JPH0642939B2 - Parallel flow type gas-liquid contactor and gas-liquid reactor - Google Patents

Parallel flow type gas-liquid contactor and gas-liquid reactor

Info

Publication number
JPH0642939B2
JPH0642939B2 JP29310890A JP29310890A JPH0642939B2 JP H0642939 B2 JPH0642939 B2 JP H0642939B2 JP 29310890 A JP29310890 A JP 29310890A JP 29310890 A JP29310890 A JP 29310890A JP H0642939 B2 JPH0642939 B2 JP H0642939B2
Authority
JP
Japan
Prior art keywords
gas
liquid
perforated plate
pores
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29310890A
Other languages
Japanese (ja)
Other versions
JPH04166223A (en
Inventor
康夫 鈴木
勝洋 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP29310890A priority Critical patent/JPH0642939B2/en
Publication of JPH04166223A publication Critical patent/JPH04166223A/en
Publication of JPH0642939B2 publication Critical patent/JPH0642939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/002Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out in foam, aerosol or bubbles

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、並流的に上昇する流れの中で液中にガスを均
一に分散させ接触させるための、並流型気液接触装置
と、その原理を応用した、触媒を充填した並流型気液反
応装置に関する。
The present invention relates to a co-current type gas-liquid contactor for uniformly dispersing and contacting a gas in a liquid in a cocurrently rising flow, and a co-current type catalyst-filled co-current type applying its principle. The present invention relates to a gas-liquid reactor.

【従来の技術】[Prior art]

たとえばジエン類、アセチレン等の不飽和炭化水素への
水素化処理、油脂、高分子物質中の不飽和分の水素化処
理においては、気液を並流で上昇させながら接触反応さ
せる並流型気液接触装置を使用して行なうことが多い。
この気液接触装置は、基本的には、下部に液の入口とガ
スの入口とをそなえた円筒状の反応容器と、ガス分散器
とから構成される。 ガスの分散は、ガスディスパージャー、通称を「スパー
ジャ」という手段を用いて行なうことが多い。スパージ
ャは、環状または放射状のガス管に多数の孔をあけたも
のを装置の下部に配置し、その孔から気体を分散供給す
るものである。気体の均一な分散をはかるには、通過す
る気体の速度を大きくして圧力損失を大にしなければな
らないから、スパージャの孔はごく小さいものになる。
そのため、ガス中に異物が混入すると、すぐに目詰まり
をおこしてしまう。孔を大きくすると、ガスの均一な分
散が困難になるだけでなく、液体がスパージャ内に流入
するという問題が生じる。それに、スパージャの細孔は
気液接触装置の横断面上に均一に配置されているわけで
はないから、ガスの分散の均一さにはおのずから限界が
ある。 スパージャ以外のガス分散器として種々の多孔板が考案
されているが、在来の多孔板では、どうしてもガスの偏
流が生じ、ガス分散の均一化は困難であった。 そして、スパージャを用いるにせよ多孔板によるにせ
よ、とくに気液反応のための触媒充填層をもつタイプの
並流型気液反応装置においては、上記したガスの不均一
分散により反応率が低く、その改善が求められていた。
For example, in the hydrogenation of unsaturated hydrocarbons such as dienes and acetylene, and the hydrogenation of unsaturated components in fats and oils and high molecular weight substances, a parallel flow type gas is used in which catalytic reaction is carried out while raising the gas and liquid in parallel flow. This is often done using a liquid contact device.
This gas-liquid contactor is basically composed of a cylindrical reaction container having a liquid inlet and a gas inlet at the bottom, and a gas disperser. Gas dispersion is often performed using a gas disperser, commonly known as a "sparger." The sparger is an annular or radial gas pipe having a large number of holes formed in the lower part of the apparatus, and the gas is distributed and supplied from the holes. The holes in the sparger are very small, because the velocity of the passing gas must be increased to increase the pressure loss in order to achieve uniform distribution of the gas.
Therefore, if foreign matter is mixed in the gas, it will cause clogging immediately. The larger holes not only make it difficult to uniformly disperse the gas, but also pose a problem of liquid flowing into the sparger. Moreover, since the pores of the sparger are not arranged uniformly on the cross section of the gas-liquid contactor, there is a natural limit to the uniformity of gas dispersion. Various perforated plates have been devised as gas dispersers other than spargers, but with conventional perforated plates, it was difficult to make the gas dispersion uniform due to uneven flow of gas. Whether using a sparger or a perforated plate, particularly in a co-current gas-liquid reaction apparatus of the type having a catalyst packed bed for gas-liquid reaction, the reaction rate is low due to the above-mentioned non-uniform dispersion of gas, The improvement was demanded.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

本発明の目的は、上記のような従来技術の欠点を改め、
液中へのガスの分散をいっそう均一にした並流型気液接
触装置を提供することにある。 本発明の別の目的は、反応率が向上した並流型気液反応
装置を提供することにある。
The object of the present invention is to remedy the above-mentioned drawbacks of the prior art,
It is an object of the present invention to provide a co-current type gas-liquid contactor in which gas is evenly dispersed in a liquid. Another object of the present invention is to provide a co-current gas-liquid reaction device having an improved reaction rate.

