JPH0642982B2 - Metal flow control method in continuous casting mold - Google Patents

Metal flow control method in continuous casting mold

Info

Publication number
JPH0642982B2
JPH0642982B2 JP62241439A JP24143987A JPH0642982B2 JP H0642982 B2 JPH0642982 B2 JP H0642982B2 JP 62241439 A JP62241439 A JP 62241439A JP 24143987 A JP24143987 A JP 24143987A JP H0642982 B2 JPH0642982 B2 JP H0642982B2
Authority
JP
Japan
Prior art keywords
mold
magnetic field
continuous casting
molten steel
metal flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62241439A
Other languages
Japanese (ja)
Other versions
JPS6483356A (en
Inventor
義行 金尾
章生 長棟
範夫 青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP62241439A priority Critical patent/JPH0642982B2/en
Publication of JPS6483356A publication Critical patent/JPS6483356A/en
Publication of JPH0642982B2 publication Critical patent/JPH0642982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、連続鋳造の導電静鋳型内に浸漬ノズルから
流出する溶融金属の流動を電磁力により制御・抑制する
連続鋳造鋳型内金属流動制御方法に関する。
Description: TECHNICAL FIELD The present invention relates to metal flow control in a continuous casting mold that controls / suppresses the flow of molten metal flowing out from a dipping nozzle in a continuous casting conductive static mold by electromagnetic force. Regarding the method.

[従来の技術] 連続鋳造には銅製の鋳型内に浸漬ノズルから溶鋼を供給
する工程があるが、この工程においては溶鋼の保温と潤
滑を目的としてパウダを浮遊させるようにしている。し
かしこのパウダが溶鋼の流動によって巻込まれ凝固した
鋳片に不純物として混入する問題がある。特に近年によ
うに鋳込みの高速化が計られると溶鋼流動が激しくな
り、湯面波動が大きくなってパウダの混入が顕著となる
虞れがあった。
[Prior Art] In continuous casting, there is a step of supplying molten steel from a dipping nozzle into a copper mold. In this step, the powder is floated for the purpose of keeping the molten steel warm and lubricating it. However, there is a problem that this powder is mixed as an impurity into the solidified slab that is entrained by the flow of molten steel. In particular, when the speed of casting is increased as in recent years, the molten steel flow becomes violent, the molten metal surface wave becomes large, and the mixture of powder may become remarkable.

このため従来から外部磁場による電磁力を利用して鋳型
内の溶鋼流動に制動をかける試みが行われている。これ
には静磁界を利用する方法と移動磁界を利用する方法が
ある。
For this reason, it has been conventionally attempted to dampen the molten steel flow in the mold by utilizing the electromagnetic force of the external magnetic field. There are a static magnetic field method and a moving magnetic field method.

例えば静磁界を利用するものとしては従来、特開昭59
−101261号公報や実開昭59−85653号公報
に見られるように、鋳型の外部から電磁石又は永久磁石
により鋳型の側面を水平に貫通し、かつ溶鋼流動を直交
する静磁場を印加するものが知られている。すなわち第
4図(a)、(b)、(c)に示すように、横断面が長
方形状の鋳型1の長辺側側壁1a,1aの外部に、磁極
面を浸漬ノズル2の出口付近に向けて一対の電磁石3,
4を互いに逆極面を向けて対向配置させている。なお、
鋳型1内の溶鋼にはパウダ5を浮遊させている。
For example, Japanese Patent Application Laid-Open No. Sho 59-59 has been known as a device utilizing a static magnetic field.
No. 101261 and Japanese Utility Model Laid-Open No. 59-85653, a static magnetic field is applied from the outside of the mold by an electromagnet or a permanent magnet that horizontally penetrates the side surface of the mold and orthogonally crosses the molten steel flow. Are known. That is, as shown in FIGS. 4 (a), (b), and (c), the magnetic pole surface is provided near the outlet of the immersion nozzle 2 outside the long side walls 1 a, 1 a of the mold 1 having a rectangular cross section. Towards the pair of electromagnets 3,
4 are arranged so as to face each other with their opposite polar surfaces facing each other. In addition,
The powder 5 is suspended in the molten steel in the mold 1.

