JPH0643020A - Infrared ray detecting element - Google Patents

Infrared ray detecting element

Info

Publication number
JPH0643020A
JPH0643020A JP4216648A JP21664892A JPH0643020A JP H0643020 A JPH0643020 A JP H0643020A JP 4216648 A JP4216648 A JP 4216648A JP 21664892 A JP21664892 A JP 21664892A JP H0643020 A JPH0643020 A JP H0643020A
Authority
JP
Japan
Prior art keywords
fiber
resistance
semiconductor
detecting element
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4216648A
Other languages
Japanese (ja)
Other versions
JP3182703B2 (en
Inventor
Norihisa Mori
憲寿 森
Sadajiro Kajiwara
貞次郎 梶原
Norio Muto
範雄 武藤
Hiroaki Yanagida
博明 柳田
Masaru Miyayama
勝 宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sohgo Security Services Co Ltd
Original Assignee
Sohgo Security Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sohgo Security Services Co Ltd filed Critical Sohgo Security Services Co Ltd
Priority to JP21664892A priority Critical patent/JP3182703B2/en
Publication of JPH0643020A publication Critical patent/JPH0643020A/en
Application granted granted Critical
Publication of JP3182703B2 publication Critical patent/JP3182703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To obtain an inexpensive downsized infrared ray detecting element having high sensitivity by arranging a pair of conductive parts oppositely, While spacing apart from each other, on a semiconductor fiber thereby forming a hybrid fiber. CONSTITUTION:A pair of conductive parts 2a, 2b are arranged, while spacing apart from each other, on a semiconductor fiber 1 having electric resistance variable with temperature thus forming a hybrid fiber 3. The conductive parts 2a, 2b are composed of good conductors having resistance close to zero and the resistance R of infrared ray detecting element is determined by the gap (d) between the pair of conductive parts 2a, 2b according to a formula; R = rhod/s. represents resistivity of the fiber 1 and even when the resistivity rho is set high in order to enhance sensitivity of infrared ray detecting element, resistance R can be decreased by decreasing the gap (d). Since the resistance R can be controlled without varying the length and the cross-sectional area (s) of the fiber 1, a fiber 1 having high resistivity can be used with low resistance without imposing negative effect on the thermal characteristics of the fiber 1. Furthermore, number of fibers 1 to be arranged in parallel can be decreased because of low resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、物体から放射される
赤外線を電気信号に変換する赤外線検出素子に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detecting element for converting infrared rays emitted from an object into an electric signal.

【0002】[0002]

【従来の技術】従来、赤外線検出素子としては、焦電効
果を利用した焦電素子や熱電対を集積したサーモパイ
ル、及び金属酸化物を用いたサーミスタボロメータ等が
知られている。しかし、これらの赤外線検出素子は高度
の応答速度が要求される用途には応答速度の点で難点が
あり、また被検出赤外線源の位置検出への利用にも限界
があり、かつ価格の点でも不利であった。
2. Description of the Related Art Heretofore, as an infrared detecting element, a pyroelectric element utilizing a pyroelectric effect, a thermopile in which thermocouples are integrated, a thermistor bolometer using a metal oxide, and the like are known. However, these infrared detection elements have a difficulty in response speed in applications requiring a high response speed, and also have a limit in use in detecting the position of an infrared source to be detected, and also in terms of price. It was a disadvantage.

【0003】本発明者らは、先に、上記した従来の赤外
線検出素子の欠点を解消し得る素子として、赤外線照射
により電気抵抗が変化する半導体繊維を用いた赤外線検
出素子を提案した(特開平2−71121号)が、これ
を図2に示す。図において、11は長さl、断面積sの
半導体繊維であり、その両端には導電性ペースト15
a,15bを介して電極14a,14bを接着する。1
6a,16bは電極14a,14bと赤外線検出回路を
接続するリード線である。
The present inventors have previously proposed an infrared detecting element using a semiconductor fiber whose electric resistance is changed by infrared irradiation, as an element capable of solving the above-mentioned drawbacks of the conventional infrared detecting element (Japanese Patent Laid-Open No. Hei 10 (1999) -264242). No. 2-71121), which is shown in FIG. In the figure, 11 is a semiconductor fiber having a length l and a cross-sectional area s, and a conductive paste 15 is provided at both ends thereof.
The electrodes 14a and 14b are adhered via a and 15b. 1
Reference numerals 6a and 16b are lead wires that connect the electrodes 14a and 14b to the infrared detection circuit.