【課題を解決するための手段】[Means for Solving the Problems]

本発明の並流型気液接触装置の第一の態様は、第1図お
よび第2図に示すように、容器(1)の下部からガス
(8)と液(9)とを供給し、気液を並流で上昇させな
がら接触させる並流型気液接触装置において、容器内を
上下に区分する板に多数の細孔(5A)を均一に穿って
ガスが流出する多孔板(2A)とするとともに、この多
孔板に液だけを通過させるための液流路管(3A)を設
けたガス分散器を配置してなり、多孔板の細孔(5A)
の開口率を、第5図に示すように多孔板の下側にガスの
滞留層(7)が形成されるように選択したことを特徴と
する。 本発明の並流型気液反応装置の第一の態様は、上記した
第一の並流型気液接触装置において、容器(1)内のガ
ス分散器の上方に触媒充填層(10)を有し、この層に
おいて気液の触媒反応を行なうように構成したものであ
る。 多孔板(2A)には、不可欠ではないが、第1図に示す
ように、その縁から下方に延びる筒状のスカート(4
A)を設けるとよい。スカートを設けると、既存の気液
接触装置に上記したガス分散器を付加するだけで改造を
加えることなく本発明を実施できるから、これは推奨さ
れる態様である。 本発明の並流型気液接触装置の第二の態様は、第3図お
よび第4図に示したように、容器(1)の下部から液
(8)とガス(9)とを供給し、気液を並流で上昇させ
ながら接触させる並流型気液接触装置において、容器内
を上下に区分する板に多数の細孔(5B)を均一に穿っ
てガスが流出する多孔板(3A)とするとともに、この
多孔板に下方に延びる筒状のスカート(4B)を設けて
そのスカートの下部に等間隔で複数のスリット(3B)
をあけて液の流路を形成したガス分散器を配置してな
り、多孔板の細孔(2A)の開口率を、多孔板の下側に
ガスの滞留層(7)が形成されるように選択したことを
特徴とする。 本発明の並流型気液反応装置の第二の態様は、上記した
第二の並流型気液接触装置において、容器(1)内のガ
ス分散器の上方に接触充填層(10)を有し、この層に
おいて気液の接触反応を行なうように構成したものであ
る。 多孔板(2A,2B)に設ける細孔(5A,5B)の口
径および開口率、ならびに液だけを流通させる液流路管
(3A)またはスリット(3B)の流路断面積は、接触
させる液およびガスの種類とそれらの物理的化学的性質
に応じて、適宜にえらぶ。一般に好適な値を示せば、細
孔の直径は0.5〜5mmの範囲から、多孔板の液流路管
を除く面積に対する細孔の開口率は0.05〜5.0%
の範囲から、液流路管またはスリットの流路断面積は細
孔の開口面積の0.5〜2倍の範囲からえらぶのが適当
である。細孔の径は、小さすぎるとガスの通過が困難で
ガス滞留層の厚さが増してオーバーフローする危険があ
るし、大きすぎてはガス滞留層が形成できない。開口率
についても同様である。液流路断面積は、小さいとそこ
を通る液の流速が高くなって偏流の原因となり、液流速
を下げようとしてあまり大きくすると、とくに第一の態
様では細孔の分布が横断面上で不均一になる結果、やは
りガスの分散はよくない。 第一の態様で用いる液流路管の長さは、多孔板の下に形
成するガス滞留層の高さより長くなければならないのは
もちろんであるが、滞留層の1.3倍以上2倍程度まで
が適当である。第二の態様において用いるスリットの上
端の多孔板からの距離も、同様な観点から定めればよ
い。 装置への液およびガスの供給手段は任意であって、たと
えば、気液を混合流にしてひとつの配管から供給しても
よいし、ガスと液とをそれぞれ別の配管から供給しても
よい。ガスの供給は、従来の装置と同様なスパージャ
(6)を使用して行なってもよい。いずれの場合も、ガ
スが液流路管(3A)やスリット(3B)を通って直接
多孔(2A,2B)より上部に入らないように配慮する
必要がある。 本発明の並流型気液接触装置は、ガス吸収装置、通気攪
拌装置、曝気装置、浮遊選鉱装置、さらには微粒子状
(粒径数百μm)の触媒を流動床で使用する触媒反応装
置等に使用できる。 本発明の並流型気液接触装置は、粒状ないし塊状の触媒
を固定床で使用する水素化反応や水流脱硫反応などの触
媒反応装置に適用できる。
The first embodiment of the co-current type gas-liquid contactor of the present invention supplies a gas (8) and a liquid (9) from the lower part of a container (1), as shown in FIGS. 1 and 2. In a co-current type gas-liquid contactor for contacting gas-liquid while rising in co-current, a perforated plate (2A) through which a large number of pores (5A) are evenly formed in a plate that divides the container into upper and lower parts. In addition, a gas disperser provided with a liquid flow pipe (3A) for allowing only liquid to pass therethrough is arranged in the porous plate, and the pores (5A) of the porous plate are arranged.
The opening ratio is selected so that a gas retention layer (7) is formed on the lower side of the perforated plate as shown in FIG. A first aspect of the co-current gas-liquid reaction device of the present invention is the above first co-current gas-liquid contactor, wherein a catalyst packed bed (10) is provided above the gas disperser in the container (1). This layer is configured to carry out gas-liquid catalytic reaction. Although not essential for the perforated plate (2A), as shown in FIG. 1, a cylindrical skirt (4) extending downward from its edge is provided.
A) should be provided. This is a recommended aspect because the provision of the skirt allows the present invention to be carried out without modification by simply adding the gas disperser described above to the existing gas-liquid contactor. The second embodiment of the co-current type gas-liquid contact device of the present invention supplies the liquid (8) and the gas (9) from the lower part of the container (1) as shown in FIGS. 3 and 4. In a co-current type gas-liquid contactor in which gas and liquid are brought into contact with each other while rising in co-current, a perforated plate (3A) through which a large number of pores (5B) are evenly formed in a plate that divides the container into upper and lower parts. ) And a cylindrical skirt (4B) extending downwardly is provided on this perforated plate, and a plurality of slits (3B) are provided at equal intervals in the lower part of the skirt.