このものにおいては、浸漬ノズル2から流出した溶鋼は
図中矢印イで示すように流動するのに対して電磁石3,
4によって図中矢印ハで示す方向の静磁界が発生し、か
つ図中矢印ロで示す方向の誘導電流が発生する。これに
より溶鋼流動とは逆方向の力が発生して溶鋼流動に制動
をかけ、湯面波動が大きくなるのを抑制してパウダ5の
巻込みを極力防止している。
In this case, the molten steel flowing out from the immersion nozzle 2 flows as shown by the arrow a in the figure, while the electromagnets 3,
4, a static magnetic field is generated in the direction indicated by arrow C in the figure, and an induced current is generated in the direction indicated by arrow B in the figure. As a result, a force in the direction opposite to the molten steel flow is generated to dampen the molten steel flow, suppress the increase in molten metal surface wave, and prevent the powder 5 from being caught up as much as possible.

また移動磁界を利用するものとしては従来、特開昭57
−11756号公報に見られるように、電磁コイルを鋳
型の長辺側側壁に沿って設置し、いわゆる電磁撹拌の原
理と同様にして、鋳型内の溶鋼中に移動磁界を励起し、
この移動磁界の移動方向を溶鋼の流動方向と逆になるよ
うにして溶鋼流動に制動をかけるものが知られている。
Further, as a device utilizing a moving magnetic field, there is a conventional method disclosed in Japanese Patent Laid-Open No. 57-57.
As seen in No. 11756, an electromagnetic coil is installed along the long side wall of the mold, and a moving magnetic field is excited in the molten steel in the mold in the same manner as the principle of so-called electromagnetic stirring.
It is known that the moving direction of the moving magnetic field is set to be opposite to the flowing direction of the molten steel to brake the molten steel flow.

また移動磁界を利用する別の例としては特開昭60−2
34754号公報に見られるように、複数の電磁コイル
を鋳型内の溶鋼の湯面上方に配置し、溶鋼中に移動磁界
を励起して溶鋼流動に制動をかけるものが知られてい
る。
Another example of utilizing a moving magnetic field is JP-A-60-2.
As disclosed in Japanese Patent No. 34754, it is known that a plurality of electromagnetic coils are arranged above the molten metal level in a mold and a moving magnetic field is excited in the molten steel to brake the molten steel flow.

[発明が解決しようとする問題点] しかし上述した従来の静磁界を利用する方法では、静磁
界が鋳型側壁を水平に貫通す方向に発生するため、誘起
される誘導電流は矢印ロで示すように溶鋼中で閉じる電
流となり、このため溶鋼の比較的大きな電気抵抗に大き
く左右され、誘導電流が効率良く発生しないことにな
る。なお、溶鋼の電気抵抗は約150×10−8Ωmで
あり、銅製の鋳型の電気抵抗2.5×10−8Ωmに比
べて2桁程度大きい。
[Problems to be Solved by the Invention] However, in the above-described conventional method using a static magnetic field, the static magnetic field is generated in a direction that horizontally penetrates the side wall of the mold. The current is a current that closes in the molten steel, so that it is greatly affected by the relatively large electric resistance of the molten steel, and the induced current is not efficiently generated. The electric resistance of the molten steel is about 150 × 10 −8 Ωm, which is about two orders of magnitude higher than the electric resistance of the copper mold of 2.5 × 10 −8 Ωm.

このため溶鋼流動に対する充分な制動力が得られず、パ
ウダ5の溶鋼中への混入を充分に防止できない問題があ
った。
Therefore, a sufficient braking force against the molten steel flow cannot be obtained, and there is a problem that the powder 5 cannot be sufficiently prevented from being mixed into the molten steel.

