JPH0643271B2 - Castable refractories for lining molten steel ladle - Google Patents

Castable refractories for lining molten steel ladle

Info

Publication number
JPH0643271B2
JPH0643271B2 JP1043803A JP4380389A JPH0643271B2 JP H0643271 B2 JPH0643271 B2 JP H0643271B2 JP 1043803 A JP1043803 A JP 1043803A JP 4380389 A JP4380389 A JP 4380389A JP H0643271 B2 JPH0643271 B2 JP H0643271B2
Authority
JP
Japan
Prior art keywords
spinel
alumina
molten steel
steel ladle
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1043803A
Other languages
Japanese (ja)
Other versions
JPH02225379A (en
Inventor
弘之 今井
邦昭 重松
修美 松本
利弘 礒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HARIMA SERAMITSUKU KK
Harima Ceramic Co Ltd
Nippon Steel Corp
Original Assignee
HARIMA SERAMITSUKU KK
Harima Ceramic Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HARIMA SERAMITSUKU KK, Harima Ceramic Co Ltd, Nippon Steel Corp filed Critical HARIMA SERAMITSUKU KK
Priority to JP1043803A priority Critical patent/JPH0643271B2/en
Publication of JPH02225379A publication Critical patent/JPH02225379A/en
Publication of JPH0643271B2 publication Critical patent/JPH0643271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶鋼取鍋内張り用キャスタブル耐火物に関す
るものである。
TECHNICAL FIELD The present invention relates to a castable refractory for lining a molten steel ladle.

(従来の技術) 溶鋼取鍋の内張りは、施工の省力化・機械化などを目的
として、従来の煉瓦積みから不定形耐火物による施工に
移行されつつある。ここで使用される不定形耐火物とし
ては、例えば特開昭60−60985号公報に、スピネ
ルクリンカーを少なくとも60重量部、アルミナクリン
カー10〜35重量部、アルミナセメント3〜10重量
部とからなるスピネル−アルミナ質キャスタブル耐火
物、特開昭60−60986号公報には、マグネシアク
リンカー:アルミナクリンカーの重量比が7:3〜8:
2からなる混合物を60〜80重量部とスピネルクリン
カー20〜40重量部とからなる骨材を有したマグネシ
ア−アルミナ−スピネル質キャスタブル耐火物が提案さ
れている。
(Prior Art) The lining of molten steel ladle is shifting from conventional brick laying to laying with irregular refractory for the purpose of labor saving and mechanization. The amorphous refractory used here is, for example, in JP-A-60-60985, a spinel composed of at least 60 parts by weight of spinel clinker, 10 to 35 parts by weight of alumina clinker, and 3 to 10 parts by weight of alumina cement. -Alumina castable refractory, JP-A-60-60986 discloses that the weight ratio of magnesia clinker: alumina clinker is 7: 3 to 8:
A magnesia-alumina-spinel castable refractory having an aggregate of 60 to 80 parts by weight of a mixture of 2 and 20 to 40 parts by weight of spinel clinker has been proposed.

(発明が解決しようとする課題) 上記材質は、従来のろう石質、ろう石−ジルコン質など
の不定形耐火物に比べて耐食性に優れている。しかし、
最近の炉操業の苛酷化あるいは耐火物原単位の低減指向
の中では充分なものとはいえず、さらに耐用性に優れた
キャスタブル耐火物の提供が強く望まれている。
(Problems to be Solved by the Invention) The above-mentioned materials are superior in corrosion resistance to conventional non-standard refractory materials such as flake and flake-zircon. But,
It cannot be said to be sufficient in the recent trend toward severer furnace operation or reduction of the basic unit of refractory, and it is strongly desired to provide castable refractory having excellent durability.

