JPH0642780A - Radiation air conditioning apparatus - Google Patents

Radiation air conditioning apparatus

Info

Publication number
JPH0642780A
JPH0642780A JP33054392A JP33054392A JPH0642780A JP H0642780 A JPH0642780 A JP H0642780A JP 33054392 A JP33054392 A JP 33054392A JP 33054392 A JP33054392 A JP 33054392A JP H0642780 A JPH0642780 A JP H0642780A
Authority
JP
Japan
Prior art keywords
temperature
room temperature
radiation
panel
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33054392A
Other languages
Japanese (ja)
Inventor
Minoru Tagashira
實 田頭
Yuji Yoshida
雄二 吉田
Masataka Ozeki
正高 尾関
Koji Ebisu
晃司 戎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33054392A priority Critical patent/JPH0642780A/en
Publication of JPH0642780A publication Critical patent/JPH0642780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To provide a radiation air conditioning apparatus capable of controlling temperature regulating capacity in accordance with a PMV value without employing an expensive PMV meter. CONSTITUTION:A radiation panel temperature detecting means 20 detects the temperature of a cold radiation panel 7, a wall surface temperature detecting means 21 detects the temperature of a wall surface, a humidity detecting means 24 detects a humidity, a radiation temperature operating means 23 operates a radiation temperature based on the detected panel temperature, the wall surface temperature, the area of the cold radiation panel 7 and the area of inside of a room except the cold radiation panel 7 and an objective room temperature operating means 25 operates an objective room temperature which will achieve the most comfortable PMV value based on the detected humidity, operated radiation temperature and the like. Then, a comparing means 26 compares the room temperature detected by the room temperature detecting means 22 with the operated objective room temperature while a control means 27 controls the temperature regulating capacity of the cold radiation panel 7 in accordance with the result of the comparison.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、輻射を利用した冷暖房
などを行うための空調装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for cooling and heating using radiation.

【0002】[0002]

【従来の技術】従来、例えばよりマイルドな冷房を実現
する方法として、輻射冷房装置が知られている。輻射冷
房装置は、天井面に配管パイプを付設し、そのパイプ内
部に冷水を流通させるもの、あるいは冷媒配管を付設し
冷凍サイクルの蒸発器として作用させるものなどがあ
り、それら配管パイプあるいは冷媒配管に取り付けられ
た輻射パネルからの、室内での冷気の自然降下によりド
ラフト感の少ない快適な冷房を実現しようとするもので
ある。また天井面での結露防止策として別に強制通風式
の除湿装置および補助冷房装置を設ける場合がある。
2. Description of the Related Art Conventionally, a radiant cooling device is known as a method for realizing a milder cooling, for example. Radiation cooling devices include those that have piping pipes attached to the ceiling surface and allow cold water to flow inside the pipes, or those that have refrigerant pipes attached to act as an evaporator of a refrigeration cycle. It is intended to realize a comfortable cooling with a little draft feeling by the natural fall of cool air in the room from the attached radiation panel. In addition, a forced ventilation type dehumidifying device and an auxiliary cooling device may be separately provided as a measure for preventing dew condensation on the ceiling surface.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
輻射冷房装置では、ドラフト感の少ない快適な冷房を目
指しながらも設定室温のみにより冷房能力を制御する手
法を用いているため、設定室温と異なる室温において、
輻射冷房の輻射効果によるより快適な状態が予想される
場合がある。それにもかかわらず、輻射効果の積極的な
利用を考慮していなかった。そこで快適さを表すPMV
値に応じて冷房能力を制御する方法が提案されている
が、PMV値を検出するためには高価なPMV計を用い
なければならずコストが高くなるという課題がある。
However, the conventional radiant cooling system uses a method of controlling the cooling capacity only by the set room temperature while aiming at a comfortable cooling with a little draft feeling, so that the room temperature different from the set room temperature is used. At
A more comfortable state may be expected due to the radiation effect of radiation cooling. Nevertheless, they did not consider the active use of radiation effects. So PMV expressing comfort
Although a method of controlling the cooling capacity according to the value has been proposed, there is a problem that an expensive PMV meter must be used to detect the PMV value, resulting in high cost.

【0004】本発明は、従来のこのような課題を考慮
し、高価なPMV計を用いることなく、PMV値に応じ
た温度調節能力の制御を行うことが出来る輻射空調装置
を提供することを目的とするものである。
In view of the above problems of the prior art, it is an object of the present invention to provide a radiant air conditioner capable of controlling the temperature adjusting ability according to the PMV value without using an expensive PMV meter. It is what

【0005】[0005]

【課題を解決するための手段】本発明は、温度調節を行
うための輻射パネルと、その輻射パネルの温度を検出す
る輻射パネル温度検出手段と、室の壁面温度を検出する
壁面温度検出手段と、室温を検出する室温検出手段と、
室内の湿度を検出する湿度検出手段と、快適さを表すP
MV値を算出するために必要な輻射温度を、検出された
輻射パネル温度、壁面温度、予め設定された輻射パネル
の面積及びその輻射パネルを除く室の内面の面積に基づ
き算出する輻射温度算出手段と、検出された湿度、算出
された輻射温度、及びPMV値を求めるために必要な他
のデータに基づき、PMV値が実質上最も快適な値にな
るような目標室温を算出する目標室温算出手段と、室温
検出手段により検出された室温と算出された目標室温と
を比較する比較手段と、その比較結果に応じて、輻射パ
ネルの温度調節能力を制御する制御手段とを備えた輻射
空調装置である。
According to the present invention, there is provided a radiation panel for controlling the temperature, a radiation panel temperature detecting means for detecting the temperature of the radiation panel, and a wall surface temperature detecting means for detecting the wall surface temperature of the chamber. , Room temperature detecting means for detecting room temperature,
Humidity detection means for detecting indoor humidity, and P for comfort
Radiant temperature calculating means for calculating the radiant temperature required to calculate the MV value based on the detected radiant panel temperature, wall surface temperature, preset radiant panel area and the area of the inner surface of the chamber excluding the radiant panel And a target room temperature calculating means for calculating a target room temperature at which the PMV value is practically the most comfortable value based on the detected humidity, the calculated radiation temperature, and other data necessary for obtaining the PMV value. A radiation air conditioner equipped with a comparison means for comparing the room temperature detected by the room temperature detection means with the calculated target room temperature, and a control means for controlling the temperature adjusting ability of the radiation panel according to the comparison result. is there.