また移動磁界を利用する方法は、移動磁界を発生するた
めに交流電源装置や複数のコイルの結線等、装置が複雑
かつ大形化する欠点があった。またこの方法の前者のも
のは鋳型内に渦電流が発生して溶鋼中の磁界を弱めるた
め、大きな磁界が発生させる構成にしなければならず装
置がさらに大きくなる問題があり、また後者のものは湯
面近傍の溶鋼流動の制動には有効であるが鋳型内部の制
動は困難であり、かつ湯面からの副射熱に対して電磁コ
イルを保護するための冷却機構が必要となるなど各種の
問題があった。
In addition, the method using the moving magnetic field has a drawback that the apparatus is complicated and large in size, such as an AC power supply device and a connection of a plurality of coils, for generating the moving magnetic field. Also, the former method of this method has a problem that an eddy current is generated in the mold and weakens the magnetic field in the molten steel, so that a structure that generates a large magnetic field must be generated and the apparatus becomes larger. Although it is effective for damping molten steel flow near the molten metal surface, it is difficult to dampen the inside of the mold, and a cooling mechanism is required to protect the electromagnetic coil against secondary heat from the molten metal surface. There was a problem.

このように移動磁界を利用するものは静磁界を利用する
ものに比べて、装置が複雑化しかつ大形化するなど実用
化の上で解決すべき問題が多い。そこで本願発明は静磁
界を利用することを基本とし、しかも誘導電流を効率よ
く誘起できて大きな制動力が得られ、パウダの混入を最
大限防止できる連続鋳造鋳型内金属流動制御方法を提供
しようとするものである。
As described above, the one using the moving magnetic field has many problems to be solved in practical use, such as the device being complicated and large in size, as compared with the one using the static magnetic field. Therefore, the present invention is based on the use of a static magnetic field, and further aims to provide a metal flow control method in a continuous casting mold capable of efficiently inducing an induced current to obtain a large braking force and maximally preventing mixing of powder. To do.

[問題点を解決するための手段と作用] この発明は、連続鋳造の導電性鋳型内に浸漬ノズルから
流出する溶鋼金属の流動を電磁力により制御・抑制する
場合に、鋳型の長辺方向と引き抜き方向とで作る平面に
平行で溶融金属流動方向と垂直となる方向の静磁界を加
え、これにより溶融金属の流動に制動をかけようとする
ものである。
[Means and Actions for Solving Problems] The present invention relates to the long side direction of a mold when controlling the flow of molten steel metal flowing out of an immersion nozzle into a conductive mold of continuous casting by electromagnetic force. The static magnetic field is applied in a direction parallel to the plane formed by the drawing direction and perpendicular to the molten metal flow direction, whereby the flow of the molten metal is damped.

すなわち、第1図に示すように、横断面が長方形状で例
えば銅製の鋳型11内に浸漬ノズル12から溶融金属、
例えば溶鋼を供給することによって鋳型11内では矢印
イで示す溶鋼流動が発生する。これに対して鋳型11の
長辺側側壁11a,11aの外部に例えばそれぞれ一対
の電磁石13,14、15,16を対向配置させて、側
壁11a,11aの外部から内部に向かって鋳片の引抜
き方向(図中白抜きの矢印で示す方向)の静磁界(図中
矢印ハで示す)を発生させる。
That is, as shown in FIG. 1, a molten metal is poured from a dipping nozzle 12 into a mold 11 made of, for example, copper and having a rectangular cross section.
For example, by supplying molten steel, molten steel flow indicated by the arrow A is generated in the mold 11. On the other hand, for example, a pair of electromagnets 13, 14, 15 and 16 are arranged outside the long side walls 11a and 11a of the mold 11 so as to face each other, and the slab is pulled out from the outside of the side walls 11a and 11a toward the inside. A static magnetic field (indicated by an arrow C in the figure) is generated in a direction (indicated by an outline arrow in the figure).