(課題を解決するための手段) 本発明者らは、アルミナ−スピネル質キャスタブル耐火
物がもつ耐食性を生かしつつ、溶鋼取鍋内張り用として
さらに好適な材質を求めて開発を重ねてきた。その結
果、アルミナおよびMgO・A系スピネル(以下
スピネルと称す)を特定の割合で組合せた配合物に適量
の有機質短繊維を添加すると、熱間強度の向上およびハ
クリ防止に効果があることがわかり本発明を完成するに
至った。
(Means for Solving the Problem) The present inventors have made repeated developments in search of a more suitable material for lining a molten steel ladle while making the most of the corrosion resistance of the alumina-spinel castable refractory. As a result, when an appropriate amount of organic short fibers is added to a mixture in which alumina and MgO.A 2 O 3 based spinel (hereinafter referred to as spinel) are combined in a specific ratio, it is effective in improving hot strength and preventing peeling. As a result, the present invention has been completed.

すなわち本発明は重量比で、アルミナ40〜90%、Mg
O・A系スピネル2%以上50%未満およびア
ルミナセメント2〜25%を主材とした配合物100%
に、長さ0.5〜20mmの有機質短繊維を外掛け0.0
1〜0.5%含有させてなる溶鋼取鍋内張り用キャスタ
ブル耐火物である。
That is, in the present invention, the weight ratio of alumina is 40 to 90%,
Compound containing 100% of O · A 2 O 3 based spinel and less than 50% and 2 to 25% of alumina cement as a main material
On the outside, 0.5 to 20 mm long organic short fibers are squeezed out to 0.0
A castable refractory for lining a molten steel ladle containing 1 to 0.5%.

また、上記耐火物において、MgO・A系スピネ
ルの粒径が1mm以下とした耐火物である。
Further, in the refractory material, the MgO.A 2 O 3 -based spinel has a particle size of 1 mm or less.

次に本発明について説明する。Next, the present invention will be described.

アルミナ−スピネル質は熱膨脹率が大きいが、溶鋼取鍋
の内張りは外周が鉄皮、上方に押え金具という拘束下に
あるために、膨脹を耐火物自身で吸収し、耐火物組織が
ぜい弱化する。これに対し有機質短繊維を添加したもの
は、使用による加熱を受けると短繊維の焼失で微細な空
隙が生じ、この空隙が耐火物の膨脹を吸収し、組織のぜ
い弱化を防止するものと思われる。
Alumina-spinel has a high coefficient of thermal expansion, but the inner lining of the molten steel ladle is bounded by the iron shell on the outer circumference and the upper holding metal fittings, so the expansion is absorbed by the refractory itself and the refractory structure weakens. . On the other hand, in the case of adding organic short fibers, it seems that when heated by use, short fibers are burned out to create fine voids, which absorb the expansion of the refractory and prevent weakening of the structure. Be done.

第1図は、アルミナ−スピネル質耐火物において、有機
質短繊維の添加量とキャスタブル耐火物の最大熱膨脹応
力との関係を示す。有機質短繊維を添加すると、キャス
タブル耐火物の最大熱膨脹応力は小さくなることがわか
る。なお、この実験に供試したキャスタブル耐火物の配
合組成は、後述の実施例7と同じとし、有機質短繊維の
添加量のみを変化させたものである。
FIG. 1 shows the relationship between the amount of organic short fibers added and the maximum thermal expansion stress of castable refractories in alumina-spinel refractories. It can be seen that the maximum thermal expansion stress of castable refractories is reduced by adding organic short fibers. The compounding composition of the castable refractories used in this experiment was the same as that of Example 7 described later, and only the addition amount of the organic short fibers was changed.

この種のキャスタブル耐火物は、結合剤としてアルミナ
セメントが使用される。アルミナセメントはA
とCaOを主成分とする。このアルミナセメントからくるC
aOと、スピネルからくるMgOおよびアルミナなどからく
るAとが使用中の高温下で反応し、A
−MgO−CaO系の低融物(融点1370℃)を生成する。
この傾向は、スピネルの粒径を小さくするほど顕著であ
る。従来のアルミナ−スピネル質キャスタブル耐火物
は、使用初期に膨張傾向があるが、時間の経過ととも
に、低融物の生成によって収縮し、キレツの発生→地金
差しが起り、ハクリを生じさせていた。
This type of castable refractory uses alumina cement as a binder. Alumina cement is A 2 O 3
And CaO as the main components. C coming from this alumina cement
aO reacts with MgO from spinel and A 2 O 3 from alumina etc. at a high temperature during use to generate A 2 O 3
-MgO-CaO system low melt (melting point 1370 ° C) is produced.
This tendency becomes more remarkable as the particle size of the spinel is reduced. Conventional alumina-spinel castable refractories have a tendency to expand in the early stage of use, but with the passage of time, they contract due to the formation of low-melting material, causing crevices → ingots, causing peeling. .