A gas disperser having a liquid flow path formed therein is arranged so that the aperture ratio of the pores (2A) of the perforated plate is such that a gas retention layer (7) is formed below the perforated plate. It is characterized by being selected in. A second aspect of the co-current gas-liquid reaction device of the present invention is the above-mentioned second co-current gas-liquid contactor, wherein a contact packing layer (10) is provided above the gas disperser in the container (1). It is configured to perform a gas-liquid contact reaction in this layer. The diameters and aperture ratios of the pores (5A, 5B) provided in the perforated plates (2A, 2B), and the flow passage cross-sectional area of the liquid flow passage pipe (3A) or slit (3B) through which only the liquid flows are the liquids to be contacted. And depending on the type of gas and their physical and chemical properties, select appropriately. Generally speaking, the diameter of the pores is in the range of 0.5 to 5 mm, and the aperture ratio of the pores to the area of the perforated plate excluding the liquid flow path tube is 0.05 to 5.0%.
From the above range, it is suitable to select the flow channel cross-sectional area of the liquid flow channel tube or slit from the range of 0.5 to 2 times the opening area of the pores. If the diameter of the pores is too small, it is difficult for the gas to pass therethrough and the thickness of the gas retention layer increases and there is a risk of overflow, and if it is too large the gas retention layer cannot be formed. The same applies to the aperture ratio. If the cross-sectional area of the liquid flow path is small, the flow velocity of the liquid passing therethrough becomes high, which causes uneven flow. As a result of the homogeneity, the gas distribution is still poor. The length of the liquid flow path pipe used in the first aspect must be longer than the height of the gas retention layer formed under the perforated plate, but is 1.3 times or more and about twice as long as the retention layer. Is suitable. The distance from the porous plate at the upper end of the slit used in the second aspect may be determined from the same viewpoint. The liquid and gas may be supplied to the device by any means, for example, gas and liquid may be mixed and supplied from one pipe, or gas and liquid may be supplied from different pipes. . The gas supply may be performed using a sparger (6) similar to the conventional device. In any case, it is necessary to consider that the gas does not directly enter the upper part of the perforations (2A, 2B) through the liquid flow pipe (3A) and the slit (3B). The co-current type gas-liquid contactor of the present invention includes a gas absorption device, an aeration and stirring device, an aeration device, a flotation apparatus, and a catalytic reaction device using a particulate catalyst (particle diameter of several hundreds of μm) in a fluidized bed. Can be used for INDUSTRIAL APPLICABILITY The parallel-flow gas-liquid contactor of the present invention can be applied to a catalytic reaction apparatus such as a hydrogenation reaction or a hydrodesulfurization reaction in which a granular or lumpy catalyst is used in a fixed bed.