【0004】図2に赤外線検出素子が赤外線検出回路に
接続された状態で、半導体繊維11に赤外線が照射され
ると、半導体繊維11の温度は上昇し、半導体繊維11
は温度に応じて内部抵抗が変化する。従って、この抵抗
変化を赤外線検出回路で検出することにより、照射され
た赤外線のエネルギ量を検出することができる。
In FIG. 2, when the infrared detecting element is connected to the infrared detecting circuit, when the semiconductor fiber 11 is irradiated with infrared rays, the temperature of the semiconductor fiber 11 rises and the semiconductor fiber 11 rises.
Has an internal resistance that changes with temperature. Therefore, the amount of energy of the emitted infrared rays can be detected by detecting this resistance change with the infrared detection circuit.

【0005】ところで、上記半導体繊維11を用いた赤
外線検出素子の赤外線検出感度は、半導体繊維11のサ
ーミスタ定数に依存する。サーミスタ定数とは温度変化
に対する抵抗変化の大きさを表す定数であり、半導体繊
維11の材料によって決まり、その値が大きいほど高感
度といえる。
By the way, the infrared detection sensitivity of the infrared detection element using the semiconductor fiber 11 depends on the thermistor constant of the semiconductor fiber 11. The thermistor constant is a constant representing the magnitude of resistance change with respect to temperature change, and is determined by the material of the semiconductor fiber 11. The larger the value, the higher the sensitivity.

【0006】又、サーミスタ定数は半導体繊維11の抵
抗率に比例して直線的に増加するという特性を有し、高
抵抗率の半導体繊維11ほど高い値を示す(参考文献:
「機能性半導体繊維を用いた赤外線センサと人体検出へ
の応用」電子情報通信学会論文誌C−II Vol.J74−
C−II No.5 PP.458−466 1991年5月)。
従って、赤外線検出素子の感度を大きくするためには、
サーミスタ定数の大きな半導体繊維11、即ち高抵抗率
の半導体繊維11を用いればよい。
Further, the thermistor constant has a characteristic that it increases linearly in proportion to the resistivity of the semiconductor fiber 11, and the higher the resistivity of the semiconductor fiber 11, the higher the value (reference:
"Infrared sensor using functional semiconductor fiber and its application to human body detection" IEICE Transactions C-II Vol. J74-
C-II No. 5 PP. 458-466 May 1991).
Therefore, in order to increase the sensitivity of the infrared detection element,
The semiconductor fiber 11 having a large thermistor constant, that is, the semiconductor fiber 11 having a high resistivity may be used.

【0007】ここで、半導体繊維11の抵抗値Rは、R
=ρ・l/sで決まり、ρ,l,sはそれぞれ半導体繊
維11の抵抗率、長さ、断面積である。従って、赤外線
検出素子の感度を大きくするために抵抗率ρを大きくす
ると、赤外線検出素子の抵抗値Rも大きくなり、熱雑音
の増加、耐雑音性の低下、信号処理回路の複雑化等の問
題が生じる。このため、抵抗値Rは数MΩ以下の低抵抗
にする必要があり、従来では抵抗率ρが大きな半導体繊
維11を低抵抗で使用するために、半導体繊維11の
長さlを短くする。半導体繊維11の断面積sを大き
くする。半導体繊維11を並列に複数本配列するとい
う方法が用いられていた。
Here, the resistance value R of the semiconductor fiber 11 is R
= Ρ · l / s, where ρ, 1, and s are the resistivity, length, and cross-sectional area of the semiconductor fiber 11, respectively. Therefore, if the resistivity ρ is increased in order to increase the sensitivity of the infrared detection element, the resistance value R of the infrared detection element also increases, causing problems such as an increase in thermal noise, a reduction in noise resistance, and a complicated signal processing circuit. Occurs. For this reason, the resistance value R needs to be a low resistance of several MΩ or less, and in order to use the semiconductor fiber 11 having a large resistivity ρ with a low resistance in the related art, the length l of the semiconductor fiber 11 is shortened. The cross-sectional area s of the semiconductor fiber 11 is increased. A method of arranging a plurality of semiconductor fibers 11 in parallel has been used.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、半導体
繊維11の長さlを短くすると、電極14a,14bへ
の放熱が大きくなるため、半導体繊維11の温度上昇が
抑えられて検出感度の低下を招いた。又、半導体繊維1
1の断面積sを大きくすると、繊維の熱容量が大きくな
り、赤外線の照射に対する応答速度が遅くなった。この
ように、上記した及びの方法では、半導体繊維11
の熱的特性が変化し、赤外線検出素子としての性能低下
を招くため、使用できる半導体繊維11の抵抗率ρが制
限され、高感度化が困難であった。
However, when the length l of the semiconductor fiber 11 is shortened, heat radiation to the electrodes 14a and 14b is increased, so that the temperature rise of the semiconductor fiber 11 is suppressed and the detection sensitivity is lowered. I was there. Also, semiconductor fiber 1
When the cross-sectional area s of 1 was increased, the heat capacity of the fiber was increased and the response speed to infrared irradiation was slowed. As described above, according to the above methods and, the semiconductor fiber 11
Since the thermal characteristics of (1) change and the performance as an infrared detection element deteriorates, the resistivity ρ of the semiconductor fiber 11 that can be used is limited, and it is difficult to achieve high sensitivity.