【0006】[0006]

【作用】本発明は、輻射パネル温度検出手段が輻射パネ
ルの温度を検出し、壁面温度検出手段が室の壁面温度を
検出し、湿度検出手段が室内の湿度を検出し、輻射温度
算出手段が、PMV値を算出するために必要な輻射温度
を、検出された輻射パネル温度、壁面温度、予め設定さ
れた輻射パネルの面積及びその輻射パネルを除く室の内
面の面積に基づき算出し、目標室温算出手段が、検出さ
れた湿度、算出された輻射温度、及びPMV値を求める
ために必要な他のデータに基づき、PMV値が実質上最
も快適な値になるような目標室温を算出し、比較手段
が、室温検出手段により検出された室温と算出された目
標室温とを比較し、制御手段がその比較結果に応じて、
輻射パネルの温度調節能力を制御する。
According to the present invention, the radiation panel temperature detecting means detects the temperature of the radiation panel, the wall surface temperature detecting means detects the wall surface temperature of the room, the humidity detecting means detects the indoor humidity, and the radiation temperature calculating means operates. , The radiant temperature required to calculate the PMV value is calculated based on the detected radiant panel temperature, wall surface temperature, preset radiant panel area and the area of the inner surface of the room excluding the radiant panel, and the target room temperature. The calculation means calculates a target room temperature at which the PMV value is practically the most comfortable value based on the detected humidity, the calculated radiation temperature, and other data necessary for obtaining the PMV value, and compares the calculated room temperature. The means compares the room temperature detected by the room temperature detection means with the calculated target room temperature, and the control means responds to the comparison result.
Controls the temperature control capability of the radiant panel.

【0007】[0007]

【実施例】以下に、本発明をその実施例を示す図面に基
づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing its embodiments.

【0008】図1は、本発明にかかる一実施例の輻射冷
房装置の構成図である(但し、図2の輻射温度算出手段
23、目標室温算出手段25、比較手段26、制御手段
27は、図示省略)。すなわち、室内12の天井には、
輻射による冷房を行うための冷輻射パネル7が設けら
れ、室外には、冷媒を圧縮するための圧縮機1、圧縮さ
れた冷媒を凝縮する凝縮器2、強制通風冷房用の膨張弁
3、強制通風冷房用の蒸発器4が設けられ、それらは順
次冷媒配管で接続されて強制通風空調機5が構成されて
いる。一方、凝縮器2に接続された冷媒配管は、分岐さ
れて輻射冷房用の膨張弁6に接続され、その膨張弁6は
冷媒配管を介して冷輻射パネル7に接続されている。冷
輻射パネル7の冷媒出口には冷媒配管が接続され、その
冷媒配管は、冷輻射パネル7の蒸発温度を蒸発器4の蒸
発温度より高く設定するための調圧弁8に接続されて、
更に調圧弁8は冷媒配管を介して圧縮機1に接続され、
それらが輻射冷房装置9を構成している。従って、冷輻
射パネル7及び蒸発器4は並列に圧縮機1へ接続されて
いる。又、蒸発器4の近くにはその蒸発器4で冷やされ
た空気を室内12に循環させるために、ファン10及び
ダクト11が設けられている。
FIG. 1 is a block diagram of a radiant cooling apparatus according to an embodiment of the present invention (however, the radiant temperature calculating means 23, the target room temperature calculating means 25, the comparing means 26, and the controlling means 27 in FIG. (Not shown). That is, on the ceiling of the room 12,
A cold radiation panel 7 for cooling by radiation is provided, and a compressor 1 for compressing the refrigerant, a condenser 2 for condensing the compressed refrigerant, an expansion valve 3 for forced draft cooling, and a forced air are provided outside the room. An evaporator 4 for ventilation cooling is provided, and they are sequentially connected by a refrigerant pipe to form a forced ventilation air conditioner 5. On the other hand, the refrigerant pipe connected to the condenser 2 is branched and connected to the expansion valve 6 for radiation cooling, and the expansion valve 6 is connected to the cold radiation panel 7 via the refrigerant pipe. A refrigerant pipe is connected to the refrigerant outlet of the cold radiation panel 7, and the refrigerant pipe is connected to a pressure regulating valve 8 for setting the evaporation temperature of the cold radiation panel 7 higher than the evaporation temperature of the evaporator 4,
Further, the pressure regulating valve 8 is connected to the compressor 1 via a refrigerant pipe,
They constitute the radiation cooling device 9. Therefore, the cold radiation panel 7 and the evaporator 4 are connected in parallel to the compressor 1. Further, a fan 10 and a duct 11 are provided near the evaporator 4 in order to circulate the air cooled by the evaporator 4 into the room 12.

【0009】又、冷輻射パネル7の表面には、その冷輻
射パネル7の表面温度を検出する輻射温度センサ13が
設けられ、冷輻射パネル7の端側近傍には湿度を検出す
る湿度センサ14が設けられ、室内12には室温を検出
するための室温センサ15が設けられている。ここでは
室温センサ15が図2の壁面温度検出手段21と室温検
出手段22を兼用している。
A radiation temperature sensor 13 for detecting the surface temperature of the cold radiation panel 7 is provided on the surface of the cold radiation panel 7, and a humidity sensor 14 for detecting humidity is provided near the end of the cold radiation panel 7. The room 12 is provided with a room temperature sensor 15 for detecting the room temperature. Here, the room temperature sensor 15 serves as both the wall surface temperature detecting means 21 and the room temperature detecting means 22 shown in FIG.

【0010】図2は、上記実施例の輻射冷房装置の制御
を説明する略示ブロック図である。冷房される室内12
の天井に設けられた冷輻射パネル7の表面には、その冷
輻射パネル7の温度を検出する輻射パネル温度検出手段
20が設けられ、又室内12には、壁面にその壁面の温
度を検出するための壁面温度検出手段21、室内12の
室温を検出するための室温検出手段22、室内12の湿
度を検出するための湿度検出手段24が設けられてい
る。輻射パネル温度検出手段20及び壁面温度検出手段
21は、室内12の輻射温度を算出する輻射温度算出手
段23に接続され、その輻射温度算出手段23及び湿度
検出手段24は、室内12の温度を何度に調節するかを
設定するための目標室温を算出する目標室温算出手段2
5に接続されている。目標室温算出手段25及び室温検
出手段22は、算出された目標室温と検出された室温と
を比較する比較手段26に接続され、その比較手段26
は冷輻射パネル7の冷房能力を制御するための制御手段
27に接続されている。図2では、図1の強制通風式の
冷房手段である強制通風空調機5を省略している。又、
図1、図2とも検出された室温及び湿度に基づき露点温
度を算出する露点温度算出手段を省略している。
FIG. 2 is a schematic block diagram for explaining the control of the radiation cooling system of the above embodiment. Room 12 to be cooled
A radiation panel temperature detecting means 20 for detecting the temperature of the cold radiation panel 7 is provided on the surface of the cold radiation panel 7 provided on the ceiling of the room, and a wall surface of the room 12 detects the temperature of the wall surface. A wall temperature detecting means 21 for detecting the room temperature, a room temperature detecting means 22 for detecting the room temperature of the room 12, and a humidity detecting means 24 for detecting the humidity of the room 12 are provided. The radiant panel temperature detecting means 20 and the wall surface temperature detecting means 21 are connected to the radiant temperature calculating means 23 for calculating the radiant temperature of the room 12, and the radiant temperature calculating means 23 and the humidity detecting means 24 determine the temperature of the room 12. Target room temperature calculating means 2 for calculating a target room temperature for setting whether to adjust
Connected to 5. The target room temperature calculating means 25 and the room temperature detecting means 22 are connected to a comparing means 26 for comparing the calculated target room temperature with the detected room temperature, and the comparing means 26.
Is connected to control means 27 for controlling the cooling capacity of the cold radiation panel 7. In FIG. 2, the forced ventilation air conditioner 5 which is the forced ventilation type cooling means of FIG. 1 is omitted. or,
1 and 2, the dew point temperature calculating means for calculating the dew point temperature based on the detected room temperature and humidity is omitted.