【作 用】[Work]

本発明の並流型気液接触装置においては、ガスと液とを
同じ供給口から供給した場合でも別々に供給した場合で
も、第5図に示すように、ガスは白抜き矢印のように流
れて多孔板(2A)の下に滞留層(7)を形成し、多孔
板の細孔(5A)を通って容器上部に移り、一方、液は
矢印のように液流路管(3A)またはスリットを通っ
て、ガスとは別に容器上部に流入する。このように、ガ
スと液とをいったん別々に移動させ、ガスの流れに対し
て液の流れが影響を与えないようにするとともに、多孔
板の下にガスの滞留層を形成して各細孔におけるガス通
過の条件を同一にすることにより、多孔板の細孔を通る
ガスの流れが均一になる。そのため多孔板断面上で認め
得る程度の偏流は生じることなく、斜線矢印で示すよう
に均一な気液混合流となって容器中を上昇する。 ガス中に固形分が混入した場合も、それらは鉄サビなど
沈降性の高いものがほとんどであるから、ガスの滞留層
をこえて上昇し多孔板の細孔を閉塞する心配はない。 本発明の並流型気液反応装置は、上記の気液混合手段を
使用し、小さな気泡を液体中に均一に分散させた条件下
に触媒反応を行なうため、気液接触面積が大きくとれる
とともに触媒層を通る気液混合物の偏流が少なく、従っ
て反応効率が向上する。 この装置は、粘度0.05〜10000cps 、表面張力
1〜100dyn /cmの範囲の液体を対象にすることがで
きるから、実用上すべての液体を扱うことができる。具
体的には、LPG、ガソリン、灯油、軽油、重油などの
各種炭化水素、アルコール、脂肪酸など各種の有機化合
物、水および種々の物質の水溶液である。これらの混合
物およびエマルジョン、サスペンションもまた、この装
置で処理できる。
In the co-current type gas-liquid contactor of the present invention, whether the gas and the liquid are supplied from the same supply port or separately, as shown in FIG. To form a retention layer (7) under the perforated plate (2A) and move to the upper part of the container through the pores (5A) of the perforated plate, while the liquid flows in the liquid flow pipe (3A) or as indicated by the arrow. It flows through the slit into the upper part of the container separately from the gas. In this way, the gas and liquid are temporarily moved separately so that the liquid flow does not affect the gas flow, and a gas retention layer is formed under the perforated plate to form each pore. By making the gas passage conditions in the same, the gas flow through the pores of the perforated plate becomes uniform. Therefore, no appreciable drift occurs on the cross section of the perforated plate, and a uniform gas-liquid mixed flow rises in the container as indicated by the hatched arrow. Even when solids are mixed in the gas, most of them have a high sedimentation property such as iron rust, so there is no concern that they will rise above the gas retention layer and block the pores of the perforated plate. Since the co-current gas-liquid reaction apparatus of the present invention uses the above-mentioned gas-liquid mixing means and carries out the catalytic reaction under the condition that small bubbles are uniformly dispersed in the liquid, a large gas-liquid contact area can be obtained. There is less drift of the gas-liquid mixture through the catalyst layer and therefore the reaction efficiency is improved. Since this device can target liquids having a viscosity of 0.05 to 10,000 cps and a surface tension of 1 to 100 dyn / cm, practically all liquids can be handled. Specifically, they are various hydrocarbons such as LPG, gasoline, kerosene, light oil, and heavy oil, various organic compounds such as alcohols and fatty acids, water and aqueous solutions of various substances. These mixtures and emulsions and suspensions can also be processed with this device.

【比較例1および2】 在来のスパージャのガス分散効果をみるため、第6図お
よび第8図に示すように内径が1000mmの気泡塔の下
部に、直径250mmの小径リングスパージャまたは70
0mmの大径リングスパージャを設置した。スパージャの
ガス噴出孔は径2.5mm、孔数は小径リングが82個、
大径リングが100個である。 この気泡塔にスパージャ上の水深800mmまで水を入
れ、スパージャから、流量Q=20m/hr(ガス空
塔速度U=0.7cm/sec )の空気を吹き出し、スパ
ージャ上の高さ200mmの位置において、塔の直径方向
にわたるボイド率を測定した。「ボイド率」とは、塔内
のある位置における水と空気の混合相の単位空間を考え
たとき、その中で空気が占めている割合を意味する。そ
の値は、その位置にガス検出用電極を配置して一定時間
にわたり電極間の電気抵抗を測定し、ガス通過時と水通
過時とで抵抗値が異なることを利用して算出する。 得られた結果は、第6図の小径リングの場合には第7図
に、また第8図の大径リングの場合には第9図に、それ
ぞれ示すとおりであった。これらの図は、ガスがスパー
ジャの吹き出し位置において強く上昇することを示して
いる。
Comparative Examples 1 and 2 In order to examine the gas dispersion effect of a conventional sparger, as shown in FIGS. 6 and 8, a small-diameter ring sparger having a diameter of 250 mm or 70
A large diameter ring sparger of 0 mm was installed. The gas outlet of the sparger has a diameter of 2.5 mm, and the number of holes is 82 small diameter rings.
There are 100 large diameter rings. Water was introduced into this bubble column to a depth of 800 mm above the sparger, and air with a flow rate Q G = 20 m 3 / hr (gas superficial velocity U G = 0.7 cm / sec) was blown from the sparger to a height of 200 mm above the sparger. At the position of, the void fraction was measured over the diameter of the tower. "Void rate" means the ratio of air in a unit space of a mixed phase of water and air at a certain position in the tower. The value is calculated by arranging a gas detection electrode at that position, measuring the electrical resistance between the electrodes for a certain period of time, and utilizing the fact that the resistance value is different between gas passage and water passage. The results obtained were as shown in FIG. 7 for the small diameter ring in FIG. 6 and in FIG. 9 for the large diameter ring in FIG. These figures show that the gas rises strongly at the sparger blow position.