これにより鋳型11の長辺側側壁11a,11a内を通
り、かつ溶鋼内を通って図中矢印ロで示す誘導電流が流
れることになる。すなわち鋳型11の側壁を通る閉回路
が構成されることになる。そして鋳型11を構成する銅
の電気抵抗率は2.5×10−8Ωmと溶鋼の電気抵抗
率150×10−8Ωmに比べて2桁も小さいのでこの
閉回路の電気抵抗は従来の静磁界を鋳型側壁を水平に貫
通する方向に発生させ溶鋼中で閉じる誘導電流を誘起さ
せるものに比べてかなり小さくできる。従って誘導電流
が効率良く誘起され大きな制動力が発生することにな
る。従って湯面変動が確実に防止されるようになりパウ
ダ17の溶鋼中への混入を最大限防止できることにな
る。
As a result, the induced current shown by the arrow B in the figure flows through the long side walls 11a, 11a of the mold 11 and through the molten steel. That is, a closed circuit passing through the side wall of the mold 11 is formed. And since the electric resistivity of the copper constituting the mold 11 is 2 orders of magnitude smaller than that of 2.5 × 10 -8 Ωm and the molten steel in electrical resistivity 150 × 10 -8 Ωm electrical resistance of the closed circuit is conventional static The magnetic field can be made considerably smaller than that generated in a direction that penetrates the mold side wall horizontally and induces an induction current that closes in molten steel. Therefore, the induced current is efficiently induced and a large braking force is generated. Therefore, fluctuations in the molten metal surface are reliably prevented, and the powder 17 can be prevented from being mixed into the molten steel to the maximum extent.

また、鋳型11の短辺側側壁近傍での湯面の変動の原因
は、溶鋼内部の上方向流動(図中矢印イで示す)による
ものである。このことから第2図に示すように鋳型11
の短辺側側壁11bの外部に例えば電磁石18を配置し
てその側壁の外部から内部に向かって鋳片の引抜き方向
の静磁界(図中矢印ハで示す)を発生させるようにして
も図中矢印ロで示すように鋳型11の短辺側側壁内を通
る誘導電流を発生させることができる。従ってこのよう
にしても誘導電流を効率よく発生させることができて大
きな制動力を得ることができ、パウダ17の溶鋼中への
混入を最大限防止できることになる。
Further, the cause of the fluctuation of the molten metal surface in the vicinity of the short side wall of the mold 11 is due to the upward flow inside the molten steel (indicated by the arrow A in the figure). From this, as shown in FIG.
In the figure, for example, an electromagnet 18 is arranged outside the short side wall 11b to generate a static magnetic field (indicated by arrow C in the figure) in the drawing direction of the slab from the outside to the inside of the side wall. As shown by the arrow B, it is possible to generate an induced current passing through the short side wall of the mold 11. Therefore, even in this case, the induced current can be efficiently generated, a large braking force can be obtained, and the mixture of the powder 17 into the molten steel can be prevented as much as possible.

[実施例] 以下、この発明の実施例を図面を参照して説明する。な
お、この実施例はこの発明をスラブ連続鋳造機の鋳込み
に適用したものについて述べる。
Embodiments Embodiments of the present invention will be described below with reference to the drawings. In addition, this Example describes what applied this invention to casting of a slab continuous casting machine.

これは第3図に示すように、横断面が長方形状で銅製の
鋳型21内に浸漬ノズル22から溶鋼を供給し、その鋳
型21の長辺側側壁21a,21aの外部にそれぞれ一
対の電磁石23,24、25,26を対向配置させて、
側壁21a,21aの外部から内部に向かって鋳片の引
抜き方向(図中白抜きの矢印で示す方向)の静磁界を発
生させるようにしている。
As shown in FIG. 3, molten steel is supplied from a dipping nozzle 22 into a copper mold 21 having a rectangular cross section, and a pair of electromagnets 23 are provided outside the long side walls 21a and 21a of the mold 21, respectively. , 24, 25, 26 are arranged to face each other,
A static magnetic field is generated from the outside of the side walls 21a, 21a toward the inside in the drawing direction of the slab (the direction indicated by the white arrow in the drawing).