【0011】前述の輻射温度算出手段23には、輻射温
度を算出するために必要となる、冷輻射パネル7の面積
値及び冷輻射パネル7の部分を除いた残りの壁面などの
面積値が予め設定されている(算出の方法は後述)。
又、目標室温算出手段25には、快適さを示すPMV値
を算出する場合に必要なデータとして、室内12の空気
の流速、人間の活動量、着衣量の値が予め設定されてい
る。
In the radiation temperature calculating means 23, the area value of the cold radiation panel 7 and the area values of the remaining wall surfaces excluding the portion of the cold radiation panel 7 necessary for calculating the radiation temperature are previously stored. It is set (the calculation method will be described later).
Further, in the target room temperature calculating means 25, the values of the flow velocity of the air in the room 12, the amount of human activity, and the amount of clothing are preset as data necessary for calculating the PMV value indicating the comfort.

【0012】次に上記実施例の動作について説明する。Next, the operation of the above embodiment will be described.

【0013】まず、圧縮機1が運転されて冷媒が凝縮器
2に送られ、凝縮器2で外気などに熱を放出し冷媒が液
化する。液冷媒は分岐されて一方は膨張弁3を通り蒸発
器4に送られ蒸発し、ファン10で送られてきた微風速
の室内空気と熱交換して圧縮機1に戻る。冷却除湿され
た空気はダクト11を通り室内12に吹き出され冷房効
果を発揮する。分岐された他方の液冷媒は、膨張弁6を
通り冷輻射パネル7内で蒸発し冷輻射パネル7を冷却し
て、調圧弁8を通って圧縮機1に戻る。冷却された冷輻
射パネル7により冷輻射と冷気の自然降下によりドラフ
ト感の無い快適な冷房が実現できる。
First, the compressor 1 is operated, the refrigerant is sent to the condenser 2, and the condenser 2 radiates heat to the outside air or the like to liquefy the refrigerant. The liquid refrigerant is branched, one of which is sent to the evaporator 4 through the expansion valve 3 to be evaporated, and exchanges heat with the indoor air at a low wind speed sent by the fan 10 to return to the compressor 1. The air that has been dehumidified by cooling passes through the duct 11 and is blown out into the room 12 to exert a cooling effect. The other branched liquid refrigerant passes through the expansion valve 6 and evaporates in the cold radiation panel 7, cools the cold radiation panel 7, and returns to the compressor 1 through the pressure regulating valve 8. The cooled cold radiation panel 7 can realize a comfortable cooling without a draft feeling due to the cold radiation and the natural fall of the cold air.

【0014】その時、冷輻射パネル7の表面温度の制御
は、露点温度算出手段(図示省略)によって、湿度セン
サ14により検出された湿度と室温センサ15により検
出された室温とに基づき露点温度を求め、輻射温度セン
サ13で検知される温度がその露点温度より高くなるよ
うに調圧弁8で冷輻射パネル7内での冷媒蒸発圧力を制
御することによって行われる。
At that time, the surface temperature of the cold radiation panel 7 is controlled by the dew point temperature calculating means (not shown) to obtain the dew point temperature based on the humidity detected by the humidity sensor 14 and the room temperature detected by the room temperature sensor 15. It is performed by controlling the refrigerant evaporation pressure in the cold radiation panel 7 by the pressure regulating valve 8 so that the temperature detected by the radiation temperature sensor 13 becomes higher than the dew point temperature.

【0015】一方、室内空気の調節は、室内12のPM
V値が略ゼロになるように目標室温を決定する。そのP
MV値を決定する6要素即ち室温、湿度、輻射温度、風
速、活動量、着衣量を求める具体的な方法について説明
する。
On the other hand, the indoor air is regulated by the PM in the room 12.
The target room temperature is determined so that the V value becomes approximately zero. That P
A specific method for obtaining the six factors that determine the MV value, that is, room temperature, humidity, radiation temperature, wind speed, activity amount, and clothing amount will be described.

【0016】室温は室温センサ15により検出し、PM
V値に対して影響が少ない湿度は冷輻射パネル7近傍に
設けた湿度センサ14により検出する。輻射温度は、冷
輻射パネル7の面を含んだ室内12の表面平均温度のこ
とであり式(数1)で表される。
The room temperature is detected by the room temperature sensor 15 and PM
Humidity that has little influence on the V value is detected by the humidity sensor 14 provided near the cold radiation panel 7. The radiant temperature is the average surface temperature of the room 12 including the surface of the cold radiant panel 7, and is represented by the formula (Equation 1).

【0017】[0017]

【数1】輻射温度=(Σts×A+tp×Ap)/(Σ
A+Ap) ここに ts:室内の各非冷却面の表面温度(℃)、
A:室内の各非冷却面の表面積(m2)、tp:冷輻射パ
ネル温度(℃)、Ap:冷輻射パネル表面積(m2)ここ
で、室温センサ15により検出された室温と冷輻射パネ
ル7以外の壁表面温度はほぼ等しいとみなして、その室
温を各非冷却面の表面温度とし、冷輻射パネル7の表面
温度は輻射温度センサ13により検出された温度とする
と、室内表面積と冷輻射パネル面積は既知であるため輻
射温度は式(数1)で計算できる。以上のデータを用い
て輻射温度算出手段23が輻射温度を算出する。あるい
は又、他の方法として上述の実際の表面積を用いる代わ
りに、冷房対象部屋を立方体として仮定し、天井面であ
る冷輻射パネル7の面積を1とすると他の非冷却面の表
面積は5となり、簡易的に輻射温度センサ13による表
面温度と室温を1:5で加重平均してもよい。風速は、
在室する人がファン10の風量を設定したり、自動制御
されるので、初期的に求めて設定しておくことが可能で
ある。活動量は在室する人が設定してもよく、また赤外
線などを用いた人体検知等により初期的に設定すること
が可能である。着衣量は冷房期の一般値を設定値として
与えることが可能である。これでPMV値は計算により
求めることが可能となるものである。
## EQU1 ## Radiation temperature = (Σts × A + tp × Ap) / (Σ
A + Ap) where ts: surface temperature of each uncooled surface in the room (° C),
A: Surface area of each uncooled surface in the room (m 2 ), tp: Cold radiation panel temperature (° C.), Ap: Cold radiation panel surface area (m 2 ) where the room temperature detected by the room temperature sensor 15 and the cold radiation panel Assuming that the wall surface temperatures other than 7 are almost equal, the room temperature is set as the surface temperature of each uncooled surface, and the surface temperature of the cold radiation panel 7 is the temperature detected by the radiation temperature sensor 13. Since the panel area is known, the radiation temperature can be calculated by the formula (Equation 1). The radiation temperature calculation means 23 calculates the radiation temperature using the above data. Alternatively, instead of using the above-mentioned actual surface area as another method, assuming that the room to be cooled is a cube and the area of the cold radiation panel 7 which is the ceiling surface is 1, the surface area of other non-cooled surfaces is 5. Alternatively, the surface temperature and the room temperature measured by the radiation temperature sensor 13 may be simply weighted averaged at 1: 5. Wind speed
Since the person in the room sets the air volume of the fan 10 or is automatically controlled, it is possible to obtain and set it initially. The activity amount may be set by a person present in the room, or may be initially set by detecting a human body using infrared rays or the like. It is possible to give a general value during the cooling period as a set value for the clothing amount. With this, the PMV value can be calculated.

【0018】次に目標室温算出手段25が、PMV値を
略ゼロ(すなわち、快適な値)にするための室温を逆算
し目標室温を算出して、その目標室温を比較手段26に
出力する。比較手段26は室温センサ15により検出さ
れた室温と目標室温を比較して、その結果を制御手段2
7に出力し、制御手段27はその結果に応じて強制通風
空調機5を制御する。すなわち、室温に対して目標室温
が低い場合は、例えば圧縮機1の回転数を増加させ蒸発
器4内を流れる冷媒循環量を上げ熱交換量を増加させる
か、膨張弁3を絞り蒸発圧力を下げ室内12への吹き出
し温度を低下させる。同時に風量をファン10によりコ
ントロールすることで吹き出し温度を制御することも可
能である。
Next, the target room temperature calculating means 25 calculates the target room temperature by back-calculating the room temperature for making the PMV value substantially zero (that is, a comfortable value), and outputs the target room temperature to the comparing means 26. The comparison means 26 compares the room temperature detected by the room temperature sensor 15 with the target room temperature, and the result is controlled by the control means 2.
7, and the control means 27 controls the forced draft air conditioner 5 according to the result. That is, when the target room temperature is lower than the room temperature, for example, the rotation speed of the compressor 1 is increased to increase the circulation amount of the refrigerant flowing in the evaporator 4 to increase the heat exchange amount, or the expansion valve 3 is throttled to reduce the evaporation pressure. The blowing temperature to the lowering chamber 12 is lowered. At the same time, the blowing temperature can be controlled by controlling the air volume with the fan 10.

【0019】以上のようにして算出された目標室温に応
じて室温を調節することによりPMV値がほぼゼロの輻
射効果を積極的に利用した快適な室内環境が実現でき
る。又、結露防止の目的をもつ強制通風空調機5と冷輻
射パネル7を有機的に結合しているので、より快適な冷
房が実現できる。
By adjusting the room temperature in accordance with the target room temperature calculated as described above, a comfortable indoor environment can be realized by positively utilizing the radiation effect with a PMV value of almost zero. Further, since the forced ventilation air conditioner 5 and the cold radiation panel 7 for the purpose of preventing dew condensation are organically connected, more comfortable cooling can be realized.

【0020】次に第2の実施例について、図面を参照し
ながら説明する。
Next, a second embodiment will be described with reference to the drawings.

【0021】図3は、第2の実施例の輻射暖房装置の構
成図である。すなわち、室内12の床には、輻射による
暖房を行うための温熱輻射パネル36が設けられ、室外
には、冷媒を圧縮するための圧縮機1、強制通風暖房用
の凝縮器2、強制通風暖房用の膨張弁3、外部から熱を
取り入れる蒸発器4が設けられ、それらは順次冷媒配管
で接続されて強制通風空調機5が構成されている。一
方、圧縮機1から出た冷媒配管は、分岐されて制御弁3
7を経て温熱輻射パネル36に接続され、その温熱輻射
パネル36の冷媒出口側には、輻射暖房用の膨張弁38
が接続され、更にその膨張弁38は蒸発器4に接続さ
れ、それらが輻射暖房装置39を構成している。従っ
て、温熱輻射パネル36及び凝縮器2は並列に圧縮機1
へ接続されている。又、凝縮器2の近くにはその凝縮器
2で加熱された空気を室内12に循環させるために、フ
ァン10及びダクト11が設けられている。
FIG. 3 is a block diagram of the radiant heating apparatus of the second embodiment. That is, the floor of the room 12 is provided with a thermal radiant panel 36 for heating by radiation, and the outdoor is provided with a compressor 1 for compressing a refrigerant, a condenser 2 for forced draft heating, and forced draft heating. An expansion valve 3 for heat and an evaporator 4 for taking in heat from the outside are provided, which are sequentially connected by a refrigerant pipe to form a forced draft air conditioner 5. On the other hand, the refrigerant pipe coming out of the compressor 1 is branched into the control valve 3
7 to the thermal radiation panel 36, and the thermal radiation panel 36 is provided on the refrigerant outlet side thereof with an expansion valve 38 for radiant heating.
Are connected to the evaporator 4, and the expansion valve 38 is connected to the evaporator 4, and they constitute the radiant heating device 39. Therefore, the heat radiation panel 36 and the condenser 2 are arranged in parallel in the compressor 1
Connected to. A fan 10 and a duct 11 are provided near the condenser 2 to circulate the air heated by the condenser 2 in the room 12.

【0022】又、温熱輻射パネル36の表面には、その
温熱輻射パネル36の表面温度を検出する輻射温度セン
サ13が設けられ、室内12の一方の側壁には湿度を検
出する湿度センサ14が設けられ、他方の側壁には室温
を検出するための室温センサ15が設けられている。こ
こでは室温センサ15が壁面温度検出手段と室温検出手
段を兼用している。ここで輻射空調装置の制御を説明す
るためのブロック図は、図2の冷輻射パネル7が温熱輻
射パネル36に代わる以外は同様の構成である。
A radiation temperature sensor 13 for detecting the surface temperature of the thermal radiation panel 36 is provided on the surface of the thermal radiation panel 36, and a humidity sensor 14 for detecting humidity is provided on one side wall of the room 12. A room temperature sensor 15 for detecting the room temperature is provided on the other side wall. Here, the room temperature sensor 15 serves as both the wall surface temperature detecting means and the room temperature detecting means. Here, the block diagram for explaining the control of the radiation air conditioner has the same configuration except that the cold radiation panel 7 in FIG.

【0023】次に上記実施例の動作について説明する。Next, the operation of the above embodiment will be described.

【0024】まず、圧縮機1が運転され高温高圧の冷媒
ガスが凝縮器2へ送られ、そこでファン10により送ら
れてきた室内空気と熱交換し、熱を放出し冷媒は液化す
る。加熱された空気はダクト11を通り室内に吹き出さ
れ暖房効果を発揮する。液冷媒は膨張弁3を通り蒸発器
4で大気などから熱を奪い蒸発する。一方圧縮機1の吐
出側から分岐された冷媒は、制御弁37から温熱輻射パ
ネル36へ流れ室内12の床面を加熱する。それにより
床からの温熱輻射と上記の温風によりドラフト感の無い
快適な暖房が実現できる。温熱輻射パネル36で凝縮し
た冷媒は、膨張弁38を通り蒸発器4に送られ、そこで
大気などから熱を奪い蒸発して圧縮機1に再び吸入され
る。
First, the compressor 1 is operated and the high temperature and high pressure refrigerant gas is sent to the condenser 2 where it exchanges heat with the indoor air sent by the fan 10 to release heat and liquefy the refrigerant. The heated air is blown out into the room through the duct 11 and exhibits a heating effect. The liquid refrigerant passes through the expansion valve 3 and takes heat from the atmosphere and the like in the evaporator 4 to be evaporated. On the other hand, the refrigerant branched from the discharge side of the compressor 1 flows from the control valve 37 to the heat radiation panel 36 and heats the floor surface of the room 12. As a result, the warm radiation from the floor and the above-mentioned warm air can realize comfortable heating without a draft feeling. The refrigerant condensed by the heat radiation panel 36 is sent to the evaporator 4 through the expansion valve 38, where heat is taken from the atmosphere and the like to evaporate and then sucked into the compressor 1 again.

【0025】この時、空気側の制御は、室内のPMV値
が略ゼロになるように目標室温を決定する。そのPMV
値を決定する6要素即ち室温、湿度、輻射温度、風速、
活動量、着衣量を求める具体的な方法について説明す
る。室温は室温センサ15から求め、湿度はPMV値に
対して影響が少ないが湿度センサ14から求めることが
出来る。輻射温度は、温熱輻射パネル36の面を含んだ
室内12の表面平均温度のことであり、第1の実施例と
同様に次式(数1)で表される。
At this time, the control on the air side determines the target room temperature so that the PMV value in the room becomes substantially zero. That PMV
Six factors that determine the value: room temperature, humidity, radiation temperature, wind speed,
A specific method for obtaining the activity amount and the clothing amount will be described. The room temperature can be obtained from the room temperature sensor 15, and the humidity can be obtained from the humidity sensor 14 although it has little influence on the PMV value. The radiant temperature is the average surface temperature of the room 12 including the surface of the thermal radiant panel 36, and is represented by the following equation (Equation 1) as in the first embodiment.

【0026】輻射温度=(Σts×A+tp×Ap)/
(ΣA+Ap) ここにts:室内の各非加熱面の表面温度(℃)、A:
室内の各非加熱面の表面積(m2)、tp:温熱輻射パネ
ル温度(℃)、Ap:温熱輻射パネル表面積(m2)ここ
で、室温センサ15で求めた室温と温熱輻射パネル36
以外の壁表面温度はほぼ等しいとみなされ、温熱輻射パ
ネル36の表面温度は輻射温度センサ13で求めると、
室内表面積と温熱輻射パネル36の面積は既知であるた
め輻射温度は計算できる。また他の方法として暖房対象
部屋を立方体として仮定し、床面である温熱輻射パネル
36の面積を1とすると他の非加熱面の表面積は5とな
り、簡易的に輻射温度センサ13による表面温度と室温
を1:5で加重平均してもよい。風速は、ファン10の
風量により決まるものであり在室する人が設定したり、
自動制御されるため、居住域での風速を初期的に求めて
おくことが可能である。活動量は在室する人が設定して
もよく、また赤外線などを用いた人体検知等により初期
的に設定することが可能である。着衣量は暖房期の一般
値を設定値として与えることが可能である。これでPM
V値は計算により求めることが可能となるものである。
求めたPMV値を略ゼロにするための室温を逆算し目標
室温として輻射空調装置に送る。輻射空調装置では、比
較手段26の比較結果に応じて、制御手段27が強制通
風空調機35を制御する(図2参照)。すなわち、目標
室温が室温より高い場合は、圧縮機1の回転数を増加さ
せ凝縮器2内を流れる冷媒循環量を上げて熱交換量を増
加させ室内12への吹き出し温度を上昇させる。同時に
風量をファン10によりコントロールすることで吹き出
し温度を制御することも可能である。そうすることで目
標室温に制御可能であるとともにPMV値がほぼゼロの
快適な室内環境が実現できる。
Radiation temperature = (Σts × A + tp × Ap) /
(ΣA + Ap) where ts: surface temperature (° C) of each non-heated surface in the room, A:
Surface area of each non-heated surface in the room (m 2 ), tp: thermal radiation panel temperature (° C.), Ap: thermal radiation panel surface area (m 2 ) where the room temperature and the thermal radiation panel 36 obtained by the room temperature sensor 15
It is considered that the wall surface temperatures other than the above are almost equal, and the surface temperature of the thermal radiation panel 36 is calculated by the radiation temperature sensor 13,
Since the indoor surface area and the area of the thermal radiation panel 36 are known, the radiation temperature can be calculated. As another method, assuming that the room to be heated is a cube and the area of the thermal radiation panel 36 that is the floor surface is 1, the surface area of the other non-heated surface is 5 and the surface temperature of the radiation temperature sensor 13 is simply Room temperature may be 1: 5 weighted averaged. The wind speed is determined by the air volume of the fan 10, and is set by the person in the room,
Since it is automatically controlled, it is possible to initially obtain the wind speed in the living area. The activity amount may be set by a person present in the room, or may be initially set by detecting a human body using infrared rays or the like. The amount of clothing can be given as a general value during the heating period as a set value. This is PM
The V value can be calculated.
The room temperature for making the obtained PMV value approximately zero is back-calculated and sent to the radiant air conditioner as the target room temperature. In the radiant air conditioner, the control unit 27 controls the forced draft air conditioner 35 according to the comparison result of the comparison unit 26 (see FIG. 2). That is, when the target room temperature is higher than the room temperature, the rotation speed of the compressor 1 is increased, the circulation amount of the refrigerant flowing in the condenser 2 is increased, the heat exchange amount is increased, and the blowing temperature into the room 12 is increased. At the same time, the blowing temperature can be controlled by controlling the air volume with the fan 10. By doing so, it is possible to realize a comfortable indoor environment in which the target room temperature can be controlled and the PMV value is almost zero.

【0027】一方、温熱輻射パネル36の表面温度制御
は、制御弁37を全開にすると温熱輻射パネル36の温
度は圧縮機1の凝縮温度と同じとなり、制御弁37を絞
り膨張弁38を開けることで蒸発温度まで幅広い温度制
御が行える。温熱輻射パネル36に設けられた輻射温度
センサ13で検知される温度がその目標室温より高くな
るように制御弁37で温熱輻射パネル36内での冷媒温
度を制御する。図示してはいないが圧力センサを設けて
凝縮圧力を制御することも可能である。強制通風空調機
35と温熱輻射パネル36を有機的に結合して、より快
適な暖房が実現できる。輻射温度センサ13は、循環冷
媒または間接冷媒の循環温度を直接計測してもよい。ダ
クト11は、天井近傍の室内空気循環用の吸込み・吹出
し口として配置してもよく、室温センサ15や湿度セン
サ14は吸込み口側に付設することも可能である。
On the other hand, in controlling the surface temperature of the heat radiation panel 36, when the control valve 37 is fully opened, the temperature of the heat radiation panel 36 becomes the same as the condensation temperature of the compressor 1, and the control valve 37 is throttled to open the expansion valve 38. Allows wide temperature control up to evaporation temperature. The control valve 37 controls the refrigerant temperature in the thermal radiation panel 36 so that the temperature detected by the radiation temperature sensor 13 provided in the thermal radiation panel 36 becomes higher than the target room temperature. Although not shown, a pressure sensor may be provided to control the condensation pressure. A more comfortable heating can be realized by organically connecting the forced draft air conditioner 35 and the thermal radiation panel 36. The radiation temperature sensor 13 may directly measure the circulating temperature of the circulating refrigerant or the indirect refrigerant. The duct 11 may be arranged as an inlet / outlet port for circulating indoor air near the ceiling, and the room temperature sensor 15 and the humidity sensor 14 may be attached to the inlet port side.

【0028】なお、上記第1の実施例では、輻射空調装
置は強制通風空調機5と輻射冷房装置9を組み合わせて
構成したが、これに限らず、輻射冷房装置のみで構成し
てもよい。この場合は、冷輻射パネル7の冷房能力を、
以上の方法により求めた目標室温に応じて調節すればよ
い。
In the first embodiment, the radiant air conditioner is constructed by combining the forced draft air conditioner 5 and the radiant air conditioner 9, but the radiant air conditioner is not limited to this, and may be constituted by only the radiant air conditioner. In this case, the cooling capacity of the cold radiation panel 7 is
It may be adjusted according to the target room temperature obtained by the above method.

【0029】また、上記第2の実施例では、輻射空調装
置は強制通風空調機35と輻射暖房装置39を組み合わ
せて構成したが、これに限らず、輻射暖房装置のみで構
成してもよい。この場合は、温熱輻射パネル36の暖房
能力を、以上の方法により求めた目標室温に応じて調節
すればよい。
In the second embodiment, the radiant air conditioner is constructed by combining the forced draft air conditioner 35 and the radiant heating device 39. However, the radiant air conditioner is not limited to this and may be constituted by only the radiant heating device. In this case, the heating capacity of the thermal radiation panel 36 may be adjusted according to the target room temperature obtained by the above method.

【0030】また、上記実施例では、輻射冷房装置ある
いは輻射暖房装置に用いる場合について説明したが、こ
れに限らず、輻射冷暖房装置に用いても勿論よい。
Further, in the above-mentioned embodiment, the case of using it in the radiant cooling device or the radiant heating device has been described, but the present invention is not limited to this and may be used in the radiant cooling / heating device.

【0031】また、上記第1の実施例では、輻射パネル
である冷輻射パネル7を冷媒により直接冷却する構成と
したが、これに限らず、水等の間接冷媒により冷輻射パ
ネル7を間接冷却してもよい(図示省略)。間接冷却方
式の場合は、間接熱交換器を設け、冷却された水等の間
接冷媒をポンプで冷輻射パネル7に供給することで、調
圧弁8を設けることなく間接冷媒側の温度即ち冷輻射パ
ネル7の輻射温度が強制通風空調機5の蒸発温度よりも
高くでき、さらにポンプの制御により水等の間接冷媒の
流量をコントロールすることで露点温度制御が可能とな
る。また蒸気圧の低い(異なる)冷媒が使用できるため
冷輻射パネル7の耐圧を低く設計できる。
In the first embodiment, the cold radiation panel 7, which is the radiation panel, is directly cooled by the refrigerant, but the invention is not limited to this. The cold radiation panel 7 is indirectly cooled by an indirect refrigerant such as water. It may be (not shown). In the case of the indirect cooling method, an indirect heat exchanger is provided, and the indirect refrigerant such as cooled water is supplied to the cold radiant panel 7 by a pump, so that the temperature on the indirect refrigerant side, that is, cold radiant without the pressure regulator 8 is provided. The radiation temperature of the panel 7 can be made higher than the evaporation temperature of the forced draft air conditioner 5, and the dew point temperature can be controlled by controlling the flow rate of the indirect refrigerant such as water by controlling the pump. Further, since a refrigerant having a low vapor pressure (different) can be used, the pressure resistance of the cold radiation panel 7 can be designed to be low.

【0032】また、上記第2の実施例では、輻射パネル
である温熱輻射パネル36を冷媒により直接加熱する構
成としたが、これに限らず、水等の間接冷媒により温熱
輻射パネル36を間接加熱してもよい(図示省略)。間
接加熱方式の場合は、間接熱交換器を設け、加熱された
水等の間接冷媒をポンプで温熱輻射パネル36に供給す
ることで、制御弁37を設けることなく間接冷媒側の温
度即ち温熱輻射パネル36の輻射温度が強制通風空調機
35の凝縮温度よりも低くでき、さらにポンプの制御に
より水等の間接冷媒の流量をコントロールすることで温
熱輻射パネル36の輻射温度制御が可能となる。また蒸
気圧の低い(異なる)冷媒が使用できるため温熱輻射パ
ネル36の耐圧を低く設計できる。
In the second embodiment, the heat radiation panel 36, which is a radiation panel, is directly heated by the refrigerant. However, the invention is not limited to this, and the heat radiation panel 36 is indirectly heated by an indirect refrigerant such as water. It may be (not shown). In the case of the indirect heating method, an indirect heat exchanger is provided, and the indirect refrigerant such as heated water is supplied to the hot radiant panel 36 by a pump, so that the temperature on the indirect refrigerant side, that is, the hot radiant heat without the control valve 37 is provided. The radiant temperature of the panel 36 can be made lower than the condensing temperature of the forced draft air conditioner 35, and the radiant temperature of the thermal radiant panel 36 can be controlled by controlling the flow rate of the indirect refrigerant such as water by controlling the pump. Further, since a refrigerant having a low vapor pressure (different) can be used, the pressure resistance of the thermal radiation panel 36 can be designed to be low.

【0033】また、上記実施例では、壁面温度検出手段
21及び室温検出手段22を室温センサ15により兼用
したが、これに限らず、それぞれに温度センサなどの温
度検出手段を設けてもよい。
In the above embodiment, the wall surface temperature detecting means 21 and the room temperature detecting means 22 are also used as the room temperature sensor 15. However, the invention is not limited to this, and temperature detecting means such as a temperature sensor may be provided for each.

【0034】また、上記第1の実施例では、輻射パネル
温度検出手段20である輻射温度センサ13は冷輻射パ
ネル7の温度を検出するように構成したが、これに代え
て、冷輻射パネル7を通る冷媒(または間接冷媒)の温
度を直接検出するように構成してもよい。
Further, in the first embodiment, the radiation temperature sensor 13 which is the radiation panel temperature detecting means 20 is constructed to detect the temperature of the cold radiation panel 7, but instead of this, the cold radiation panel 7 is used. The temperature of the refrigerant (or the indirect refrigerant) passing through may be directly detected.

【0035】また、上記第2の実施例では、輻射パネル
温度検出手段である輻射温度センサ13は温熱輻射パネ
ル36の温度を検出するように構成したが、これに代え
て、温熱輻射パネル36を通る冷媒(または間接冷媒)
の温度を直接検出するように構成してもよい。
Further, in the second embodiment, the radiation temperature sensor 13 which is the radiation panel temperature detecting means is configured to detect the temperature of the thermal radiation panel 36, but instead of this, the thermal radiation panel 36 is used. Passing refrigerant (or indirect refrigerant)
The temperature may be directly detected.

【0036】また、上記実施例では、ダクト11の吸い
込み口を側壁の床側に配置し、吹き出し口を側壁の天井
側に配置したが、取り付け位置はこれに限定されるもの
ではなく、例えば両方とも天井付近に設けてもよい。
Further, in the above embodiment, the suction port of the duct 11 is arranged on the floor side of the side wall, and the blowing port is arranged on the ceiling side of the side wall, but the mounting position is not limited to this, and for example, both Both may be provided near the ceiling.

【0037】また、上記実施例では、輻射温度算出手
段、目標室温算出手段、比較手段及び制御手段をそれぞ
れ専用のハードウェアにより構成したが、これに代え
て、同じ機能をコンピュータを用いてソフトウェア的に
構成しても勿論よい。
Further, in the above embodiment, the radiation temperature calculating means, the target room temperature calculating means, the comparing means and the controlling means are respectively constituted by dedicated hardware, but instead of this, the same function is realized by software using a computer. Of course, it may be configured.

【0038】[0038]

【発明の効果】以上述べたところから明らかなように本
発明は、高価なPMV計を用いることなく、PMV値に
応じた温度調節能力の制御を行うことが出来るという長
所を有する。
As is apparent from the above description, the present invention has an advantage that the temperature adjusting ability can be controlled according to the PMV value without using an expensive PMV meter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる一実施例の輻射冷房装置の構成
図である。
FIG. 1 is a configuration diagram of a radiation cooling apparatus according to an exemplary embodiment of the present invention.

【図2】同実施例の輻射冷房装置の制御を説明する略示
ブロック図である。
FIG. 2 is a schematic block diagram illustrating control of the radiation cooling device according to the embodiment.

【図3】第2の実施例の輻射暖房装置の構成図である。FIG. 3 is a configuration diagram of a radiant heating device according to a second embodiment.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 膨張弁 4 蒸発器 5 強制通風空調機 6 膨張弁 7 冷輻射パネル 8 調圧弁 9 輻射冷房装置 10 ファン 11 ダクト 12 室内 13 輻射温度センサ 14 湿度センサ 15 室温センサ 20 輻射パネル温度検出手段 21 壁面温度検出手段 22 室温検出手段 23 輻射温度算出手段 24 湿度検出手段 25 目標室温算出手段 26 比較手段 27 制御手段 35 強制通風空調機 36 温熱輻射パネル 37 制御弁 39 輻射暖房装置 1 Compressor 2 Condenser 3 Expansion valve 4 Evaporator 5 Forced ventilation air conditioner 6 Expansion valve 7 Cold radiation panel 8 Pressure regulator 9 Radiant cooling device 10 Fan 11 Duct 12 Indoor 13 Radiation temperature sensor 14 Humidity sensor 15 Room temperature sensor 20 Radiation panel Temperature detection means 21 Wall surface temperature detection means 22 Room temperature detection means 23 Radiation temperature calculation means 24 Humidity detection means 25 Target room temperature calculation means 26 Comparison means 27 Control means 35 Forced ventilation air conditioner 36 Heat radiation panel 37 Control valve 39 Radiant heating device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 戎 晃司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Ebi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 温度調節を行うための輻射パネルと、そ
の輻射パネルの温度を検出する輻射パネル温度検出手段
と、室の壁面温度を検出する壁面温度検出手段と、室温
を検出する室温検出手段と、室内の湿度を検出する湿度
検出手段と、快適さを表すPMV値を算出するために必
要な輻射温度を、前記検出された輻射パネル温度、壁面
温度、予め設定された前記輻射パネルの面積及びその輻
射パネルを除く室の内面の面積に基づき算出する輻射温
度算出手段と、前記検出された湿度、前記算出された輻
射温度、及び前記PMV値を求めるために必要な他のデ
ータに基づき、前記PMV値が実質上最も快適な値にな
るような目標室温を算出する目標室温算出手段と、前記
室温検出手段により検出された室温と前記算出された目
標室温とを比較する比較手段と、その比較結果に応じ
て、前記輻射パネルの温度調節能力を制御する制御手段
とを備えたことを特徴とする輻射空調装置。
1. A radiant panel for temperature control, a radiant panel temperature detecting means for detecting the temperature of the radiant panel, a wall surface temperature detecting means for detecting a wall surface temperature of a room, and a room temperature detecting means for detecting a room temperature. And humidity detection means for detecting indoor humidity, and radiation temperature necessary for calculating a PMV value indicating comfort, the detected radiation panel temperature, wall surface temperature, and preset area of the radiation panel. And a radiation temperature calculation means for calculating the area of the inner surface of the room excluding the radiation panel, the detected humidity, the calculated radiation temperature, and other data necessary for obtaining the PMV value, A target room temperature calculating means for calculating a target room temperature at which the PMV value is practically the most comfortable value is compared with the room temperature detected by the room temperature detecting means and the calculated target room temperature. A radiation air conditioner comprising: a comparison means and a control means for controlling the temperature adjusting ability of the radiation panel according to the comparison result.
【請求項2】 更に、強制通風式の空調手段と、前記検
出された室温及び湿度に基づき露点温度を算出する露点
温度算出手段とを備え、前記制御手段は、前記算出され
た露点温度に基づき、前記輻射パネルの温度を前記露点
温度以下にならないように制御し、又室温が前記目標室
温になるように前記空調手段の温度調節能力を制御する
ことを特徴とする請求項1記載の輻射空調装置。
2. A forced ventilation type air conditioning means, and a dew point temperature calculating means for calculating a dew point temperature based on the detected room temperature and humidity, wherein the control means is based on the calculated dew point temperature. 2. The radiant air conditioner according to claim 1, wherein the temperature of the radiant panel is controlled so as not to fall below the dew point temperature, and the temperature adjusting ability of the air conditioner is controlled so that the room temperature becomes the target room temperature. apparatus.
JP33054392A 1992-05-29 1992-12-10 Radiation air conditioning apparatus Pending JPH0642780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33054392A JPH0642780A (en) 1992-05-29 1992-12-10 Radiation air conditioning apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-139036 1992-05-29
JP13903692 1992-05-29
JP33054392A JPH0642780A (en) 1992-05-29 1992-12-10 Radiation air conditioning apparatus

Publications (1)

Publication Number Publication Date
JPH0642780A true JPH0642780A (en) 1994-02-18

Family

ID=26471952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33054392A Pending JPH0642780A (en) 1992-05-29 1992-12-10 Radiation air conditioning apparatus

Country Status (1)

Country Link
JP (1) JPH0642780A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120847A (en) * 2005-10-27 2007-05-17 Hachiyo Engneering Kk Ceiling cooling system
JP2007155206A (en) * 2005-12-05 2007-06-21 Sanken Setsubi Kogyo Co Ltd Radiation cooling/heating system and control method therefor
JP2010038472A (en) * 2008-08-06 2010-02-18 Takenaka Komuten Co Ltd Ventilation type radiation air conditioning system
JP2012083103A (en) * 2012-01-16 2012-04-26 Daikin Industries Ltd Air conditioner
CN102486323A (en) * 2010-12-02 2012-06-06 笹仓机械工程有限公司 Refrigerating device
JP2013092282A (en) * 2011-10-25 2013-05-16 Azbil Corp Surface temperature estimating device, surface temperature estimating method, and dew condensation determination device
CN106871362A (en) * 2017-03-07 2017-06-20 青岛海尔空调器有限总公司 The control method of air-conditioner
JP2020051724A (en) * 2018-09-28 2020-04-02 三菱重工サーマルシステムズ株式会社 Control device, air conditioning system, and control method
US11320169B2 (en) 2017-12-26 2022-05-03 Mitsubishi Electric Corporation Controller, radiative air-conditioning equipment, and control method
US11598344B2 (en) 2008-02-04 2023-03-07 Delta T, Llc Automatic control system for ceiling fan based on temperature differentials
JP2024018561A (en) * 2022-07-29 2024-02-08 株式会社大気社 task air conditioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120847A (en) * 2005-10-27 2007-05-17 Hachiyo Engneering Kk Ceiling cooling system
JP2007155206A (en) * 2005-12-05 2007-06-21 Sanken Setsubi Kogyo Co Ltd Radiation cooling/heating system and control method therefor
US11598344B2 (en) 2008-02-04 2023-03-07 Delta T, Llc Automatic control system for ceiling fan based on temperature differentials
JP2010038472A (en) * 2008-08-06 2010-02-18 Takenaka Komuten Co Ltd Ventilation type radiation air conditioning system
CN102486323A (en) * 2010-12-02 2012-06-06 笹仓机械工程有限公司 Refrigerating device
JP2013092282A (en) * 2011-10-25 2013-05-16 Azbil Corp Surface temperature estimating device, surface temperature estimating method, and dew condensation determination device
JP2012083103A (en) * 2012-01-16 2012-04-26 Daikin Industries Ltd Air conditioner
CN106871362A (en) * 2017-03-07 2017-06-20 青岛海尔空调器有限总公司 The control method of air-conditioner
US11320169B2 (en) 2017-12-26 2022-05-03 Mitsubishi Electric Corporation Controller, radiative air-conditioning equipment, and control method
JP2020051724A (en) * 2018-09-28 2020-04-02 三菱重工サーマルシステムズ株式会社 Control device, air conditioning system, and control method
JP2024018561A (en) * 2022-07-29 2024-02-08 株式会社大気社 task air conditioner

Similar Documents

Publication Publication Date Title
US10962249B2 (en) Air conditioning apparatus and air conditioning control method
JPWO2009044855A1 (en) Air conditioning equipment, radiant air conditioning system, and control method of radiant air conditioning system
JP4147556B2 (en) Air conditioning apparatus and control method thereof
JPH0642780A (en) Radiation air conditioning apparatus
JP6897848B2 (en) Air conditioning system
JP3852571B2 (en) Air conditioner
KR20200004521A (en) Cooling control method for air conditioner
JP2000283535A (en) Radiation air conditioner
JP3852553B2 (en) Air conditioner
JPH0814389B2 (en) Clean room with direct expansion heat exchanger
JP3993616B2 (en) Air conditioner
KR100345485B1 (en) Optimum control apparatus and method for airconditioner
KR20000034767A (en) Method of controlling air conditioner
JP3291380B2 (en) Air conditioner
JPH09138012A (en) Air conditioner
JP2922009B2 (en) Air conditioner
CN109564021A (en) Air-conditioning device
JP2004132573A (en) Air conditioner
JPH06147558A (en) Radiation air conditioning device
JPH11248232A (en) Floor-heating air-conditioning system
JP4612001B2 (en) Air conditioner
JP2716559B2 (en) Cooling / heating mixed type multi-room air conditioner
JP7404458B1 (en) task air conditioner
JP3993617B2 (en) Air conditioner
JP3046885B2 (en) Air conditioner