【比較例3】 次に、多孔板の効果をみるため、第8図の装置に多孔板
を加えて、第10図に示す構造の気液接触装置を製作し
た。多孔板は、直径960mmの円板に、径4.0mmの孔
を250個あけたものである。 Q=10m/hr(U=0.35m/sec) の速度で空気を供給し、多孔板上の高さ200mmの位置
において、やはり塔の直径方向におけるボイド率を測定
した。 第11図に示す結果を得た。これによれば、第9図ほど
顕著な環状の強い空気の吹き上げはないが、やはり環状
の偏流が起っていることがわかる。
Comparative Example 3 Next, in order to examine the effect of the perforated plate, a perforated plate was added to the device of FIG. 8 to fabricate a gas-liquid contact device having the structure shown in FIG. The perforated plate is a disc having a diameter of 960 mm and 250 holes having a diameter of 4.0 mm. Air was supplied at a rate of Q Q = 10 m 3 / hr (U G = 0.35 m / sec), and the void fraction in the diametrical direction of the column was measured at a position of 200 mm in height on the perforated plate. The results shown in FIG. 11 were obtained. According to this, although there is no noticeable annular strong air blow-up as in FIG. 9, it is understood that annular drift is still occurring.

【実施例1】 直径900mmの円板に直径150mmの孔を4個、中心か
ら対称の位置にあけ、それぞれに長さ17mmの管をとり
つけて液流路管とするとともに、円板の縁に高さ195
mmのスカートを設けた。ガスの流路として、この円板に
径2.0mmの細孔を769個、等間隔にあけた。液流路
の断面積比は11%、細孔の開口率は0.22%であ
る。 このガス分散器を内径1000mmの塔の下部にとりつ
け、多孔板上に水深800mmの水を満たし、下から空気
を供給した。ガス流量の増加に伴って、多孔板の下に形
成されるガス滞留層の高さが増大した。その状況は、第
12図に示すとおりである。ガス流量を6〜32m
m2・hrと変化させて行なった実験の範囲において、多孔
板からの空気の流出は全断面にわたって均一であった。
Example 1 Four holes each having a diameter of 150 mm are formed in a disk having a diameter of 900 mm at symmetrical positions from the center, and a pipe having a length of 17 mm is attached to each of them to form a liquid flow path pipe, and at the edge of the disc. Height 195
A mm skirt is provided. As a gas flow path, 769 pores having a diameter of 2.0 mm were formed in this disk at equal intervals. The cross-sectional area ratio of the liquid channel is 11%, and the aperture ratio of the pores is 0.22%. This gas disperser was attached to the lower part of a column having an inner diameter of 1000 mm, a porous plate was filled with water having a water depth of 800 mm, and air was supplied from below. As the gas flow rate increased, the height of the gas retention layer formed below the perforated plate increased. The situation is as shown in FIG. Gas flow rate of 6 to 32 m 3 /
The outflow of air from the perforated plate was uniform over the entire cross section in the range of the experiment performed by changing m 2 · hr.

【実施例2】 上記の実施例1で組み立てた装置とほぼ相似形であるが
やや小型の装置を製作した。すなわち、直径500mmの
円板に直径100mmの孔を4個、中心から対称の位置に
あけて長さ120mmの筒をとりつけて液流路管とし、残
る部分に径2.0mmの細孔を101個あけてガス分散器
とした。液流路の面積比は13.2%、細孔の開口率は
0.14%である。 上記のガス分散器を内径600mmの塔の下部に配置し、
その下に比較例1で使用した小径(200mm)リングス
パージャをとりつけた。 この装置に水および空気を供給し、水の供給速度は一定
に保ったまま、空気の供給速度をつぎのように変化させ
た。 多孔板上250mmの高さで、塔の直径方向におけるボイ
ド率を測定した。それらの結果は、第14図、第15図
および第16図に示すとおりである。ガス流量の大小に
かかわらず、塔内の全断面にわたって均一な気液の混合
が行なわれていることが、この図からわかる。
Second Embodiment A device having a shape similar to that of the device assembled in the above-described first embodiment but slightly smaller is manufactured. That is, four holes each having a diameter of 100 mm are formed in a disk having a diameter of 500 mm, a tube having a length of 120 mm is attached at a symmetrical position from the center to form a liquid flow path tube, and a hole having a diameter of 2.0 mm is formed in the remaining portion. A gas disperser was prepared by separating the pieces. The area ratio of the liquid channel is 13.2%, and the aperture ratio of the pores is 0.14%. The above gas disperser is placed in the lower part of the tower with an inner diameter of 600 mm,
Below that, the small diameter (200 mm) ring sparger used in Comparative Example 1 was attached. Water and air were supplied to this apparatus, and the air supply rate was changed as follows while the water supply rate was kept constant. The void fraction in the diameter direction of the tower was measured at a height of 250 mm on the porous plate. The results are shown in FIGS. 14, 15 and 16. It can be seen from this figure that uniform gas-liquid mixing is carried out over the entire cross section of the column regardless of the gas flow rate.

【実施例3】 実施例2で組み立てた装置において、ガス分散器の上方
に下記の触媒の充填層を設けて、下記の条件で、スチレ
ンの水素化によるエチルベンゼンの生成を行なった。 反応原料:スチレンをライトナフサ(初留38℃、終点
132℃(比重0.589)に7.5%の割合で溶解し
たもの 水素ガス:ボンベから供給 温 度:60℃ 圧 力:5.5kg/cm2G 触 媒:パラジウム5重量%をアルミナに担持した、
径および高さ各3mmの円柱状触媒(市販品)を160kg
充填(充填層高さ88cm) 液流量 :1.27m/hr ガス流量:2.8Nm/hr 反応液を冷却してガスを分離したのち、ガスクロマトグ
ラフで未反応のスチレンの量をしらべることにより、水
素添加の反応率を算出した。その値を、本発明によらず
多孔板だけ使用した場合のデータと比較して、経過時間
とともに示す。
Example 3 In the apparatus assembled in Example 2, a packed bed of the following catalyst was provided above the gas disperser, and ethylbenzene was produced by hydrogenation of styrene under the following conditions. Reaction material: Styrene dissolved in light naphtha (initial distillation 38 ° C, end point 132 ° C (specific gravity 0.589) at a ratio of 7.5%) Hydrogen gas: supplied from a cylinder Temperature: 60 ° C Pressure: 5.5 kg / Cm 2 G catalyst: 5% by weight of palladium supported on alumina,
160 kg of cylindrical catalyst (commercial product) with diameter and height of 3 mm each
Packing (packed bed height 88 cm) Liquid flow rate: 1.27 m 3 / hr Gas flow rate: 2.8 Nm 3 / hr After cooling the reaction liquid and separating the gas, check the amount of unreacted styrene by gas chromatography. The reaction rate of hydrogenation was calculated by The value is shown together with the elapsed time in comparison with the data when only the perforated plate was used according to the present invention.

【発明の効果】【The invention's effect】

本発明に従うガス分散器は目詰りの心配がなく、ガス供
給手段の負荷を増大させることも、偏流を生じることも
ない。 このガス分散器を採用した本発明の並流型気液接触装置
は、従来の装置にくらべてガスの液中への分散がいっそ
う均一であるとともに、装置断面上で、偏流がほとんど
生じない。従って、液とガスとの接触面積が大きく、効
率が高い。 また、この並流型気液接触装置に触媒充填層を設けた気
液反応装置では、触媒充填層中での気液の触媒効率が向
上することにより、反応率が向上する。とくに水添反応
のような発熱反応に適用した場合、ホットスポットとよ
ばれる部分的に温度が上昇した部分が生じて、望まない
副生物が生成することを抑制できる。
The gas disperser according to the invention is free from clogging, increases the load on the gas supply means and does not cause drift. The parallel-flow gas-liquid contactor of the present invention which employs this gas disperser has a more uniform dispersion of gas in the liquid as compared with the conventional apparatus, and causes almost no uneven flow on the cross section of the apparatus. Therefore, the contact area between the liquid and the gas is large and the efficiency is high. Further, in the gas-liquid reaction device in which the catalyst packed layer is provided in the parallel flow type gas-liquid contactor, the reaction efficiency is improved by improving the catalytic efficiency of the gas-liquid in the catalyst packed layer. Particularly when applied to an exothermic reaction such as a hydrogenation reaction, it is possible to suppress the generation of an unwanted by-product due to a part called a hot spot where the temperature rises partially.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は、本発明の並流型気液接触装置お
よび反応装置のひとつの例を説明するための図であっ
て、第1図は縦断面図、第2図は第1図I−I方向の横
断面図である。 第3図および第4図は、本発明の並流型気液接触装置お
よび反応装置の別な例を説明するための図であって、第
3図は第1図と同様に縦断面図、第4図は第2図、第3
図II−II方向の横断面図である。 第5図は、本発明の作用を説明するために、第1図の装
置におけるガスの液中への分散状況を示した断面図であ
る。 第6図および第8図は、従来技術によるガス分散器の効
果をみるために製作した装置の縦断面図である。 第7図および第9図は、それぞれ第6図および第8図の
装置において気液混合の状況をしらべたグラフである。 第10図は、やはり従来技術によるガス分散器の効果を
みるために製作した装置の、第6図および第8図に対応
する縦断面図である。 第11図は、第10図の装置において気液混合の状況を
しらべた、第7図および第9図に対応するグラフであ
る。 第12図は、本発明の装置においてガス供給量を変化さ
せたときの、多孔板の下に形成されるガス滞留層の厚さ
の変化を示すグラフである。 第13図は、本発明の装置の、第6図、第8図および第
10図に対応する縦断面図である。 第14図、第15図および第16図は、いずれも第13
図の装置における気液混合の均一さを示すグラフであ
る。 1……容器、2A,2B……多孔板 3A……液流路管、3B……スリット 4A,4B……スカート、5A,5B……細孔 6……スパージャ、7……ガス滞留層 8……液、9……ガス 10……触媒充填層
1 and 2 are views for explaining one example of the co-current gas-liquid contact device and the reaction device of the present invention. FIG. 1 is a longitudinal sectional view, and FIG. It is a transverse cross-sectional view of FIG. FIGS. 3 and 4 are views for explaining another example of the co-current gas-liquid contact device and the reaction device of the present invention, and FIG. 3 is a longitudinal sectional view similar to FIG. Fig. 4 is Fig. 2 and 3
FIG. 2 is a transverse sectional view taken along the line II-II. FIG. 5 is a cross-sectional view showing how gas is dispersed in the liquid in the apparatus of FIG. 1 in order to explain the operation of the present invention. FIG. 6 and FIG. 8 are vertical cross-sectional views of a device manufactured to examine the effect of the conventional gas disperser. FIG. 7 and FIG. 9 are graphs examining the state of gas-liquid mixing in the devices of FIGS. 6 and 8, respectively. FIG. 10 is a vertical cross-sectional view corresponding to FIGS. 6 and 8 of an apparatus manufactured to see the effect of the conventional gas disperser. FIG. 11 is a graph corresponding to FIGS. 7 and 9, which examines the state of gas-liquid mixing in the apparatus of FIG. FIG. 12 is a graph showing changes in the thickness of the gas retention layer formed under the perforated plate when the gas supply amount is changed in the apparatus of the present invention. FIG. 13 is a longitudinal sectional view of the device of the present invention, corresponding to FIGS. 6, 8 and 10. FIGS. 14, 15, and 16 are all shown in FIG.
It is a graph which shows the uniformity of gas-liquid mixing in the apparatus of a figure. DESCRIPTION OF SYMBOLS 1 ... Container, 2A, 2B ... Perforated plate 3A ... Liquid flow path tube, 3B ... Slit 4A, 4B ... Skirt 5A, 5B ... Pore 6 ... Sparger, 7 ... Gas retention layer 8 ...... Liquid, 9 ...... Gas 10 ...... Catalyst packed bed