【0009】又、半導体繊維11を並列に複数配列する
場合、繊維の抵抗率が大きくなればなるほど繊維本数を
多くしなければならず、しかも他の繊維と接触すること
なく配列しなければならないため、赤外線検出素子の小
型化が困難であり、またその製作に多大な時間と労力を
要し、赤外線検出素子を安価にできないという課題があ
った。
Further, when a plurality of semiconductor fibers 11 are arranged in parallel, the number of fibers must be increased as the resistivity of the fibers is increased, and moreover, the fibers must be arranged without contact with other fibers. However, it is difficult to reduce the size of the infrared detection element, and it takes a lot of time and labor to manufacture the infrared detection element, which makes it difficult to reduce the cost of the infrared detection element.

【0010】この発明は上記のような課題を解決するた
めに成されたものであり、半導体繊維の長さ、断面積、
本数を変化させずに赤外線検出素子の抵抗値を制御可能
として高抵抗率半導体繊維を低抵抗で使用することがで
き、高感度で小型安価な赤外線検出素子を得ることを目
的とする。
The present invention has been made to solve the above problems, and has the following features:
An object of the present invention is to obtain a high-sensitivity, small-sized and inexpensive infrared detecting element which can control the resistance value of the infrared detecting element without changing the number thereof and can use the high resistivity semiconductor fiber with low resistance.

【0011】[0011]

【課題を解決するための手段】この発明に係る赤外線検
出素子は、温度により電気抵抗が変化する半導体繊維と
この半導体繊維上に間隔をおいて互に対向するよう形成
された一対の導電体からなる電導部とで構成された少な
くとも1本以上のハイブリッド繊維と、このハイブリッ
ド繊維の両端に半導体繊維及び電導部の双方に電気及び
熱が良好に伝わるように接続され、ハイブリッド繊維が
空中に浮くように支持する支持電極を設けたものであ
る。
An infrared detecting element according to the present invention comprises a semiconductor fiber whose electric resistance changes with temperature and a pair of conductors formed on the semiconductor fiber so as to face each other with a space therebetween. At least one hybrid fiber composed of a conductive part and a conductive part connected to both ends of the hybrid fiber so that electricity and heat can be satisfactorily transmitted to both the semiconductor fiber and the conductive part so that the hybrid fiber floats in the air. It is provided with a support electrode for supporting the.

【0012】[0012]

【作用】この発明においては、半導体繊維上に形成され
た電導部の抵抗値は零に近く、赤外線検出素子としての
抵抗値Rは一対の電導部間の間隔dで決まり、半導体繊
維の断面積をsとしてR=ρd/sとなる。従って、赤
外線検出素子の感度を上げるために、半導体繊維の抵抗
率ρを大きくしても電導部の間隔dを小さくすれば、抵
抗値Rは小さくなる。
According to the present invention, the resistance value of the conductive portion formed on the semiconductor fiber is close to zero, and the resistance value R as the infrared detecting element is determined by the distance d between the pair of conductive portions, and the cross-sectional area of the semiconductor fiber is determined. Let s be R = ρd / s. Therefore, in order to increase the sensitivity of the infrared detecting element, the resistance value R becomes smaller if the distance d between the conductive portions is made smaller even if the resistivity ρ of the semiconductor fiber is made larger.

