JPH0643275A - Integral pressurized water reactor - Google Patents

Integral pressurized water reactor

Info

Publication number
JPH0643275A
JPH0643275A JP4216284A JP21628492A JPH0643275A JP H0643275 A JPH0643275 A JP H0643275A JP 4216284 A JP4216284 A JP 4216284A JP 21628492 A JP21628492 A JP 21628492A JP H0643275 A JPH0643275 A JP H0643275A
Authority
JP
Japan
Prior art keywords
water
space
reactor
partitioned
partition member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4216284A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kato
潔 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP4216284A priority Critical patent/JPH0643275A/en
Publication of JPH0643275A publication Critical patent/JPH0643275A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To reduce the heat capacity required for boiling the water in a pressure chamber to generate the operating state. CONSTITUTION:A pressure chamber 18 is partitioned with a partition plate 70, and an electric heater 36 is arranged in one space 72b. When the electric heater 36 is excited, the water in the space 72b is heated and boiled. The operating state can be generated with the heat capacity smaller than that required for boiling the whole water in the pressure chamber 18. When the water in the space 72b is evaporated and the water level is lowered, water is supplied from a space 72a through small holes 74, and the vacant boiling of the electric heater 36 is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、SPWR(System-i
ntegrated Pressurized Water Reactor ,システム一体
型加圧水炉)等加圧室が圧力容器の上部空間にある一体
型加圧水炉において、加圧室の水を沸騰させて運転状態
を作成するのに要する熱容量の低減を図ったものであ
る。
This invention relates to SPWR (System-i
ntegrated Pressurized Water Reactor, system-integrated pressurized water reactor, etc.) In an integrated pressurized water reactor in which the pressurized chamber is in the upper space of the pressure vessel, it is possible to reduce the heat capacity required to boil the water in the pressurized chamber and create an operating state. It is intended.

【0002】[0002]

【従来の技術】SPWRは新概念軽水炉で1次冷却系
(循環ポンプ、蒸気発生器、加圧器等)をすべて原子炉
圧力容器に内蔵するとともに、制御棒を廃止して炉の起
動・停止、定常運転、負荷追従運転等を炉心の反応度温
度係数および1次系ボロン濃度調整により行ない、さら
に異常時の炉停止用にポイズンタンクを原子炉圧力容器
に内蔵した点に特徴を有するものである。
2. Description of the Related Art SPWR is a new concept light water reactor in which all primary cooling systems (circulation pump, steam generator, pressurizer, etc.) are built in the reactor pressure vessel, and control rods are abolished to start and stop the reactor. It is characterized in that steady operation, load following operation, etc. are performed by adjusting the reactivity temperature coefficient of the core and the boron concentration in the primary system, and a poison tank is built in the reactor pressure vessel for reactor shutdown in the event of an abnormality. .

【0003】SPWRの概要を図2に示す。SPWR1
0の原子炉圧力容器12(原子炉容器胴)は円筒形に構
成され、脚部14で基礎16に支持されている。原子炉
圧力容器12内には上部に加圧室18が形成され、中段
部に貫流式ヘリカルコイル型蒸気発生器20が配置さ
れ、下部に炉心22(燃料集合体)が配置されている。
炉心22の回りには炉心22を包み込むように高濃度の
硼酸水を収容した炉停止用ポイズンタンク24が配置さ
れている。
An outline of SPWR is shown in FIG. SPWR1
No. 0 reactor pressure vessel 12 (reactor vessel barrel) has a cylindrical shape, and is supported on a foundation 16 by legs 14. A pressurizing chamber 18 is formed in the upper part of the reactor pressure vessel 12, a through-flow helical coil steam generator 20 is arranged in the middle part, and a core 22 (fuel assembly) is arranged in the lower part.
A reactor stop poison tank 24 containing high-concentration boric acid water is arranged around the core 22 so as to wrap the core 22.

【0004】原子炉圧力容器12の頂部からは主循環ポ
ンプ26が差し込まれ、これを駆動することにより、1
次冷却水は実線矢印で示す1次冷却水流路28を循環す
る。蒸気発生用給水は給水ヘッダー30から供給され、
点線矢印で示すように蒸気発生器20内を通る間に1次
冷却水と熱交換して蒸気となり、蒸気ヘッダー32から
排出される。
A main circulation pump 26 is inserted from the top of the reactor pressure vessel 12, and by driving the main circulation pump 26,
The secondary cooling water circulates in the primary cooling water passage 28 indicated by the solid arrow. The water supply for steam generation is supplied from the water supply header 30,
As shown by the dotted arrow, while passing through the steam generator 20, it exchanges heat with the primary cooling water to become steam, which is discharged from the steam header 32.

【0005】加圧室18は自由液面34(1次冷却水の
水面)を持つ。加圧室18には電気ヒータ36が配置さ
れ、必要に応じて通電して水を蒸発させて加圧する。加
圧室18の水と1次冷却水は冷却体流通器38を介して
つながっており、温度を伝えずに圧力だけを1次冷却水
に伝える構造となっている。加圧室18の上部には減圧
用の減圧スプレー48が設けられ、外部あるいは蒸気発
生器20の出口の水が供給されるようになっている。
The pressurizing chamber 18 has a free liquid surface 34 (water surface of primary cooling water). An electric heater 36 is arranged in the pressurizing chamber 18, and current is applied to evaporate water to pressurize the electric power as needed. The water in the pressurizing chamber 18 and the primary cooling water are connected via the cooling body distributor 38, and the structure is such that only the pressure is transmitted to the primary cooling water without transmitting the temperature. A decompression spray 48 for decompression is provided on the upper part of the pressurizing chamber 18, and water from the outside or the outlet of the steam generator 20 is supplied.

【0006】ポイズンタンク24の底部はハニカム構造
のポイズン流通路40(混合防止器)が配置され、その
中でポイズンと1次冷却水が密度差で分離した状態で接
している。ポイズン流通路40の周りにはポイズン熱膨
張吸収器42が配置されている。ポイズンタンク24内
上部は、主循環ポンプ26の突出圧で働く水圧作動弁4
4を介して1次冷却水とつながっている。この弁44は
炉の正常運転時には締め切られており、主循環ポンプ2
6の吐出圧が低下するような異常時(ポンプ電源そう
失、水位低下等)に弁体の重力落下によって自動的に開
放される。開放されると、1次冷却水との密度差に基づ
く自然循環によってポイズンタンク24内のポイズンが
ポイズン流通路40から炉心22に注入され、炉を停止
する。
A poison flow passage 40 (mixing preventer) having a honeycomb structure is arranged at the bottom of the poison tank 24, and the poison and primary cooling water are in contact with each other in a state of being separated by a density difference. A poison thermal expansion absorber 42 is arranged around the poison flow passage 40. The upper portion of the poison tank 24 has a hydraulically actuated valve 4 that works with the projecting pressure of the main circulation pump 26.
It is connected via 4 to the primary cooling water. This valve 44 is closed during normal operation of the furnace, and the main circulation pump 2
When the discharge pressure of 6 is abnormal (pump power supply is lost, water level is low, etc.), the valve body is automatically opened by gravity falling. When opened, the poison in the poison tank 24 is injected into the core 22 from the poison flow passage 40 by natural circulation based on the density difference with the primary cooling water, and the furnace is stopped.

【0007】また、炉の緊急停止用に能動停止用弁46
を持つ能動停止系が、蒸気発生器入口プレナム(主循環
ポンプ26の吐出口)からポイズンタンク24の上部に
つながっている。
In addition, an active stop valve 46 is provided for emergency stop of the furnace.
An active stop system having is connected to the upper part of the poison tank 24 from the steam generator inlet plenum (the discharge port of the main circulation pump 26).

【0008】以上の構成のSPWRにおいては、定常運
転時に炉心部の1次冷却水について320℃、130kg
/cm2 の非飽和状態を得るために、加圧室18で340
°、130kg/cm2 の飽和状態を作って、圧力のみ冷却
体流通器38のすき間から炉心部に伝える必要がある。
このため、加圧室18では電気ヒータ36に通電して加
圧室18内の水を沸騰させて上記飽和状態を得るように
している。
In the SPWR having the above-mentioned structure, the primary cooling water in the core portion during normal operation is 320 ° C. and 130 kg.
340 in the pressurizing chamber 18 in order to obtain a non-saturated state of 1 / cm 2.
It is necessary to create a saturated state of 130 kg / cm 2 and to transmit only the pressure to the core through the gap of the cooling medium distributor 38.
For this reason, in the pressurizing chamber 18, the electric heater 36 is energized to boil the water in the pressurizing chamber 18 to obtain the saturated state.

【0009】[0009]

【発明が解決しようとする課題】SPWR10において
は、加圧室18は圧力容器12の胴径と同じ径を有す
る。したがって、加圧室18内の水容量は多くなり、こ
の水を沸騰させて運転状態を作成するのに大きな熱容量
が必要となる。このため、電気ヒータ36に大容量のも
のが必要になり、あるいは運転状態を作成するのに長時
間を要する問題がある。 この発明は、前記従来の技術
における問題点を解決して、加圧室の水を沸騰させて運
転状態を作成するのに要する熱容量の低減を図った一体
型加圧水炉を提供しようとするものである。
In the SPWR 10, the pressurizing chamber 18 has the same diameter as the barrel diameter of the pressure vessel 12. Therefore, the water capacity in the pressurizing chamber 18 increases, and a large heat capacity is required to boil this water to create an operating state. Therefore, the electric heater 36 needs to have a large capacity, or it takes a long time to create an operating state. This invention intends to solve the above-mentioned problems in the prior art and provide an integrated pressurized water reactor in which the heat capacity required for boiling the water in the pressurizing chamber to create an operating state is reduced. is there.

【0010】[0010]

【課題を解決するための手段】この発明は、原子炉圧力
容器を上部空間と下部空間に仕切り、前記上部空間を加
圧室として形成し、前記下部空間に炉心を配置し、前記
上部空間と前記下部空間とを冷却体流通器を介して連通
させて当該上部空間内に1次冷却水の水面を形成してな
る原子炉において、前記加圧室内に配置されて当該加圧
室内の水の一部仕切る仕切部材と、当該仕切部材で仕切
られた水中に配設された加熱ヒータと、前記仕切部材で
仕切られた両側の水を連通させるように当該仕切部材に
開設された孔とを具備してなるものである。
According to the present invention, a reactor pressure vessel is partitioned into an upper space and a lower space, the upper space is formed as a pressurizing chamber, and a reactor core is arranged in the lower space. In a nuclear reactor in which the lower space is communicated with a cooling medium distributor to form a water surface of primary cooling water in the upper space, water in the pressure chamber is disposed in the pressure chamber. A partition member for partially partitioning, a heater disposed in the water partitioned by the partition member, and a hole provided in the partition member for communicating water on both sides partitioned by the partition member. It will be done.

【0011】[0011]

【作用】この発明によれば、仕切部材で仕切った部分の
水だけ沸騰させればよいので、運転状態を作成するのに
要する熱容量が小さくなり、これにより運転状態を作成
するのに要する時間を短縮し、あるいは熱ヒータを小型
にすることができる。また、仕切った部分の水が沸騰し
て蒸発して少なくなると仕切部材の孔から水が補給され
るので、空焚きを防止することができる。
According to the present invention, since only the water in the portion partitioned by the partition member needs to be boiled, the heat capacity required to create the operating condition becomes small, which reduces the time required to create the operating condition. It can be shortened or the heat heater can be downsized. Also, when the water in the partitioned portion boils and evaporates and becomes less, the water is replenished from the holes of the partition member, so that it is possible to prevent empty heating.

【0012】[0012]

【実施例】この発明の一実施例を前記図2のSPWRに
適用した一実施例を図1に示す。原子炉圧力容器12内
は板60によって上部空間18と下部空間62に仕切ら
れている。上部空間18は加圧室を形成する。下部空間
62には炉心22(図2)、蒸気発生器20等が配設さ
れる。加圧室18と下部空間62とは冷却体流通器38
を介してつながっており、1次冷却水の水面34は加圧
室34内に形成されている。
FIG. 1 shows an embodiment in which one embodiment of the present invention is applied to the SPWR shown in FIG. The inside of the reactor pressure vessel 12 is partitioned by a plate 60 into an upper space 18 and a lower space 62. The upper space 18 forms a pressure chamber. In the lower space 62, the core 22 (FIG. 2), the steam generator 20, etc. are arranged. The pressurizing chamber 18 and the lower space 62 are connected to the cooling medium distributor 38.
The water surface 34 of the primary cooling water is formed in the pressurizing chamber 34.

【0013】加圧室18には、主循環ポンプ26のケー
シング64を取囲むように仕切板70が配設されて、加
圧室18内の水68を仕切板70の外側の空間72aと
仕切板70の内側の空間72bに仕切っている。内側の
空間72bには、ケーシング64の囲りに電気ヒータ3
6が配設されている。仕切板70には空間72aの水と
空間72bの水とをできるだけ温度を遮断した状態で連
通させるためおよび空間72bの圧力を空間72aに伝
えるため小孔74が形成されている。
A partition plate 70 is provided in the pressurizing chamber 18 so as to surround the casing 64 of the main circulation pump 26, and the water 68 in the pressurizing chamber 18 is partitioned from the space 72a outside the partition plate 70. It is partitioned into a space 72b inside the plate 70. In the inner space 72b, the electric heater 3 is surrounded by the casing 64.
6 are provided. Small holes 74 are formed in the partition plate 70 in order to communicate the water in the space 72a and the water in the space 72b with the temperature kept as low as possible and to transmit the pressure in the space 72b to the space 72a.

【0014】仕切板70の上端部70aはリング状で水
平の板に形成されている。この板70aは水面34より
も上に配置されている。これにより、空間72a,72
bを水面34の上側でも仕切って、空間72bで加熱し
た熱が空間72a側に無駄に流れ込まないようにしてい
る。板70aに形成された小孔76は減圧スプレー48
から放水された水を空間72a内にも滴下させるためお
よび空間72a,72bで水面34の水位を等しく保つ
ためのものである。
The upper end portion 70a of the partition plate 70 is a ring-shaped horizontal plate. The plate 70a is arranged above the water surface 34. Thereby, the spaces 72a, 72
The b is also partitioned above the water surface 34 so that the heat heated in the space 72b does not wastefully flow into the space 72a. The small holes 76 formed in the plate 70a are the decompression spray 48.
This is for dropping the water discharged from the inside of the space 72a and for keeping the water level of the water surface 34 equal in the spaces 72a and 72b.

【0015】以上の構成において、電気ヒータ36に通
電した時の様子を図3に示す。電気ヒータ36に通電す
ると、空間72b内の水が加熱される。空間72bの水
は加圧室18全体の水量の一部であるので、すぐに沸騰
して蒸発する。蒸発して空間72b内の水量が減ると、
実線矢印Aで示すように小孔74を通して空間72aの
水が補給される。これで空間72bの水位は空間72a
の水位と等しく保たれる。水の蒸発によって高められた
空間72bの圧力は小孔74,76を通して空間72a
に伝えられ、点線矢印Bで示すように冷却体流通器38
を介して炉心等が配置された下部空間62に伝えられ
る。
FIG. 3 shows a state in which the electric heater 36 is energized in the above structure. When the electric heater 36 is energized, the water in the space 72b is heated. Since the water in the space 72b is a part of the total amount of water in the pressurizing chamber 18, it immediately boils and evaporates. When the amount of water in the space 72b evaporates and decreases,
As shown by the solid arrow A, the water in the space 72a is replenished through the small holes 74. The water level in the space 72b is now the space 72a.
Kept equal to the water level of. The pressure of the space 72b increased by the evaporation of water passes through the small holes 74 and 76 and the space 72a.
Is transmitted to the cooling body distributor 38 as indicated by a dotted arrow B.
Is transmitted to the lower space 62 in which the core and the like are arranged.

【0016】以上の構成によれば、電気ヒータ36は仕
切板70で仕切られた空間72b内の水だけを沸騰させ
ればよいので、運転状態を作成するのに要する熱容量が
小さくてすみ、運転状態を作成するのに要する時間を短
縮しあるいは電気ヒータ36を小型にすることができ
る。また、空間72bで蒸発した分小孔74を通して空
間72aから水が補給されるので、電気ヒータ36の空
焚きが防止される。
According to the above configuration, the electric heater 36 only needs to boil only the water in the space 72b partitioned by the partition plate 70, so that the heat capacity required to create the operating state is small, and the operation can be performed. The time required to create the state can be reduced or the electric heater 36 can be made smaller. Further, since water is supplied from the space 72a through the small holes 74 evaporated in the space 72b, the electric heater 36 is prevented from being heated.

【0017】[0017]

【発明の効果】以上説明したように、この発明によれ
ば、仕切部材で仕切った部分の水だけ沸騰させればよい
ので、運転状態を作成するのに要する熱容量が小さくな
り、これにより運転状態を作成するのに要する時間を短
縮し、あるいは熱ヒータを小型にすることができる。ま
た、仕切った部分の水が沸騰して蒸発して少なくなると
仕切部材の孔から水が補給されるので、空焚きを防止す
ることができる。
As described above, according to the present invention, since only the water in the portion partitioned by the partition member needs to be boiled, the heat capacity required to create the operating condition becomes small, which results in the operating condition. It is possible to shorten the time required to create the heater, or downsize the thermal heater. Also, when the water in the partitioned portion boils and evaporates and becomes less, the water is replenished from the holes of the partition member, so that it is possible to prevent empty heating.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】SPWRの断面図である。FIG. 2 is a cross-sectional view of SPWR.

【図3】図1の加圧室18の一部拡大図である。3 is a partially enlarged view of a pressurizing chamber 18 of FIG.

【符号の説明】[Explanation of symbols]

10 SPWR(原子炉) 12 原子炉圧力容器 18 加圧室(上部空間) 22 炉心 34 水面 36 電気ヒータ(加熱ヒータ) 38 冷却体流通器 62 下部空間 70 仕切板(仕切部材) 74 小孔(孔) 10 SPWR (Reactor) 12 Reactor Pressure Vessel 18 Pressurization Chamber (Upper Space) 22 Reactor Core 34 Water Surface 36 Electric Heater (Heating Heater) 38 Cooling Body Distributor 62 Lower Space 70 Partition Plate (Partition Member) 74 Small Hole (hole) )

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原子炉圧力容器を上部空間と下部空間に仕
切り、前記上部空間を加圧室として形成し、前記下部空
間に炉心を配置し、前記上部空間と前記下部空間とを冷
却体流通器を介して連通させて当該上部空間内に1次冷
却水の水面を形成してなる一体型加圧水炉において、 前記加圧室内に配置されて当該加圧室内の水の一部を仕
切る仕切部材と、 当該仕切部材で仕切られた水中に配設された加熱ヒータ
と、 前記仕切部材で仕切られた両側の水を連通させるように
当該仕切部材に開設された孔とを具備してなる一体型加
圧水炉。
1. A reactor pressure vessel is divided into an upper space and a lower space, the upper space is formed as a pressurizing chamber, a reactor core is arranged in the lower space, and a cooling medium flows between the upper space and the lower space. In an integrated pressurized water reactor in which a water surface of primary cooling water is formed in the upper space by communicating with each other through a vessel, a partition member arranged in the pressurized chamber to partition a part of the water in the pressurized chamber. And a heater disposed in the water partitioned by the partition member, and a hole opened in the partition member so that the water on both sides partitioned by the partition member communicate with each other Pressurized water reactor.
JP4216284A 1992-07-22 1992-07-22 Integral pressurized water reactor Pending JPH0643275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4216284A JPH0643275A (en) 1992-07-22 1992-07-22 Integral pressurized water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4216284A JPH0643275A (en) 1992-07-22 1992-07-22 Integral pressurized water reactor

Publications (1)

Publication Number Publication Date
JPH0643275A true JPH0643275A (en) 1994-02-18

Family

ID=16686126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4216284A Pending JPH0643275A (en) 1992-07-22 1992-07-22 Integral pressurized water reactor

Country Status (1)

Country Link
JP (1) JPH0643275A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509466A (en) * 2008-11-18 2012-04-19 ニュースケール パワー インコーポレイテッド Reactor vessel coolant deflection shield
CN103106928A (en) * 2011-11-10 2013-05-15 巴布科克和威尔科克斯核能股份有限公司 Pressurized Water Reactor With Upper Plenum Including Cross-Flow Blocking Weir
WO2013169431A1 (en) 2012-04-17 2013-11-14 Babcock & Wilcox Mpower, Inc. Riser cone apparatus to provide compliance between reactor components and minimize reactor coolant bipass flow
JP2014510897A (en) * 2010-09-27 2014-05-01 バブコック・アンド・ウィルコックス・ニュークリアー・エナジー・インコーポレイテッド Small nuclear reactor with integrated steam generator
JP2014525045A (en) * 2011-07-28 2014-09-25 バブコック・アンド・ウィルコックス・ニュークリアー・エナジー・インコーポレイテッド Pressurized water reactor with reactor coolant pump operating in downcomer annulus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8744035B1 (en) 2008-11-18 2014-06-03 Nuscale Power, Llc Reactor vessel coolant deflector shield
JP2012509466A (en) * 2008-11-18 2012-04-19 ニュースケール パワー インコーポレイテッド Reactor vessel coolant deflection shield
US10803997B2 (en) 2010-09-27 2020-10-13 Bwxt Mpower, Inc. Compact nuclear reactor with integral steam generator
JP2014510897A (en) * 2010-09-27 2014-05-01 バブコック・アンド・ウィルコックス・ニュークリアー・エナジー・インコーポレイテッド Small nuclear reactor with integrated steam generator
US9343187B2 (en) 2010-09-27 2016-05-17 Bwxt Nuclear Energy, Inc. Compact nuclear reactor with integral steam generator
US9593684B2 (en) 2011-07-28 2017-03-14 Bwxt Nuclear Energy, Inc. Pressurized water reactor with reactor coolant pumps operating in the downcomer annulus
JP2014525045A (en) * 2011-07-28 2014-09-25 バブコック・アンド・ウィルコックス・ニュークリアー・エナジー・インコーポレイテッド Pressurized water reactor with reactor coolant pump operating in downcomer annulus
CN103106928A (en) * 2011-11-10 2013-05-15 巴布科克和威尔科克斯核能股份有限公司 Pressurized Water Reactor With Upper Plenum Including Cross-Flow Blocking Weir
WO2013095741A2 (en) 2011-11-10 2013-06-27 Babcock & Wilcox Nuclear Energy, Inc. Pressurized water reactor with upper plenum including cross-flow blocking weir
EP2777048A4 (en) * 2011-11-10 2015-05-20 Babcock & Wilcox Nuclear Energy Inc Pressurized water reactor with upper plenum including cross-flow blocking weir
US9558855B2 (en) 2011-11-10 2017-01-31 Bwxt Nuclear Energy, Inc. Pressurized water reactor with upper plenum including cross-flow blocking weir
EP2839474A4 (en) * 2012-04-17 2015-12-09 Babcock & Wilcox Mpower Inc Riser cone apparatus to provide compliance between reactor components and minimize reactor coolant bipass flow
US9620253B2 (en) 2012-04-17 2017-04-11 Bwxt Mpower, Inc. Riser cone apparatus to provide compliance between reactor components and minimize reactor coolant bypass flow
US20170213606A1 (en) * 2012-04-17 2017-07-27 Bwxt Mpower, Inc. Riser cone apparatus to provide compliance between reactor components and minimize reactor coolant bypass flow
US10600520B2 (en) 2012-04-17 2020-03-24 Bwxt Mpower, Inc. Riser cone apparatus to provide compliance between reactor components and minimize reactor coolant bypass flow
WO2013169431A1 (en) 2012-04-17 2013-11-14 Babcock & Wilcox Mpower, Inc. Riser cone apparatus to provide compliance between reactor components and minimize reactor coolant bipass flow

Similar Documents

Publication Publication Date Title
US4753771A (en) Passive safety system for a pressurized water nuclear reactor
US6094523A (en) Integral flash steam generator
EP0972159B1 (en) Integral flash steam generator
TW483004B (en) Unitary, transportable, assembled nuclear steam supply system with life time fuel supply and method of operating same
US3401082A (en) Integral steam generator and nuclear reactor combination
JP2012233698A (en) Nuclear power plant emergency cooling system
US4135552A (en) Pressurizer heaters
JPH0643275A (en) Integral pressurized water reactor
RU2000122836A (en) RECEIVER AND METHOD FOR PREPARING A FLUID UNDER PRESSURE
JPS633294A (en) Nuclear reactor and passive safety system thereof
US3446188A (en) Steam generator or heater for an atomic power generating plant
US5309489A (en) Nuclear reactor with cooling apparatus and method
US4246069A (en) Heat-generating nuclear reactor
JPS6238393A (en) Emergency core cooling method and device
US3576178A (en) Shell-and-tube steam generator with economizer
KR100394936B1 (en) Device for controlling the heat flux by a thermal valve
US6269873B1 (en) Method for controlling heat exchange in a nuclear reactor
JPH044572A (en) Vapor generator of fuel cell power generation system
US5259341A (en) Hydro injection steam generator
GB1491232A (en) Nuclear reactors
JPH0643279A (en) Integral pressurized water reactor
US3468292A (en) Domestic hot water heater
KR101697593B1 (en) Nuclear power plant
JP3881714B2 (en) Evaporator
JPH0721546B2 (en) Reactor with integrated pressure vessel structure