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】容器の下部からガスと液とを供給し、気液
を並流で上昇させながら接触させる並流型気液接触装置
において、容器内を上下に区分する板に多数の細孔を均
一に穿ってガスが流出する多孔板とするとともに、この
多孔板に液だけを通過させるための液流路管を設けたガ
ス分散器を配置してなり、多孔板の細孔の開口率を、多
孔板の下側にガスの滞留層が形成されるように選択した
ことを特徴とする気液接触装置。
1. A co-current gas-liquid contactor for supplying gas and liquid from the lower part of a container to bring gas and liquid into contact with each other while ascending in a co-current manner. Is a perforated plate through which the gas flows out evenly, and a gas disperser provided with a liquid passage tube for passing only the liquid is arranged in the perforated plate. Is selected so that a gas retention layer is formed on the lower side of the perforated plate.
【請求項2】細孔の直径が0.5〜5mmの範囲であり、
多孔板の液流路管の部分を除く面積に対する細孔の開口
率が0.05〜5%の範囲であり、液流路管の断面積が
(2本以上ある場合は合計して)細孔の開口面積の0.
5〜2倍である請求項1の気液接触装置。
2. The diameter of the pores is in the range of 0.5-5 mm,
The aperture ratio of the pores with respect to the area of the perforated plate excluding the liquid flow path tube is in the range of 0.05 to 5%, and the cross-sectional area of the liquid flow path tube (when there are two or more tubes is small) The opening area of the hole is 0.
The gas-liquid contact device according to claim 1, which is 5 to 2 times.
【請求項3】請求項1の装置において、容器の上部に触
媒充填層を有し、この層において気液の触媒反応を行な
うように構成した並流型気液反応装置。
3. The parallel flow gas-liquid reaction apparatus according to claim 1, wherein a catalyst-packed layer is provided on an upper portion of the container, and the gas-liquid catalytic reaction is carried out in this layer.
【請求項4】容器の下部からガスと液とを供給し、気液
を並流で上昇させながら接触させる並流型気液接触装置
において、容器内を上下に区分する板に多数の細孔を均
一に穿ってガスが流出する多孔板とするとともに、この
多孔板に下方に延びる筒状のスカートを設けてそのスカ
ートの下部に等間隔で複数のスリットをあけて液流路を
形成したガス分散器を配置してなり、多孔板の細孔の開
口率を、多孔板の下側にガスの滞留層が形成されるよう
に選択したことを特徴とする気液接触装置。
4. A parallel flow type gas-liquid contactor for supplying gas and liquid from the lower part of a container to bring gas and liquid into contact with each other while ascending in parallel flow. To form a perforated plate through which the gas flows out uniformly, and the perforated plate is provided with a cylindrical skirt extending downward, and a plurality of slits are formed under the skirt at equal intervals to form a liquid flow path. A gas-liquid contactor comprising a disperser, wherein the aperture ratio of the pores of the perforated plate is selected so that a gas retention layer is formed below the perforated plate.
【請求項5】細孔の直径が0.5〜5mmの範囲であり、
多孔板の面積に対する細孔の開口率が0.05〜5.0
%であり、スリットの液流路断面積が合計で細孔の開口
面積の0.5〜2倍である請求項4の気液接触装置。
5. The diameter of the pores is in the range of 0.5-5 mm,
The aperture ratio of the pores to the area of the perforated plate is 0.05 to 5.0.
%, And the total liquid channel cross-sectional area of the slit is 0.5 to 2 times the opening area of the pores.
【請求項6】請求項4の装置において、容器の上部に触
媒充填層を有し、この層において気液の触媒反応を行な
うように構成した並流型気液反応装置。
6. The parallel flow type gas-liquid reaction apparatus according to claim 4, wherein a catalyst-filled layer is provided on the upper part of the container, and the gas-liquid catalytic reaction is carried out in this layer.
JP29310890A 1990-10-30 1990-10-30 Parallel flow type gas-liquid contactor and gas-liquid reactor Expired - Lifetime JPH0642939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29310890A JPH0642939B2 (en) 1990-10-30 1990-10-30 Parallel flow type gas-liquid contactor and gas-liquid reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29310890A JPH0642939B2 (en) 1990-10-30 1990-10-30 Parallel flow type gas-liquid contactor and gas-liquid reactor