また鋳型21の短辺側側壁21b,21bの外部にそれ
ぞれ電磁石28,29を対向配置させて、側壁21b,
21bの外部から内部に向かって鋳片の引抜き方向の静
磁界を発生させるようにしている。なお、図中27は溶
鋼に浮遊されているパウダである。
Further, the electromagnets 28 and 29 are arranged to face each other outside the short side walls 21b and 21b of the mold 21, respectively.
A static magnetic field is generated in the pull-out direction of the slab from the outside to the inside of 21b. In the figure, 27 is a powder suspended in molten steel.

また鋳型21の短辺側側壁21bは可動構造となってい
て長辺側側壁21aとは分離している。このため短辺側
側壁21bと長辺側側壁21aとの接触面で誘導電流に
よる電食が生じる虞れがある。これを防止するために短
辺側側壁21bと長辺側側壁21aとを電線30で電気
的に接続して誘導電流路を確保している。
The short side wall 21b of the mold 21 has a movable structure and is separated from the long side wall 21a. Therefore, electrolytic corrosion due to an induced current may occur at the contact surface between the short side wall 21b and the long side wall 21a. In order to prevent this, the short side wall 21b and the long side wall 21a are electrically connected by an electric wire 30 to secure an induced current path.

このような構成にて例えば厚さ235mm、幅1800mm
の断面を有するスラブを鋳込み速度0.95m/minに
て鋳込み、電磁石23〜26にて発生する磁界を最大2
500ガウス、電磁石28,29にて発生する磁界を最
大1800ガウスに設定し、電磁石23〜26又は電磁
石28,29のいずれか一方を作動させたところ、大き
な制動がかかり湯面変動が抑制され溶鋼内部へのパウダ
27の混入量を従来の混入量に比べて半減させることが
できた。
With such a structure, for example, the thickness is 235 mm and the width is 1800 mm.
A slab having a cross section of 5 is cast at a casting speed of 0.95 m / min, and the magnetic field generated by the electromagnets 23 to 26 is 2 at maximum.
When the magnetic field generated by the electromagnets 28 and 29 is set to 500 gauss and the maximum is set to 1800 gauss, and either one of the electromagnets 23 to 26 or the electromagnets 28 and 29 is operated, large braking is applied and fluctuations in the molten metal surface are suppressed, It was possible to reduce the amount of the powder 27 to be mixed with the conventional powder by half as compared with the conventional amount.

また電磁石23〜26及び電磁石28,29を同時に作
動させたところさらに大きな制動がかかって湯面変動が
さらに抑制され溶鋼内へのパウダ27の混入量をさらに
減少させることができた。
Further, when the electromagnets 23 to 26 and the electromagnets 28 and 29 were operated at the same time, even greater braking was applied, the fluctuation of the molten metal level was further suppressed, and the amount of the powder 27 mixed in the molten steel could be further reduced.

また、実設備においては設備化を容易にするために、電
磁コイル一対のみを浸漬ノズル部に磁界が印加されるよ
うに配置することも考えられる。この場合の作用は第1
図(c)における13と14、15と16が近接したも
のとして理解できる。
Further, in an actual facility, it is possible to arrange only a pair of electromagnetic coils so that a magnetic field is applied to the immersion nozzle portion in order to facilitate the facility. The action in this case is the first
It can be understood that 13 and 14, and 15 and 16 in FIG.