【0013】[0013]

【実施例】以下、この発明の実施例を図面とともに説明
する。図1はこの実施例による赤外線検出素子の基本構
成を示し、1は温度により電気抵抗が変化する半導体繊
維であり、SiC繊維、Si−Ti−C−O繊維、炭素
繊維等からなる。2a,2bは半導体繊維1上に長さ方
向に任意の間隔dをおいて互いに対向するよう形成され
た一対の電導部であり、金、白金、銀、アルミニウム、
カーボン等の良導体により形成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the basic structure of the infrared detecting element according to this embodiment, and 1 is a semiconductor fiber whose electric resistance changes with temperature, and is composed of SiC fiber, Si-Ti-C-O fiber, carbon fiber or the like. Reference numerals 2a and 2b denote a pair of conductive portions formed on the semiconductor fiber 1 so as to face each other at an arbitrary distance d in the length direction, and include gold, platinum, silver, aluminum,
It is made of a good conductor such as carbon.

【0014】3は半導体繊維1と一対の電導部2a,2
bからなるハイブリッド繊維であり、ハイブリッド繊維
3は少なくとも1本以上設けられる。4a,4bは金、
銅等の良導体からなる支持電極であり、ハイブリッド繊
維3の両端に導電性ペースト5a,5bを介して接着さ
れ、半導体繊維1及び一対の電導部2a,2bの端部に
電気及び熱が良く伝わるように接続されており、また支
持電極4a,4bはハイブリッド繊維3が空中に浮くよ
うに支持している。6a,6bは支持電極4a,4bを
赤外線検出回路に接続するリード線である。又、l、s
は半導体繊維1の長さ及び断面積である。
3 is a semiconductor fiber 1 and a pair of conductive portions 2a, 2
At least one hybrid fiber 3 is provided. 4a and 4b are gold,
It is a support electrode made of a good conductor such as copper, and is adhered to both ends of the hybrid fiber 3 via conductive pastes 5a and 5b, and electricity and heat are well transferred to the ends of the semiconductor fiber 1 and the pair of conductive portions 2a and 2b. And the supporting electrodes 4a and 4b support the hybrid fiber 3 so as to float in the air. Reference numerals 6a and 6b are lead wires for connecting the support electrodes 4a and 4b to the infrared detection circuit. Also, l, s
Is the length and cross-sectional area of the semiconductor fiber 1.

【0015】次に、上記構成の赤外線検出素子の動作に
ついて説明する。半導体繊維1上に形成された一対の電
導部2a,2bは良導体により形成されているのでその
抵抗値は零に近く、赤外線検出素子の抵抗値Rは一対の
電導部2a,2bの間隔dによって決まり、R=ρd/
sとなる。ただし、ρは半導体繊維1の抵抗率である。
従って、赤外線検出素子の感度を上げるために半導体繊
維1の抵抗率ρを大きくした場合でも、電導部2a,2
bの間隔dを小さくすることにより、抵抗値Rを小さく
することができる。このため、半導体繊維1の長さl及
び断面積sを変化させなくても抵抗値Rは制御可能とな
り、半導体繊維1の熱特性に影響を与えないで高抵抗率
の半導体繊維1を低抵抗で使用することができる。又、
低抵抗化のために半導体繊維1を並列に多数配列しなく
ても良く、その本数を少なくすることができる。
Next, the operation of the infrared detecting element having the above structure will be described. Since the pair of conductive portions 2a and 2b formed on the semiconductor fiber 1 are formed of a good conductor, the resistance value thereof is close to zero, and the resistance value R of the infrared detecting element depends on the distance d between the pair of conductive portions 2a and 2b. Decided, R = ρd /
s. However, ρ is the resistivity of the semiconductor fiber 1.
Therefore, even if the resistivity ρ of the semiconductor fiber 1 is increased in order to increase the sensitivity of the infrared detection element, the conductive portions 2a, 2
The resistance value R can be reduced by reducing the distance d of b. Therefore, the resistance value R can be controlled without changing the length 1 and the cross-sectional area s of the semiconductor fiber 1, and the semiconductor fiber 1 having a high resistivity can be made to have a low resistance without affecting the thermal characteristics of the semiconductor fiber 1. Can be used in. or,
It is not necessary to arrange a large number of semiconductor fibers 1 in parallel to reduce the resistance, and the number can be reduced.