これに対し本発明のキャスタブル耐火物は、有機質短繊
維の添加で耐火物組織中に微細な空隙が生じ、低融点物
質の生成の原因となる各成分同志の接触が少なくなる結
果、低融点物質の生成が低減し、ハクリを防止すること
ができるものと考えられる。
On the other hand, the castable refractory of the present invention, the addition of the organic short fibers creates fine voids in the refractory structure, resulting in less contact between the components that cause the formation of the low melting point substance It is considered that the generation of swelling is reduced and peeling can be prevented.

第2図は、有機質短繊維を添加した後述の実施例8と同
じ組成のキャスタブル耐火物と、有機質短繊維を添加し
ない比較例2のキャスタブル耐火物との高温膨脹曲線を
示したものである。有機質短繊維を添加した方は、無添
加に比べ収縮が小さいことがわかる。
FIG. 2 shows the high temperature expansion curves of the castable refractory having the same composition as that of Example 8 described later to which the organic short fibers were added and the castable refractory of Comparative Example 2 to which the organic short fibers were not added. It can be understood that the shrinkage of the organic short fiber added is smaller than that of the non-added organic fiber added.

つぎに、本発明で使用する配合物について詳細に説明を
する。なお、以下で示す%は全て重量比とする。
Next, the compound used in the present invention will be described in detail. All the percentages shown below are weight ratios.

アルミナは、耐食性、容積安定性などの役割をもつ。そ
の種類としては、焼結アルミナ、電融アルミナなどの人
工品、ばん土頁岩、ボーキサイト、シリマナイトなどの
天然品があり、本発明では、これらから選ばれる一種ま
たは二種以上が使用できる。中でも低融物生成の原因と
なるSiO2の成分の少ないものが好ましい。粒度は従来と
特に変わりなく、不定形耐火物が施工によって密充填さ
れるよう、例えば最大粒径を10〜25mmとし、粗粒、
中粒、微粒に適宜調整される。
Alumina has roles such as corrosion resistance and volume stability. Examples thereof include artificial products such as sintered alumina and fused alumina, and natural products such as shale shale, bauxite, and sillimanite. In the present invention, one or more selected from these can be used. Above all, those having a small content of SiO 2 which causes the formation of a low melt are preferable. The particle size is not particularly different from the conventional one, and for example, the maximum particle size is set to 10 to 25 mm, and coarse particles,
It is appropriately adjusted to medium particles and fine particles.

アルミナの割合は40〜90%、好ましくは50〜80
%とする。40%未満では耐食性および耐スラグ浸透性
に劣る。また、90%を超えるとその分、スピネルの割
合が少なくなり、耐スラグ浸透性に劣る。
The proportion of alumina is 40 to 90%, preferably 50 to 80
%. If it is less than 40%, the corrosion resistance and the slag penetration resistance are poor. On the other hand, if it exceeds 90%, the proportion of spinel decreases correspondingly, resulting in poor slag penetration resistance.

スピネルは、電融品、焼結品のいずれでもよく、またそ
れらの併用でもよい。スピネルを構成するMgO・A
の各成分の比はモル比でMgO・Aが0.7
〜1.3:1.3〜0.7の範囲が好ましい。
The spinel may be either an electromelted product or a sintered product, or may be a combination thereof. MgO · A 2 that constitutes spinel
O ratio of each component of the 3 MgO · A 2 O 3 in a molar ratio of 0.7
The range of -1.3: 1.3-0.7 is preferable.