[発明の効果] 以上詳述したようにこの発明によれば、鋳型外部から静
磁界を鋳片の引抜き方向に発生させることにより誘導電
流を効率よく誘起でき、これにより溶融金属流動に対す
る大きな制動力を得ることができ、パウダの混入を最大
限防止できる連続鋳造鋳型内金属流動制御方法を提供で
きるものである。
[Effects of the Invention] As described in detail above, according to the present invention, an induced current can be efficiently induced by generating a static magnetic field from the outside of the mold in the drawing direction of the slab, which results in a large braking force against the molten metal flow. It is possible to provide a method for controlling the metal flow in a continuous casting mold, which can prevent the mixture of powder to the maximum extent.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図はこの発明の基本原理を説明するため
の図、第3図はこの発明の実施例を示す概略構成図、第
4図は従来例を示す概略構成図である。 11,21……鋳型、12,22……浸漬ノズル、13
〜16,18,23〜26,28,29……電磁石、1
7,27……パウダ。
1 and 2 are diagrams for explaining the basic principle of the present invention, FIG. 3 is a schematic configuration diagram showing an embodiment of the present invention, and FIG. 4 is a schematic configuration diagram showing a conventional example. 11, 21 ... Mold, 12, 22 ... Immersion nozzle, 13
~ 16,18,23 ~ 26,28,29 ... Electromagnet, 1
7,27 ... Powder.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】連続鋳造の導電性鋳型内に浸漬ノズルから
流出する溶融金属の流動を電磁力により制御・抑制する
方法において、前記鋳型の長辺方向と引き抜き方向とで
作る平面に平行で溶融金属流動方向と垂直となる方向の
静磁界を加えることを特徴とする連続鋳造鋳型内金属流
動制御方法。
1. A method for controlling / suppressing the flow of molten metal flowing out of a dipping nozzle into a continuous casting conductive mold by an electromagnetic force, wherein the melting is performed in parallel with a plane formed by the long side direction and the drawing direction of the mold. A method for controlling metal flow in a continuous casting mold, which comprises applying a static magnetic field in a direction perpendicular to the metal flow direction.
【請求項2】静磁界を加える方法が、浸漬ノズルの近傍
にコの字型の電磁コイルふたつを一対として、鋳型を挟
むように、かつ同種磁極が向かいあうように、少なくと
も一対設置する方法である特許請求の範囲第1項記載の
連続鋳造鋳型内金属流動制御方法。
2. A method for applying a static magnetic field is a method in which at least one pair of U-shaped electromagnetic coils are provided in the vicinity of an immersion nozzle, and at least one pair is installed so that the mold is sandwiched and the same kind of magnetic poles face each other. The method for controlling metal flow in a continuous casting mold according to claim 1.
【請求項3】静磁界を加える方法が、鋳型の短辺の外側
に電磁コイルを配置する方法である特許請求の範囲第1
項記載の連続鋳造鋳型内金属流動制御方法。
3. The method of applying a static magnetic field is a method of arranging an electromagnetic coil outside a short side of a mold.
Item 6. A method for controlling metal flow in a continuous casting mold according to item.
【請求項4】静磁界を加える方法が、浸漬ノズルの近傍
にコの字型の電磁コイルふたつを一対として、鋳型を挟
むように、かつ同種磁極が向かいあうように、少なくと
も一対設置し、かつ、鋳型の短辺の外側に電磁コイルを
配置する方法である特許請求の範囲第1項記載の連続鋳
造鋳型内金属流動制御方法。
4. A method for applying a static magnetic field is such that at least a pair of U-shaped electromagnetic coils are provided in the vicinity of an immersion nozzle so that the mold is sandwiched and the same kind of magnetic poles face each other, and The method for controlling metal flow in a continuous casting mold according to claim 1, which is a method of disposing an electromagnetic coil outside the short side of the mold.
JP62241439A 1987-09-25 1987-09-25 Metal flow control method in continuous casting mold Expired - Fee Related JPH0642982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62241439A JPH0642982B2 (en) 1987-09-25 1987-09-25 Metal flow control method in continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62241439A JPH0642982B2 (en) 1987-09-25 1987-09-25 Metal flow control method in continuous casting mold

Publications (2)

Publication Number Publication Date
JPS6483356A JPS6483356A (en) 1989-03-29
JPH0642982B2 true JPH0642982B2 (en) 1994-06-08

Family

ID=17074324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62241439A Expired - Fee Related JPH0642982B2 (en) 1987-09-25 1987-09-25 Metal flow control method in continuous casting mold

Country Status (1)

Country Link
JP (1) JPH0642982B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303663A (en) * 1989-05-16 1990-12-17 Sumitomo Metal Ind Ltd Method for controlling molten steel surface level in mold
JP2898355B2 (en) * 1989-06-09 1999-05-31 新日本製鐵株式会社 Flow control method for molten steel in mold
JP5079681B2 (en) * 2008-12-25 2012-11-21 株式会社神戸製鋼所 Continuous casting equipment for slab in which static magnetic field acts on upward flow of molten steel in mold

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217493A (en) * 1982-06-11 1983-12-17 Nippon Telegr & Teleph Corp <Ntt> Method for pulling up single crystal
JPS5976647A (en) * 1982-10-22 1984-05-01 Kawasaki Steel Corp Method and device for stirring molten metal for casting in continuous casting
JPS61199557A (en) * 1985-02-28 1986-09-04 Nippon Kokan Kk <Nkk> Device for controlling flow rate of molten steel in mold for continuous casting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217493A (en) * 1982-06-11 1983-12-17 Nippon Telegr & Teleph Corp <Ntt> Method for pulling up single crystal
JPS5976647A (en) * 1982-10-22 1984-05-01 Kawasaki Steel Corp Method and device for stirring molten metal for casting in continuous casting
JPS61199557A (en) * 1985-02-28 1986-09-04 Nippon Kokan Kk <Nkk> Device for controlling flow rate of molten steel in mold for continuous casting

Also Published As

Publication number Publication date
JPS6483356A (en) 1989-03-29

Similar Documents

Publication Publication Date Title
JP3725028B2 (en) Electromagnetic braking device for molten metal in continuous casting molds.
US3701357A (en) Electromagnetic valve means for tapping molten metal
US6159293A (en) Magnetic containment of hot dip coating bath
JPH10305353A (en) Continuous molding of steel
JPH06504726A (en) In-mold casting method and equipment
RU2091192C1 (en) Method and apparatus for preventing molten metal from penetration through vertical gap between two horizontal members
JPH0642982B2 (en) Metal flow control method in continuous casting mold
US5033534A (en) Method for continuous casting of steel
JP3236422B2 (en) Continuous casting method of steel using magnetic field
JP4418931B2 (en) Magnetic containment system for hot dipping bath
US4741383A (en) Horizontal electromagnetic casting of thin metal sheets
JP2005238276A (en) Electromagnetic-stirring casting apparatus
EP0916434A1 (en) Electromagnetic meniscus control in continuous casting
JP2773154B2 (en) Steel continuous casting method
US4435820A (en) Channel induction furnaces
WO1997041985A1 (en) Electromagnetic valve
EP0141180A1 (en) Casting apparatus
JP3793384B2 (en) Molten metal flow control device
JPH06304719A (en) Method for braking molten metal in mold for continuous casting and electromagnetic device for brake
US5513692A (en) Electromagnetic confinement of molten metal with conduction current assistance
JP3896659B2 (en) Method and apparatus for continuously casting molten metal
JPH0957401A (en) Electromagnetic brake device for continuous casting mold
JPH09504999A (en) Method and apparatus for damping melt motion during casting in a mold
JPH0275456A (en) Method for continuously casting steel
JP2813151B2 (en) Apparatus and method for electromagnetically confining molten metal with the aid of conduction current

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees