18c of the polygon mirror 18 is
Is about Rmax 1 s, and the surface roughness R 15 of the polygon mirror mounting surface 15b of the hollow rotary shaft 15 that makes surface contact with the mounting reference surface 18c.
Is about Rmax 1s, and the surface roughness of the contact surfaces that are in surface contact with each other is smaller than Rmax 2s, so the effective contact area increases and the variation of the contact surface also decreases, and the polygon mirror 18 and the hollow rotary shaft 15 The contact friction force becomes large. For this reason, the rotating body 16 rotates at high speed, the polygon mirror 18 and the hollow rotating shaft 15 become high in temperature, and both of them become high in temperature, and they try to expand thermally, but they are pressed against each other by a large contact frictional force, and the hollow rotating shaft 15 The deviation of the polygon mirror 18 from the axis is extremely small
The unbalanced amount of 16 was about 2.5 mg on average. This was an extremely excellent result at an allowable unbalance amount of 8.0 mg or less.

【0016】次に、ポリゴンミラー18の取付基準面18c
の表面粗さR18がRmax1.0sに対し、中空回転軸15のポ
リゴンミラー取付面15bの表面粗さR15を4水準に変化
した場合につき、温度上昇時の回転体16の不釣合量の最
大値、最低値および平均値につき比較試験したので説明
する。ポリゴンミラー取付面15bの表面粗さR15は4水
準、すなわち、表面粗さR15が6.5 s程度(研削加工の
みを実施したもの)、1.0 s程度(研削およびラップ加
工を実施したもの)、0.5 s程度(研削およびラップ加
工を実施したもの)、0.1 s程度(研削および十分なラ
ップ加工を実施したもの)をそれぞれ5個試作し、それ
ぞれ通常の方法により運転による温度上昇時の回転体16
の不釣合量(バランス変化)を測定した。測定結果は、
図3(a)、(b)に示すように、ポリゴンミラー取付
面15bの表面粗さR15に対する回転体16の不釣合量はそ
れぞれ、平均値で7.5 mg、2.5 mg、1.6mg 、1.1mg とな
り、また、最大値で、12.9mg、5.1mg 、2.5mg 、1.9mg
となる。表面粗さR15が約2.0 s以下であれば、最大不
釣合量8.0mg 以下となる。すなわち、中空回転軸15のポ
リゴンミラー取付面15bの表面粗さRsを2.0 s以下に
することにより、回転体16の不釣合量が大幅に低減でき
る。
Next, the mounting reference surface 18c of the polygon mirror 18
Maximum with respect to the surface roughness R 18 is Rmax1.0S, per case of changing the polygon mirror mounting surface 15b surface roughness R 15 of the hollow rotary shaft 15 in four levels, amount of imbalance of the rotating body 16 at the time of temperature rise of The values, the minimum value and the average value were compared and tested. The surface roughness R 15 of the polygon mirror mounting surface 15b has four levels, that is, the surface roughness R 15 is about 6.5 s (only after grinding), about 1.0 s (after grinding and lapping), Approximately 0.5 s (ground and lapped) and 0.1 s (ground and fully lapped) were made into 5 prototypes each, and each of them was rotated by a normal method to raise the temperature of the rotating body 16
The unbalanced amount (balance change) was measured. The measurement result is
As shown in FIGS. 3 (a) and 3 (b), the unbalanced amounts of the rotating body 16 with respect to the surface roughness R 15 of the polygon mirror mounting surface 15b are 7.5 mg, 2.5 mg, 1.6 mg and 1.1 mg on average, respectively. , And the maximum value is 12.9mg, 5.1mg, 2.5mg, 1.9mg
Becomes When the surface roughness R 15 is about 2.0 s or less, the maximum unbalance amount is 8.0 mg or less. That is, by setting the surface roughness Rs of the polygon mirror mounting surface 15b of the hollow rotating shaft 15 to 2.0 s or less, the unbalance amount of the rotating body 16 can be significantly reduced.