Publications (2)

Publication Number Publication Date
JPH04166223A JPH04166223A (en) 1992-06-12
JPH0642939B2 true JPH0642939B2 (en) 1994-06-08

Family

ID=17790535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29310890A Expired - Lifetime JPH0642939B2 (en) 1990-10-30 1990-10-30 Parallel flow type gas-liquid contactor and gas-liquid reactor

Country Status (1)

Country Link
JP (1) JPH0642939B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265189B2 (en) * 2003-03-25 2007-09-04 Crystaphase Products, Inc. Filtration, flow distribution and catalytic method for process streams
DE102005050284A1 (en) 2005-10-20 2007-05-10 Basf Ag Distributor device for a gas-liquid phase mixture for apparatus
FR2917306B1 (en) * 2007-06-12 2011-04-15 Inst Francais Du Petrole ENCLOSURE CONTAINING A GRANULAR BED AND A DISTRIBUTION OF A GAS PHASE AND A LIQUID PHASE CIRCULATING INTO AN ASCENDING FLOW IN THIS ENCLOSURE
JP2009235060A (en) * 2008-03-04 2009-10-15 Sumitomo Chemical Co Ltd Gas-liquid dispersion device and method for dispersing gas and liquid
JP5942830B2 (en) * 2012-12-11 2016-06-29 住友金属鉱山株式会社 Stirred reactor

Also Published As

Publication number Publication date
JPH04166223A (en) 1992-06-12

Similar Documents

Publication Publication Date Title
KR100833826B1 (en) Mixing device comprising a swirl chamber for mixing liquid
US8728403B2 (en) Filtration tray for fixed bed reactor with a co-current down-flow of gas and liquid
JP5473323B2 (en) Apparatus for mixing and distributing gas and liquid upstream from a particle packed bed
KR101937431B1 (en) Apparatus and method for hydroconversion
JP3792727B2 (en) Gas pocket distributor and method for hydrotreating a hydrocarbon feed stream
US7523923B2 (en) Fluid distribution tray and method for the distribution of a highly dispersed fluid across a bed of contact material
JP4838717B2 (en) Multi-phase liquid distributor for tube bundle reactor
EP0592802A1 (en) Apparatus for mixing concurrently, downwardly flowing fluids
US4755281A (en) Countercurrent process with froth control for treating heavy hydrocarbons
JP5528021B2 (en) A treatment or hydrotreatment reactor comprising a granular bed and an essentially liquid phase and an essentially gaseous phase flowing through the granular bed
JPH09225290A (en) Device for distributing multiphase mixture passing through catalyst bed
KR101015929B1 (en) Device for mixing and distributing a dense fluid and a light fluid, placed upstream from a granular bed, and its use in descending flow
US4874583A (en) Bubble cap assembly in an ebullated bed reactor
JP4702660B2 (en) Improved mixing and distribution apparatus for gas and liquid phases fed to a granular bed
US2486200A (en) Clay flow baffle
US3652451A (en) Fluid distribution for fluid-solids contacting chambers
CN105582857B (en) A kind of gas-liquid-solid phase reaction device and its application method
JPH0642939B2 (en) Parallel flow type gas-liquid contactor and gas-liquid reactor
JP4603784B2 (en) Jet mixing of process fluids in a fixed bed reactor.
US3556736A (en) Fluid distribution for fluid-solid contacting chambers
KR20200004339A (en) Novel device for dispensing multiphase mixture in chamber containing fluidization medium
JP2015531422A (en) Hydrocarbon oil hydrotreating method
KR101535058B1 (en) Slurry bubble column reactor
US5461178A (en) Catalytic stripping of hydrocarbon liquid
RU2792200C1 (en) Distributing device for gas-liquid flow in a fixed catalyst bed