スピネルの粒度は粒径1mm以下が好ましい。第3図は、
アルミナ−スピネル質キャスタブル耐火物において、ス
ピネルの粒径とキャスタブル耐火物のスラグ浸透性との
関係を示したグラフである。スラグ浸透性の測定法は、
後述の実施例と同じとした。また、この場合の各原料の
配合は、焼結アルミナ55%、焼結スピネル30%、ア
ルミナセメント15%、長さ5mmビニロン短繊維を外掛
けで0.1%とした。同図から、スピネルの粒径が1mm以
下になるとキャスタブル耐火物の耐スラグ浸透性が一層
向上することがわかる。その理由は、スピネルが微細で
あることでマトリックスにより均一に隙間無く充填さ
れ、スピネルがスラグ中のFeO,MnOといった成分をくま
なく固溶し、スラグ浸透防止の効果を大きくするためで
ある。
The particle size of the spinel is preferably 1 mm or less. Figure 3 shows
In an alumina-spinel castable refractory, it is a graph which showed the relationship between the particle size of spinel and the slag penetration of a castable refractory. The measuring method of slag permeability is
It was the same as the example described later. In this case, the mixing ratio of each raw material was 55% of sintered alumina, 30% of sintered spinel, 15% of alumina cement, and 0.1% of 5 mm long vinylon short fiber was externally applied. From the figure, it can be seen that the slag penetration resistance of castable refractories is further improved when the particle size of the spinel is 1 mm or less. The reason for this is that the fine spinel allows the matrix to be uniformly filled with no gaps, and the spinel dissolves all the components such as FeO and MnO in the slag as a solid solution to enhance the effect of preventing slag penetration.

アルミナ−スピネル質キャスタブル耐火物においてスピ
ネルの粒径を1mm以下にすると、以上の効果がある反
面、収縮が一層著しくなるが、本発明では有機質短繊維
の添加でこの収縮を防止できる。スピネルの割合は、2
%以上50%未満、さらに好ましくは5〜45%であ
る。2%未満ではスラグ浸透防止に効果がなく、50%
以上では膨脹応力が大きくなり過ぎる。
When the particle size of the spinel in the alumina-spinel castable refractory is 1 mm or less, the above effects are obtained, but the shrinkage becomes more remarkable. However, in the present invention, the addition of the organic short fibers can prevent the shrinkage. Spinel ratio is 2
% Or more and less than 50%, more preferably 5 to 45%. If it is less than 2%, there is no effect in preventing slag penetration, and 50%
With the above, the expansion stress becomes too large.

アルミナセメントは耐火物の結合剤として従来一般的に
使用されているものと同様のものでよい。その粒度は1
80メッシュ以下の微粉とする。割合は2〜25%、好
ましくは5〜20%である。2%未満では結合剤として
の強度付与の効果がなく、25%を超えると耐食性を低
下させる。
Alumina cement may be similar to that conventionally used as a binder for refractories. The grain size is 1
Fine powder of 80 mesh or less. The ratio is 2 to 25%, preferably 5 to 20%. If it is less than 2%, there is no effect of imparting strength as a binder, and if it exceeds 25%, the corrosion resistance is lowered.

有機質短繊維は、例えばポリエステル、ポリアミド、ア
クリル、セルロース、ビニロン、ポリプロピレン、ナイ
ロン、ポリビニール、ポリエチレンなどの材質が使用で
きる。サイズは長さ0.5〜20mmとする。0.5mm未満では
繊維としての効果がない。20mmを超えるとキャスタブ
ル耐火物中の耐スラグ浸透性が劣る。添加量は、耐火性
骨材及び結合剤を主材とした配合物100%に対し、外
掛けで0.01〜0.5%とする。0.01%未満では効果がな
く、0.5%を超えると耐食性が低下する。
As the organic short fibers, materials such as polyester, polyamide, acrylic, cellulose, vinylon, polypropylene, nylon, polyvinyl and polyethylene can be used. The size should be 0.5 to 20 mm in length. If it is less than 0.5 mm, it has no effect as a fiber. If it exceeds 20 mm, the slag penetration resistance in castable refractories is poor. The amount of addition is 0.01 to 0.5% by external coating with respect to 100% of the mixture containing the refractory aggregate and the binder as the main materials. If it is less than 0.01%, there is no effect, and if it exceeds 0.5%, the corrosion resistance decreases.

本発明は以上の配合物、添加物以外にも本発明の効果を
阻害し範囲で他の物質を添加してもよい。例えばマグネ
シアを適量添加してもよいが、マグネシアは熱膨脹率が
極めて大きいので、その割合は5%以下にすることが好
ましい。この他、溶鋼取鍋の内張りでも使用部位によっ
ては、金属短繊維、金属粉、炭素粉、炭化物、窒化物な
どを適量添加してもよい。
In the present invention, in addition to the above-mentioned compounds and additives, other substances may be added within a range that inhibits the effects of the present invention. For example, magnesia may be added in an appropriate amount, but magnesia has a very large coefficient of thermal expansion, so that the proportion is preferably 5% or less. In addition, short metal fibers, metal powders, carbon powders, carbides, nitrides and the like may be added in appropriate amounts even in the lining of the molten steel ladle, depending on the use site.

(実施例) 第1表に本発明実施例と、その比較例を示す。(Example) Table 1 shows an example of the present invention and a comparative example thereof.

各試験は、表に示す配合物に適量の水分を添加して混練
したものを型枠内に振動鋳込み成形し、110℃×24
時間で乾燥後、測定した。
Each test was carried out by vibration-casting into a mold by adding an appropriate amount of water to the compound shown in the table and kneading the mixture, and then 110 ° C. × 24
After drying for an hour, the measurement was performed.

曲げ強さ;JIS-R2553に準じる。 Bending strength; conforms to JIS-R2553.

線変化率;JIS-R2554に準じる。 Line change rate: According to JIS-R2554.

回転侵食;鋼片:溶鋼取鍋スラグ=1:1を溶媒と
し、1650℃×4時間行った後、溶損寸法とスラグ浸
透寸法を測定した。
Rotational erosion; Steel slab: Molten steel ladle slag = 1: 1 was used as a solvent, and after 1650 ° C. × 4 hours, the melt loss dimension and the slag permeation dimension were measured.

本発明実施例のキャスタブル耐火物はいずれも熱膨脹応
力が小さく、加熱による収縮(線変化率で測定)も小さ
く、しかもアルミナ−スピネル質がもつ高耐食性を備え
ている。また、スピネルを1mm以下の粒径で配合したも
のは、耐スラグ浸透性がより一層向上している。
Each of the castable refractories of the examples of the present invention has a small thermal expansion stress, a small shrinkage due to heating (measured by a linear change rate), and a high corrosion resistance of the alumina-spinel material. In addition, slag penetration resistance is further improved when spinel is blended in a particle size of 1 mm or less.

一方、比較例1はアルミナセメント量が少ないために強
度(曲げ強さで測定)が低く、耐食性も悪い。有機質短
繊維が添加されていない比較例2は、熱膨脹応力が大き
く、しかも収縮が大きい。比較例3は、アルミナセメン
ト量が多いために耐食性が悪い。比較例4は有機質短繊
維の割合が多く、耐食性が悪い。比較例5は、スピネル
量が多すぎ、耐スラグ浸透性が悪い。比較例6は有機質
短繊維の長さが長すぎるために、耐スラグ浸透性が悪
い。比較例7は、スピネルの粒径が大きいために収縮は
小さいが、有機短繊維を添加していないために熱膨脹応
力が大きい。
On the other hand, in Comparative Example 1, the strength (measured by bending strength) is low and the corrosion resistance is poor because the amount of alumina cement is small. Comparative Example 2 to which the organic short fibers are not added has a large thermal expansion stress and a large shrinkage. Comparative Example 3 has a large amount of alumina cement and thus has poor corrosion resistance. Comparative Example 4 has a large proportion of organic short fibers and has poor corrosion resistance. In Comparative Example 5, the spinel amount was too large and the slag penetration resistance was poor. Comparative Example 6 has poor slag penetration resistance because the organic short fibers are too long. In Comparative Example 7, the shrinkage is small because the particle size of the spinel is large, but the thermal expansion stress is large because the organic short fibers are not added.

実機試験として、実施例および比較例の中から一部を11
0t溶鋼取鍋の内張りに使用し、試験した。本発明実施例
は、従来材質に見られたハクリもなく、第1表に示す結
果のとおり優れた耐用性が得られた。
As an actual machine test, some of the examples and comparative examples were
It was used as a lining of a 0t molten steel ladle and tested. In the examples of the present invention, the durability was not found in the conventional materials, and the excellent durability was obtained as shown in the results of Table 1.

(発明の効果) 以上のように本発明のアルミナースピネル質キャスタブ
ル耐火物は耐スラグ浸透性に優れ、しかも、溶鋼取鍋の
内張りに使用した場合に見られる熱膨脹応力による組織
のぜい弱化および低融物生成による収縮の問題を解決し
たものである。これにより、本発明のキャスタブル耐火
物はアルミナ−スピネル質がもつ耐食性をいかんなく発
揮することができ、溶鋼取鍋内張り用として耐用寿命が
格段に向上する。
(Effects of the Invention) As described above, the alumina-spinel castable refractory of the present invention is excellent in slag penetration resistance, and further, the structure becomes weak and low due to the thermal expansion stress observed when it is used as the lining of the ladle. This is a solution to the problem of shrinkage due to melt formation. As a result, the castable refractory of the present invention can fully exhibit the corrosion resistance of the alumina-spinel material, and the life of the castable refractory for lining a molten steel ladle is remarkably improved.

したがって、最近の溶鋼取鍋操業の苛酷化、あるいは耐
火物原単位の低減化指向の中で、耐用寿命に優れたキャ
スタブル耐火物を提供できる本発明は、工業的価値が極
めて高いものである。
Therefore, the present invention, which can provide a castable refractory having an excellent service life, is extremely high in industrial value in view of the recent severer operation of the ladle ladle operation or the reduction of the basic unit of refractory.

【図面の簡単な説明】[Brief description of drawings]

第1図はアルミナ−スピネル質耐火物において、有機質
短繊維の添加量とキャスタブル耐火物の最大熱膨脹応力
との関係を示す。 第2図は有機質短繊維を添加した実施例8のキャスタブ
ル耐火物と、有機質短繊維を添加しない比較例2のキャ
スタブル耐火物との高温膨脹曲線を示す。 第3図はアルミナ−スピネル質キャスタブル耐火物にお
いて、スピネルの粒径とキャスタブル耐火物のスラグ浸
透性との関係を示したグラフである。
FIG. 1 shows the relationship between the amount of organic short fibers added and the maximum thermal expansion stress of castable refractories in alumina-spinel refractories. FIG. 2 shows the high temperature expansion curves of the castable refractory material of Example 8 to which the organic short fibers were added and the castable refractory material of Comparative Example 2 to which the organic short fibers were not added. FIG. 3 is a graph showing the relationship between the particle size of the spinel and the slag permeability of the castable refractory in the alumina-spinel castable refractory.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 修美 兵庫県高砂市荒井町新浜1―3―1 ハリ マセラミック株式会社内 (72)発明者 礒部 利弘 兵庫県高砂市荒井町新浜1―3―1 ハリ マセラミック株式会社内 (56)参考文献 特開 昭59−128271(JP,A) 特開 昭61−10079(JP,A) 特開 昭59−190276(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sumi Matsumoto 1-3-1 Niihama, Arai-cho, Takasago-shi, Hyogo Harima Ceramic Co., Ltd. (72) Inventor Toshihiro Isobe 1-3-1 Niihama, Arai-cho, Takasago-shi, Hyogo Harima Ceramics Co., Ltd. (56) Reference JP-A-59-128271 (JP, A) JP-A-61-10079 (JP, A) JP-A-59-190276 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量比で、アルミナ40〜90%、MgO・
系スピネル2%以上50%未満およびアルミ
ナセメント2〜25%を主材とした配合物100%に、
長さ0.5〜20mmの有機質短繊維を外掛け0.01〜
0.5%含有させてなる溶鋼取鍋内張り用キャスタブル
耐火物。
1. A weight ratio of 40 to 90% alumina and MgO.
A 2 O 3 -based spinel 2% or more and less than 50% and 100% of a mixture mainly composed of alumina cement 2 to 25%,
An organic short fiber with a length of 0.5 to 20 mm is applied outside 0.01 to
Castable refractory for lining molten steel ladle containing 0.5%.
【請求項2】MgO・A系スピネルの粒径が1mm
以下である請求項1記載の溶鋼取鍋内張り用キャスタブ
ル耐火物。
2. The particle size of MgO.A 2 O 3 spinel is 1 mm.
The castable refractory for lining a molten steel ladle according to claim 1, which is as follows.
JP1043803A 1989-02-23 1989-02-23 Castable refractories for lining molten steel ladle Expired - Lifetime JPH0643271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1043803A JPH0643271B2 (en) 1989-02-23 1989-02-23 Castable refractories for lining molten steel ladle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1043803A JPH0643271B2 (en) 1989-02-23 1989-02-23 Castable refractories for lining molten steel ladle

Publications (2)

Publication Number Publication Date
JPH02225379A JPH02225379A (en) 1990-09-07
JPH0643271B2 true JPH0643271B2 (en) 1994-06-08

Family

ID=12673906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1043803A Expired - Lifetime JPH0643271B2 (en) 1989-02-23 1989-02-23 Castable refractories for lining molten steel ladle

Country Status (1)

Country Link
JP (1) JPH0643271B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117710C (en) * 1999-10-22 2003-08-13 中国科学院化学研究所 Low-cement refractory pouring material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128271A (en) * 1982-12-29 1984-07-24 株式会社神戸製鋼所 Flow in material for molten iron desilicating launder
JPS59190276A (en) * 1983-04-08 1984-10-29 日本碍子株式会社 Formless refractories
JPS6110079A (en) * 1984-06-26 1986-01-17 新日本製鐵株式会社 Refractories for cast construction
JPS63396A (en) * 1986-06-20 1988-01-05 ライオン株式会社 Liquid detergent composition

Also Published As

Publication number Publication date
JPH02225379A (en) 1990-09-07

Similar Documents

Publication Publication Date Title
US3892584A (en) Monolithic refractory materials
JPH0420871B2 (en)
JP4527905B2 (en) Castable refractories for blast furnace firewood
JPH0643271B2 (en) Castable refractories for lining molten steel ladle
JP2743209B2 (en) Carbon containing refractories
JPH11322405A (en) Low carbon refractory and its production
JPS62260765A (en) Refractory composition and refractory brick manufactured therefrom
JP3197680B2 (en) Method for producing unburned MgO-C brick
JP2556416B2 (en) Casting material for blast furnace gutter
JP3683306B2 (en) Refractory for casting construction
JP2954454B2 (en) MgO-C non-fired brick
JPH09278540A (en) Corrosion-and oxidation-resistant amorphous refractory material
JP3177200B2 (en) Method for producing low-permeability magnesia-chromium refractory
JPH0585805A (en) Carbon-containing fire-resistant material
JP2000191364A (en) Shaped magnesia-chrome refractory
JP3197681B2 (en) Method for producing unburned MgO-C brick
JPS5850945B2 (en) Refractory material for blast furnace gutter vibration molding
JP2962927B2 (en) Carbon-containing irregular refractories
JPH04342454A (en) Magnesia-containing unburned refractory
JP4070033B2 (en) Unshaped refractory for casting construction and molten steel container lined with this
JPH0637334B2 (en) Castable refractory for molten steel ladle floor
JPH0354155A (en) Production of graphite-containing brick for lining of melted metallic vessel
JP3795933B2 (en) Magnesia-chromic fired brick
JPH03205348A (en) Magnesia-carbon brick
JPH0375275A (en) Magnesian refractory mortar

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 15