【0017】これはラップ加工で中空回転軸15のポリゴ
ンミラー取付面15bの表面粗さR15を良くすることによ
り、図2(b)のモデルのようにポリゴンミラー18と回
転軸15の有効接触面積が大きくなり、そん結果接触摩擦
力が大きく且つ接触面上でバラツキが小さくなるため、
ポリゴンミラー18が中空回転軸15に対し一定の方向にず
れなくなったためと考えられる。
[0017] This is by improving the polygonal mirror mounting surface 15b surface roughness R 15 of the hollow rotary shaft 15 by lapping, the effective contact of the polygon mirror 18 and the rotary shaft 15 as a model shown in FIG. 2 (b) Since the area is large, the resulting contact friction force is large and the variation on the contact surface is small,
It is considered that this is because the polygon mirror 18 does not shift in a certain direction with respect to the hollow rotation shaft 15.

【0018】この実験はポリゴンミラーの部材は高純度
のアルミニウム、中空回転軸の部材はステンレス鋼であ
り、線膨脹係数が異なるため、特にずれやすい場合と考
えられるが、大きな効果が得られた。
In this experiment, the member of the polygon mirror is made of high-purity aluminum, and the member of the hollow rotary shaft is made of stainless steel, and the linear expansion coefficients are different.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
面接触する部材の接触面の表面粗さRmax をそれぞれ2
s以下にして、接触面内の有効接触面積を増加して接触
摩擦力を増加し、熱膨脹によるずれを低減し振動を大幅
に低減でき、さらに、これらを安価にできる。
As described above, according to the present invention,
The surface roughness Rmax of the contact surface of the surface-contacting member is 2
When it is s or less, the effective contact area in the contact surface can be increased to increase the contact frictional force, the deviation due to thermal expansion can be reduced, the vibration can be significantly reduced, and these can be made inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1、2、3に係る回転構造体を
ポリゴンスキャナに適用した一実施例を示す図で、
(a)はその全体断面図、(b)はそのポリゴンミラー
の斜視図である。
FIG. 1 is a diagram showing an embodiment in which a rotary structure according to claims 1, 2, and 3 of the present invention is applied to a polygon scanner,
(A) is the whole sectional view, (b) is a perspective view of the polygon mirror.

【図2】図1におけるその要部を示す図で、(a)はそ
の分解断面図、(b)はその接触状態を示すモデル説明
図、(c)は(b)に対応する従来の接触状態を示すモ
デル説明図である。
2A and 2B are views showing the main part of FIG. 1, in which FIG. 2A is an exploded cross-sectional view thereof, FIG. 2B is a model explanatory view showing the contact state thereof, and FIG. 2C is a conventional contact corresponding to FIG. It is a model explanatory view showing a state.

【図3】図2におけるポリゴンミラー取付面15bの表面
粗さと高温時の不釣合量との関係を示す図で、(a)は
その表面粗さを4水準に変化時と許容不釣合量との関係
を示すグラフ、(b)はその具体的な数値を示す表であ
る。
3 is a diagram showing the relationship between the surface roughness of the polygon mirror mounting surface 15b in FIG. 2 and the amount of unbalance at high temperature. FIG. 3 (a) shows the relationship between the amount of unbalance at the time of changing the surface roughness to four levels and the allowable amount of unbalance. And (b) is a table showing the specific numerical values.

【図4】図4は従来の回転構造体を適用したポリゴンス
キャナを示す図で、(a)はその全体断面図、(b)は
その他の全体断面図である。
4A and 4B are diagrams showing a polygon scanner to which a conventional rotary structure is applied, in which FIG. 4A is an overall sectional view thereof, and FIG. 4B is another overall sectional view.

【符号の説明】[Explanation of symbols]

11 ポリゴンスキャナ(回転構造体) 15 中空回転軸 15b ポリゴンミラー取付面(取付面) 16 回転体 18 ポリゴンミラー 18c 取付基準面 R15 表面粗さ(表面粗さRmax ) R18 表面粗さ11 Polygon scanner (rotating structure) 15 Hollow rotating shaft 15b Polygon mirror mounting surface (mounting surface) 16 Rotating body 18 Polygon mirror 18c Mounting reference surface R 15 Surface roughness (surface roughness Rmax) R 18 Surface roughness