【0016】図3、図4はこの実施例による赤外線検出
素子の具体的構成を示す斜視図及び断面図であり、半導
体繊維1は直径約50μm、常温抵抗率約28Ωcm、サ
ーミスタ定数約1200Kのピッチ系炭素繊維からな
り、基板7上に形成された支持電極4a,4b上に導電
性ペースト5a,5bを介して接着されている。8は赤
外線入射方向を示す。
3 and 4 are a perspective view and a sectional view showing a concrete structure of the infrared detecting element according to this embodiment. The semiconductor fiber 1 has a diameter of about 50 μm, a room temperature resistivity of about 28 Ωcm, and a thermistor constant of about 1200K. The support electrodes 4a and 4b, which are made of carbon-based carbon and are formed on the substrate 7, are bonded via conductive pastes 5a and 5b. Reference numeral 8 indicates an infrared incident direction.

【0017】基板7はアルミナ板であり、半導体繊維1
の長軸方向に幅5mmの開口部7aを有している。半導体
繊維1の有効繊維長lは支持電極4a,4b間の距離、
即ち開口部7aの幅5mmである。又、支持電極4a,4
bの表面、導電性ペースト5a,5bの表面、及び半導
体繊維1の非赤外線受光面側に任意の間隔dで互いに対
向するように金を蒸着し、電導部2a,2bを形成す
る。
The substrate 7 is an alumina plate, and the semiconductor fiber 1
Has an opening 7a with a width of 5 mm in the major axis direction. The effective fiber length 1 of the semiconductor fiber 1 is the distance between the supporting electrodes 4a and 4b,
That is, the width of the opening 7a is 5 mm. Also, the supporting electrodes 4a, 4
Gold is vapor-deposited on the surface of b, the surfaces of the conductive pastes 5a and 5b, and the non-infrared light receiving surface side of the semiconductor fiber 1 so as to face each other at an arbitrary interval d to form the conductive portions 2a and 2b.

【0018】ここで、電導部2a,2bを半導体繊維1
の非赤外線受光面側に形成したのは、電導部2a,2b
に用いた金は赤外線を良く反射する材料であり、半導体
繊維1が赤外線を良く吸収して検出感度を高めるためで
ある。
Here, the conductive portions 2a and 2b are connected to the semiconductor fiber 1.
Formed on the non-infrared receiving surface side of the conductive parts 2a, 2b
The gold used for the above is a material that reflects infrared rays well, and this is because the semiconductor fiber 1 absorbs infrared rays well and enhances the detection sensitivity.

【0019】上記構造で電導部2a,2bの間隔を3m
m、及び1mmとした赤外線検出素子を製作し、その抵抗
値Rをテスタによって測定し、電導部2a,2bを形成
する前の素子(繊維長lは5mm)と比較した。その結
果、室温18℃において、電導部2a,2bを形成する
前では抵抗値が約740KΩ、電導部2a,2bを形成
後の間隔が3mmの場合は約430KΩ、間隔が1mmでは
約140KΩとなっており、電導部2a,2bを形成す
る前の抵抗値を1とすると、間隔が3mm、1mmの場合に
は抵抗値がそれぞれ約3/5、1/5となった。
With the above structure, the distance between the conductive portions 2a and 2b is 3 m.
An infrared detection element having m and 1 mm was manufactured, and its resistance value R was measured by a tester, and compared with an element (fiber length 1 is 5 mm) before forming the conductive portions 2a and 2b. As a result, at room temperature of 18 ° C., the resistance value is about 740 KΩ before forming the conductive portions 2a and 2b, about 430 KΩ when the distance after forming the conductive portions 2a and 2b is 3 mm, and about 140 KΩ when the distance is 1 mm. Assuming that the resistance value before forming the conductive portions 2a and 2b is 1, the resistance values are about 3/5 and 1/5 when the distance is 3 mm and 1 mm, respectively.