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 光夫 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 橋本 芳男 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 安部 隆雄 宮城県柴田郡柴田町大字中名生字神明堂3 −1 東北リコー株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuo Suzuki 1-3-6 Nakamagome, Ota-ku, Tokyo Stock company Ricoh Company (72) Inventor Yoshio Hashimoto 1-3-6 Nakamagome, Ota-ku, Tokyo Shares Inside Ricoh Company (72) Inventor Takao Abe 3-1 Shinmeidou, Nakameisei, Shibata-cho, Shibata-gun, Miyagi Tohoku Ricoh Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の部材からなり少なくとも1個所は
互いに面接触による摩擦力により互いの部材が組付け固
定された回転体を有する回転構造体において、前記面接
触する部材の接触面の表面粗さRmax はそれぞれ2s以
下であることを特徴とする回転構造体。
1. A rotary structure having a rotating body comprising a plurality of members, at least one portion of which is assembled and fixed to each other by a frictional force caused by surface contact with each other. The rotating structure is characterized in that each Rmax is 2 s or less.
【請求項2】 前記面接触する部材はポリゴンスキャナ
における前記回転体の回転軸とポリゴンミラーであり、
該ポリゴンミラーを取付ける前記回転軸の取付面の表面
粗さRmax は2s以下であることを特徴とする請求項1
記載の回転構造体。
2. The surface contacting member is a rotary shaft of the rotating body in a polygon scanner and a polygon mirror,
2. The surface roughness Rmax of the mounting surface of the rotary shaft on which the polygon mirror is mounted is 2 s or less.
The rotating structure described.
【請求項3】 前記回転軸の取付面はラップ加工を施し
たことを特徴とする請求項2記載の回転構造体。
3. The rotary structure according to claim 2, wherein a mounting surface of the rotary shaft is lapped.
JP10112591A 1991-05-07 1991-05-07 Rotary structure Pending JPH0643378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10112591A JPH0643378A (en) 1991-05-07 1991-05-07 Rotary structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10112591A JPH0643378A (en) 1991-05-07 1991-05-07 Rotary structure

Publications (1)

Publication Number Publication Date
JPH0643378A true JPH0643378A (en) 1994-02-18

Family

ID=14292358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10112591A Pending JPH0643378A (en) 1991-05-07 1991-05-07 Rotary structure

Country Status (1)

Country Link
JP (1) JPH0643378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048997A (en) * 2000-08-04 2002-02-15 Konica Corp Optical deflection device, method for manufacturing optical deflection device, and image formation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048997A (en) * 2000-08-04 2002-02-15 Konica Corp Optical deflection device, method for manufacturing optical deflection device, and image formation device

Similar Documents

Publication Publication Date Title
EP0433483B1 (en) A rotation device supporting a polygon mirror
US4512626A (en) Rotating mirror scanner
EP0732517B1 (en) Dynamic-pressure gas bearing structure and optical deflection scanning apparatus
US5538347A (en) Dynamic pressure bearing
US5903078A (en) Rotary polygon mirror motor
US6617729B2 (en) Light deflecting electric motor with oscillation preventing means
JPH09163677A (en) Spindle motor
JPH0643378A (en) Rotary structure
JPH05106632A (en) Dynamic pressure fluid bearing and polygon scanner using it
JPH05180217A (en) Bearing structure for scanner motor
JPS60205523A (en) Scanner
JPS62184429A (en) Rotary polygonal mirror driving device
US5910853A (en) Rotary polygon mirror optical scanning device
JPS59188351A (en) Dynamic pressure type bearing motor
JPH0730785B2 (en) Gas dynamic pressure bearing
JPH0442118A (en) Dynamic pressure air bearing type polygon scanner
JP3730036B2 (en) Rotating body
JPH0516575Y2 (en)
JPS6356158A (en) Motor unit
JPH0438330Y2 (en)
JP2000120659A (en) Dynamic pressure air bearing, motor with the bearing, and light polarizer
JPH02309012A (en) Dynamic pressure bearing rotating device
JPS61269637A (en) Motor for polarization
JPH09182357A (en) Dynamic pressure bearing structure motor and instrument built in the motor
JPH07194054A (en) Motor