【0020】次に、電導部2a,2bの間隔が1mm、3
mmの赤外線検出素子を用いて図5に示す赤外線検出回路
であるホイートストンブリッジ回路を構成し、赤外線検
出特性を測定した。図において、Rsは赤外線検出素
子、R1 ,R2 、Rrは固定抵抗、Ebは直流電源、E
out は出力端子を示す。固定抵抗R1 ,R2 、Rrは赤
外線検出素子Rsの抵抗値と同じ値とし、電源Ebの電
圧を8Vとした。又、赤外線源には327℃の黒体炉を
用い、この黒体炉から11cm離して赤外線検出素子Rs
を設置し、室温18℃で赤外線を照射して出力端子Eou
t の電圧変化を測定した。その結果、電導部2a,2b
の間隔が1mmと3mmのいずれの場合も出力電圧は約98
0mV(40dB増幅後)、応答速度は約98msとなった。
これらの結果より、電導部2a,2bの間隔を変化させ
ることにより赤外線検出素子の抵抗値Rを制御すること
が可能であり、しかも感度、応答速度に全く影響しない
ことが明らかとなった。
Next, the distance between the conductive portions 2a and 2b is 1 mm, 3
The Wheatstone bridge circuit, which is the infrared detection circuit shown in FIG. 5, was constructed using the mm infrared detection element, and the infrared detection characteristics were measured. In the figure, Rs is an infrared detection element, R 1 , R 2 and Rr are fixed resistors, Eb is a direct current power source, and E
out indicates an output terminal. The fixed resistors R 1 , R 2 and Rr have the same value as the resistance value of the infrared detection element Rs, and the voltage of the power source Eb is 8V. A black body furnace of 327 ° C. is used as an infrared source, and the infrared detecting element Rs is placed 11 cm away from the black body furnace.
Is installed and the infrared ray is emitted at room temperature of 18 ℃ to output terminal Eou.
The voltage change of t was measured. As a result, the conductive parts 2a, 2b
The output voltage is about 98 when the interval is 1mm or 3mm.
At 0 mV (after 40 dB amplification), the response speed was about 98 ms.
From these results, it has been clarified that the resistance value R of the infrared detecting element can be controlled by changing the distance between the conductive portions 2a and 2b, and the sensitivity and the response speed are not affected at all.

【0021】[0021]

【発明の効果】以上のようにこの発明によれば、半導体
繊維上に一対の電導部を間隔をおいて配置してハイブリ
ッド繊維を構成しており、この間隔を変化させることに
より赤外線検出素子の抵抗値を制御することができる。
このため、高抵抗率の半導体繊維をその熱的特性に影響
を与えることなく低抵抗で使用することができ、高感度
で応答性がよい赤外線検出素子を得ることができる。
又、半導体繊維の本数を多くする必要がないので、小型
で安価な赤外線検出素子を得ることができる。
As described above, according to the present invention, a pair of conductive portions are arranged on a semiconductor fiber at intervals to form a hybrid fiber. By changing this interval, the infrared detecting element The resistance value can be controlled.
Therefore, a semiconductor fiber having a high resistivity can be used with a low resistance without affecting its thermal characteristics, and an infrared detection element having high sensitivity and good responsiveness can be obtained.
Further, since it is not necessary to increase the number of semiconductor fibers, a small and inexpensive infrared detecting element can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の赤外線検出素子の基本構成図であ
る。
FIG. 1 is a basic configuration diagram of an infrared detection element of the present invention.

【図2】従来の赤外線検出素子の基本構成図である。FIG. 2 is a basic configuration diagram of a conventional infrared detection element.

【図3】この発明による赤外線検出素子の具体的構成を
示す斜視図である。
FIG. 3 is a perspective view showing a specific configuration of an infrared detection element according to the present invention.

【図4】この発明による赤外線検出素子の断面図であ
る。
FIG. 4 is a sectional view of an infrared detecting element according to the present invention.

【図5】この発明による赤外線検出回路の回路図であ
る。
FIG. 5 is a circuit diagram of an infrared detection circuit according to the present invention.

【符号の説明】[Explanation of symbols]

1 半導体繊維 2a,2b 電導部 3 ハイブリッド繊維 4a,4b 支持電極 5a,5b 導電性ペースト Rs 赤外線検出素子 DESCRIPTION OF SYMBOLS 1 Semiconductor fiber 2a, 2b Electric conduction part 3 Hybrid fiber 4a, 4b Supporting electrode 5a, 5b Conductive paste Rs Infrared detecting element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武藤 範雄 束京都港区元赤坂一丁目6番6号 綜合警 備保障株式会社内 (72)発明者 柳田 博明 東京都調布市佐須町1−3−19 (72)発明者 宮山 勝 神奈川県川崎市多摩区中野島1048−1−3 −609 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norio Muto Bundle 1-6-6 Moto-Akasaka, Minato-ku, Kyoto Within Sogo Security Guarantee Co., Ltd. 19 (72) Inventor Masaru Miyayama 1048-1-3-609, Nakanoshima, Tama-ku, Kawasaki City, Kanagawa Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 温度により電気抵抗が変化する半導体繊
維とこの半導体繊維上に間隔をおいて互に対向するよう
形成された一対の導電体からなる電導部とで構成された
少なくとも1本以上のハイブリッド繊維と、このハイブ
リッド繊維の両端に半導体繊維及び電導部の双方に電気
及び熱が良く伝わるように接続されるとともに、ハイブ
リッド繊維が空中に浮くように支持する支持電極を備え
たことを特徴とする赤外線検出素子。
1. At least one or more composed of a semiconductor fiber whose electric resistance changes with temperature and a conductive portion formed of a pair of conductors formed on the semiconductor fiber so as to face each other with a space therebetween. The hybrid fiber and both ends of the hybrid fiber are connected so that electricity and heat can be well transmitted to both the semiconductor fiber and the conductive portion, and the hybrid fiber is provided with support electrodes for supporting the hybrid fiber so as to float in the air. Infrared detection element.
JP21664892A 1992-07-23 1992-07-23 Infrared detector Expired - Fee Related JP3182703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21664892A JP3182703B2 (en) 1992-07-23 1992-07-23 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21664892A JP3182703B2 (en) 1992-07-23 1992-07-23 Infrared detector

Publications (2)

Publication Number Publication Date
JPH0643020A true JPH0643020A (en) 1994-02-18
JP3182703B2 JP3182703B2 (en) 2001-07-03

Family

ID=16691741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21664892A Expired - Fee Related JP3182703B2 (en) 1992-07-23 1992-07-23 Infrared detector

Country Status (1)

Country Link
JP (1) JP3182703B2 (en)

Also Published As

Publication number Publication date
JP3182703B2 (en) 2001-07-03

Similar Documents

Publication Publication Date Title
CA2557903C (en) Method for production of a device for thermal detection of radiation comprising an active microbolometer and a passive microbolometer
JPH0298965A (en) Multielement infrared ray detection sensor
JPS637611B2 (en)
JP3182703B2 (en) Infrared detector
JPH05264343A (en) Far-infrared spectral light detector
JP3866040B2 (en) Structurally stable infrared bolometer
JPS61259580A (en) Thermopile
EP1161660B1 (en) Bolometer with a zinc oxide bolometer element
US3054977A (en) Flake thermistor
KR0144651B1 (en) Infrared sensor
JPH0625695B2 (en) Infrared detector
JPH049561Y2 (en)
JPH06251908A (en) Manufacture of semiconductor resistance element and infrared ray detector using the same
JPH0733979B2 (en) Temperature sensor
JP3390305B2 (en) Temperature sensing element
Hashimoto et al. Development of one-dimensional pyroelectric infrared array detector with high sensitivity
JPH0552659A (en) Infrared radiation sensor
JPH07234160A (en) Infrared detector
JPS63273024A (en) Non-contact type semiconductor temperature sensor
JPH079411B2 (en) Atmosphere detector
JPH02206733A (en) Infrared ray sensor
JPH04337425A (en) Infrared radiation detection element
JP3035362B2 (en) Gas sensor
SU853422A1 (en) Thermal radiation receiver
CN114295231A (en) Temperature sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees