JPH064247Y2 - Moving distance measuring device - Google Patents

Moving distance measuring device

Info

Publication number
JPH064247Y2
JPH064247Y2 JP6106487U JP6106487U JPH064247Y2 JP H064247 Y2 JPH064247 Y2 JP H064247Y2 JP 6106487 U JP6106487 U JP 6106487U JP 6106487 U JP6106487 U JP 6106487U JP H064247 Y2 JPH064247 Y2 JP H064247Y2
Authority
JP
Japan
Prior art keywords
signal
photoelectric converter
light
signals
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6106487U
Other languages
Japanese (ja)
Other versions
JPS63167207U (en
Inventor
秀人 近藤
貴廣 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP6106487U priority Critical patent/JPH064247Y2/en
Publication of JPS63167207U publication Critical patent/JPS63167207U/ja
Application granted granted Critical
Publication of JPH064247Y2 publication Critical patent/JPH064247Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、光干渉計をセンサとして備えた移動台の移
動距離を精密に計測する測定装置に係わり、特に、移動
台の回動を検出することにより移動距離測定に誤差を生
じないようにした移動台の移動距離測定装置に関する。
[Detailed Description of the Invention] [Industrial field of application] The present invention relates to a measuring device equipped with an optical interferometer as a sensor for accurately measuring a moving distance of a moving table, and particularly to detecting rotation of the moving table. By doing so, the present invention relates to a moving distance measuring device for a moving stand, which prevents an error in moving distance measurement.

〔従来の技術〕[Conventional technology]

従来の光干渉計を用いて、X−Y2軸移動台の移動量を
測定する移動距離測定装置においては、光干渉計を構成
する移動鏡として、入射ビームと出射ビームの方向とが
一致するコーナキューブが利用できないので、平面鏡が
用いられていた。このような装置にあっては、移動台が
ヨーイングまたはピッチングなどで回動することに起因
して、移動鏡に傾き変動を生じたり、移動台上の測定点
位置の選定によっては、移動台の移動距離測定に誤差を
生じるので、このような測定誤差を生じないようにする
ため、これまでは高性能の光干渉計を2台用いて、移動
台の回動を補償する精密な移動距離測定装置があった。
In a moving distance measuring device that measures the amount of movement of an XY biaxial moving table using a conventional optical interferometer, a corner in which the directions of an incident beam and an outgoing beam coincide with each other is used as a movable mirror that constitutes the optical interferometer. Since the cube was not available, a plane mirror was used. In such an apparatus, tilting of the movable mirror may occur due to rotation of the movable base due to yawing or pitching, and depending on the selection of the measurement point position on the movable base, the movable base may move. Since an error will occur in the moving distance measurement, in order to prevent such a measuring error, until now, two high-performance optical interferometers have been used to perform precise moving distance measurement that compensates for rotation of the moving table. There was a device.

〔考案が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、このように構成された移動台の移動距離
測定装置には次のような問題があった。前述したよう
に、移動鏡として平面鏡を用いた移動台の移動距離測定
装置において、移動台が回動すると、移動台に傾き変動
が生じ、その結果、不要なフリンジの生成と受光量の低
下が原因して干渉信号のS/Nが低下する。
However, the moving distance measuring device for a moving table configured as above has the following problems. As described above, in the moving distance measuring device for a movable table using a plane mirror as the movable mirror, when the movable table rotates, tilt variation occurs in the movable table, and as a result, unnecessary fringes are generated and the amount of received light is reduced. As a result, the S / N of the interference signal is reduced.

また、上記のような回動があると、移動台上で選定した
測定点の位置によっては、移動台の移動距離測定に誤差
を生ずる原因になっていた。
Further, the above-described rotation causes an error in measuring the moving distance of the moving table depending on the position of the measuring point selected on the moving table.

これを詳述すれば、移動台のヨーイング等により移動鏡
にθの傾きが生ずると、第2図に示すように、移動鏡か
らの反射光Mは固定鏡の反射光Fに対して2θの交差角
をもって干渉する。この場合、光電変換器又は受光器D
の受光面のy方向の位置で異なる光路差d=y・sin2
θが生じ、干渉光Iは、一般に I=Ia・cos(4πx/λ+2πd/λ+φO)+Ib と表わされる。ここに、λは波長、Iaは振幅成分、Ib
及びφOは一定な光量及び移送差を表わす。
More specifically, when the movable mirror is tilted by θ due to yawing of the movable table or the like, the reflected light M from the movable mirror is 2θ relative to the reflected light F from the fixed mirror, as shown in FIG. Interference with a crossing angle. In this case, the photoelectric converter or the light receiver D
Optical path difference d = y ・ sin2
θ occurs, and the interference light I is generally expressed as I = Ia · cos (4πx / λ + 2πd / λ + φ O ) + Ib. Where λ is the wavelength, Ia is the amplitude component, and Ib
And φ O represent a constant light quantity and transport difference.

検出すべき移動変位量xは、余弦式の位相項として表わ
され、上記光路差によりy方向の位置で異なる位相差
(2πd/λ)が含まれる。
The moving displacement amount x to be detected is expressed as a cosine-type phase term, and includes a phase difference (2πd / λ) that differs at the position in the y direction due to the optical path difference.

受光信号は、受光面のx及びy方向について各点の受光
量(上式のI)を全範囲で積分した値として表わされる
が、上記位相差2πd/λが大きいと、cos 4π x
/λ の信号成分が得られなくなると云う問題がある。
The received light signal is expressed as a value obtained by integrating the amount of received light (I in the above equation) at each point in the x and y directions on the light receiving surface. When the phase difference 2πd / λ is large, cos 4π x
There is a problem that the signal component of / λ cannot be obtained.

一方、受光面を小さくすれば、上記問題は、解消する
が、信号レベルの低下は、避けられず、S/N改善には特
別な手段を施こさなければならないと云う問題があっ
た。
On the other hand, if the light-receiving surface is made smaller, the above problem is solved, but a decrease in signal level is unavoidable, and there is a problem that a special means must be taken to improve the S / N.

具体的に数値例をあげると、例えば受光器Dの寸法がy
=2mmのとき、傾き角が θ=0.16mradであると、そ
の両端での位相差はHe−Neレーザ光の波長λが633
nmであるので、y(sin2θ)/λ≒1となり、2π
(sin2θ)/λ≒2πとなってしまう。
To give a specific numerical example, for example, the size of the photodetector D is y
When 1 = 2 mm and the tilt angle is θ = 0.16 mrad, the phase difference at both ends is 633 when the wavelength λ of the He-Ne laser light is 633.
Since it is nm, y 1 (sin2θ) / λ≈1 and 2π
y 1 (sin 2θ) / λ≈2π.

また、高性能の光干渉計を複数台用いて、移動台の回動
を補償する精密な移動距離測定装置にあっては、構造的
に大形・複雑となり、また高価になると云う問題があっ
た。
Further, in a precise distance measuring device that compensates for the rotation of the moving table by using a plurality of high-performance optical interferometers, there is a problem that it becomes large in size and complicated in structure and expensive. It was

本考案は、上記問題を解決するものであり、その目的と
するところは移動台のヨーイング及びピッチングの検出
ができ、演算補正により性能の劣る移動台にも適用で
き、かつ高精度の測定を可能にする移動台の移動距離測
定装置を提供することにある。
The present invention solves the above-mentioned problem, and the purpose thereof is to detect yawing and pitching of a mobile stand, which can be applied to a mobile stand with inferior performance due to calculation correction, and high-precision measurement is possible. Another object of the present invention is to provide a moving distance measuring device for a moving table.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、光源として、平行偏光光束と垂直偏光光束と
が異なる光周波数で発振する直交二周波レーザ光源を用
い、受光面が複数に分割された受光器を採用することに
より、前記位相差2π d/λの検出信号を得て、この
信号により固定鏡の角度を制御する方法を採用した光干
渉計を構成する。そして、この検出した位相差2π d
/λを常に0とするように固定鏡の角度を制御すること
により前記問題を解決し、また角度の制御量より、ヨー
イング及びピッチングを検出して、高精度の移動距離測
定を可能としたものである。
According to the present invention, as the light source, the orthogonal dual frequency laser light source in which the parallel polarized light flux and the vertically polarized light flux oscillate at different optical frequencies is used, and the light receiving surface is divided into a plurality of light receivers. An optical interferometer adopting a method of obtaining a detection signal of d / λ and controlling the angle of the fixed mirror by this signal is constructed. Then, the detected phase difference 2π d
The problem is solved by controlling the angle of the fixed mirror so that / λ is always 0, and yawing and pitching are detected from the angle control amount to enable highly accurate movement distance measurement. Is.

〔作用〕[Action]

このような手段を備えた移動台の移動距離測定装置であ
れば、直交二周波光源より出射した偏光光束を無偏光ビ
ームスプリッタで二つの光束に分割し、その一つの光束
を第1の光電変換器で受光して二つの偏光光束の差周波
数の電気信号FFを発生させ、この電気信号を位相検出
の基準信号とすることができる。また他の光束を偏光干
渉計に導入して、移動台に設けられた移動鏡の位置と傾
き角度情報とを含む光束を、その受光面が2分割された
第2の光電変換器で受光して二つの電気信号SF,SS
にすることができる。この二つの電気信号SF,SSか
ら位相差を検出し、検出された位相差に基づいて偏光干
渉計の固定鏡を駆動するアクチュエータを制御すること
ができる。このアクチュエータにより前記検出された位
相差が0となるように制御することによって移動台の回
動を補償することができる。一方、前記電気信号FF
と、該電気信号をπ/2移相器を通して得られる電気信
号FSと、前記電気信号SFとに基づいて移動台の移動
距離を算出することができる。
In the case of the moving distance measuring device of the movable table provided with such means, the polarized light beam emitted from the orthogonal dual frequency light source is split into two light beams by the non-polarizing beam splitter, and one light beam is converted into the first photoelectric conversion. An electric signal FF having a difference frequency between the two polarized light beams is generated by receiving the electric signal from the container, and this electric signal can be used as a reference signal for phase detection. Further, another light flux is introduced into the polarization interferometer, and the light flux including the position and tilt angle information of the movable mirror provided on the movable table is received by the second photoelectric converter whose light receiving surface is divided into two. Two electrical signals SF, SS
Can be A phase difference can be detected from the two electric signals SF and SS, and an actuator for driving the fixed mirror of the polarization interferometer can be controlled based on the detected phase difference. By controlling this actuator so that the detected phase difference becomes zero, the rotation of the movable table can be compensated. On the other hand, the electric signal FF
Then, the moving distance of the mobile table can be calculated based on the electric signal FS obtained by passing the electric signal through the π / 2 phase shifter and the electric signal SF.

〔実施例〕〔Example〕

以下本考案の一実施例を図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は実施例としての移動台の移動距離測定装置の概
略構成を示すブロック図である。ただし、光学系は平面
図を示してあり、垂直方向を回転軸とした移動台の傾き
検出及び回動補償を説明するためのものである。
FIG. 1 is a block diagram showing a schematic configuration of a moving distance measuring device for a moving table as an embodiment. However, the optical system is shown in a plan view, and is for explaining the tilt detection and the rotation compensation of the movable table with the vertical direction as the rotation axis.

まず、直交二周波光源1から出射した平行偏光光束2、
及び垂直偏光光束3を無偏光ビームスプリッタ4で分割
し、検光子5及び第1の光電変換器6により干渉信号F
Fを得る。上記二つの偏光光束の差周波数をfとすると
この信号FFは FF=Ia cos(2πft+φ)+Ib1 と表わすことができ、位相検出の基準信号となる。一方
無偏光ビームスプリッタ4の透過光束は、偏光干渉計3
0に入射させ、移動台7の移動変位量xの検出用とす
る。
First, the parallel polarized light flux 2 emitted from the orthogonal dual frequency light source 1,
And the vertically polarized light beam 3 are split by the non-polarized beam splitter 4, and the interference signal F is divided by the analyzer 5 and the first photoelectric converter 6.
Get F. When the difference frequency between the two polarized light beams is f, this signal FF can be expressed as FF = Ia 1 cos (2πft + φ 1 ) + Ib 1 and serves as a reference signal for phase detection. On the other hand, the transmitted light flux of the non-polarization beam splitter 4 is the polarization interferometer 3
It is incident on 0 to detect the moving displacement amount x of the moving table 7.

偏光干渉計30は、偏光ビームスプリッタ8、二つの1
/4波長板9A,9B、移動鏡10、固定鏡11、及び
検光子12で構成されている。この偏光干渉計よりの出
力信号は、第3図に示す受光面が2分割された第2の光
電変換器13で検出され、二つの信号SFとSSを発生
する。これらの信号SF,SSは SF=Ia2 cos(2πft+4π x/λ+φ)+Ib2 SS=Ia3 cos(2πft+4π x/λ+2π d/λ+
φ)+Ib3 と表わされ、信号SSには信号SFを基準とした移動鏡
10の傾きθによる位相項2π d/λが含まれている。
ここで、二つの受光面の間隔をPとすると、この位相
項は二つ信号SF,SSの位相差として2π d/λ=2
π P(sin 2θ)/λ≒4π Pθ/λと表わ
されるが、移動鏡の傾きθがあると、受光面上のy方向
で異なる位相差を生じるため、前記考案が解決しようと
する問題点の項で述べたようにθが大きいと、cos(2
πft+4π x/λ)の信号成分が著しく低下する。
The polarization interferometer 30 includes a polarization beam splitter 8 and two
It is composed of quarter wave plates 9A and 9B, a movable mirror 10, a fixed mirror 11, and an analyzer 12. The output signal from this polarization interferometer is detected by the second photoelectric converter 13 whose light-receiving surface shown in FIG. 3 is divided into two, and generates two signals SF and SS. These signals SF and SS are SF = Ia 2 cos (2πft + 4π x / λ + φ 2 ) + Ib 2 SS = Ia 3 cos (2πft + 4π x / λ + 2π d / λ +
φ 2 ) + Ib 3, and the signal SS includes a phase term 2π d / λ due to the inclination θ of the movable mirror 10 with reference to the signal SF.
Here, when the distance between the two light receiving surfaces is P y , this phase term is 2π d / λ = 2 as the phase difference between the two signals SF and SS.
It is expressed as π P y (sin 2 θ) / λ≈4 π P y θ / λ, but if there is a tilt θ of the movable mirror, different phase differences occur in the y direction on the light receiving surface, so that the above invention is intended to solve If θ is large as described in the section of the problem of cos (2
The signal component of (πft + 4π x / λ) is significantly reduced.

移動鏡10の傾きθを検出するには、受光面が2分割さ
れた第2の光電変換器13の出力信号SFとSSとから
位相差検出回路20により4π Pθ/λを求める方
法を用いる。
In order to detect the tilt θ of the movable mirror 10, a method of obtaining 4π P y θ / λ by the phase difference detection circuit 20 from the output signals SF and SS of the second photoelectric converter 13 whose light receiving surface is divided into two is used. To use.

位相差検出回路20は、フィルタを通した信号SF,S
Sをゼロクロスでパルス化し、その二信号の立上り時間
差及び立下り時間差を電圧値に変換する回路で構成する
ことができ、−πから+πまでの位相差を検出できる。
また、別の位相差検出方法として移動台の移動速度が遅
く、4πx/λによる周波数が二つの偏光光束の差周波数
fより十分低い場合は、信号SSまたは、SFの一方を
図示しない移相器により90°の位相シフトを加え、位
相差検出回路20の代りに図示しない同期検波回路で4
π P θ/λを求める方法がある。
The phase difference detection circuit 20 uses the filtered signals SF and S.
A circuit for converting S into a pulse at zero cross and converting the rise time difference and fall time difference of the two signals into voltage values can detect a phase difference from -π to + π.
Further, as another phase difference detection method, when the moving speed of the moving table is slow and the frequency due to 4πx / λ is sufficiently lower than the difference frequency f of the two polarized light beams, one of the signals SS or SF is not shown in the figure. The phase difference detection circuit 20 is replaced by a synchronous detection circuit (not shown) instead of the phase difference detection circuit 20.
There is a method of obtaining π P y θ / λ.

第1図において、21は、固定鏡11の角度制御を行な
う角度制御部である。ここでは、検出された位相差4π
θ/λの積分を行ない、アクチュエータ23の駆
動信号として4π Pθ/λ=0となる信号を発生す
る。アクチュエータ23は電歪素子を用いた回転補正装
置であって、高圧増幅器22の出力により駆動され、前
記駆動信号に対応した傾き角を固定鏡11に与えるもの
である。従って、上記検出された位相差を0とする積分
制御により移動鏡10にθの傾きを生ずると、固定鏡1
1も追従してθの傾きを生じ、前記受光面上での位相差
は均一になる。この制御法では、前記の様に位相差検出
が4πP θ/λと非直線的であっても角度制御部2
1の出力は、移動鏡10の傾きθに比例し、また検出範
囲が狭くてもアクチュエータ23の動作範囲までの広い
範囲に亘るθの値を得ることができる。この角度制御部
21の出力をデータ処理部24に取り込み、移動台の傾
き情報を、移動台の位置合せの補正演算に用いることが
できる。
In FIG. 1, reference numeral 21 is an angle control unit that controls the angle of the fixed mirror 11. Here, the detected phase difference 4π
P y θ / λ is integrated to generate a signal of 4π P y θ / λ = 0 as a drive signal for the actuator 23. The actuator 23 is a rotation correction device using an electrostrictive element, and is driven by the output of the high voltage amplifier 22 to give the fixed mirror 11 an inclination angle corresponding to the drive signal. Therefore, when the tilt of θ is generated in the movable mirror 10 by the integral control for setting the detected phase difference to 0, the fixed mirror 1
1 also follows and causes an inclination of θ, and the phase difference on the light receiving surface becomes uniform. In this control method, even if the phase difference detection is nonlinear as 4πP y θ / λ as described above, the angle control unit 2
The output of 1 is proportional to the inclination θ of the movable mirror 10, and even if the detection range is narrow, a value of θ over a wide range up to the operation range of the actuator 23 can be obtained. The output of the angle control unit 21 can be fetched into the data processing unit 24, and the tilt information of the moving table can be used for the correction calculation of the positioning of the moving table.

以上の説明は、垂直方向を回転軸とした移動台の傾き
(ヨーイング)検出及び回動補償についてであったが、
第2の光電変換器13の受光面を第4図に示す様に4分
割にすること、またアクチュエータ23を2軸用とする
ことにより水平方向を回転軸とする傾き(ピッチング)
検出及び回動補償も付加することができる。
The above description is about the tilt (yawing) detection and the rotation compensation of the moving table with the vertical axis as the rotation axis.
By tilting the light receiving surface of the second photoelectric converter 13 into four as shown in FIG. 4 and using the actuator 23 for two axes, the inclination (pitching) with the horizontal axis as the rotation axis.
Detection and rotation compensation can also be added.

また、移動台の傾きを補償すべき対象は固定鏡に限られ
ることはなく、移動鏡にアクチュエータを取付けて補償
する場合もある。移動鏡の回動中心は定まっているの
で、移動台がどのように傾きながら移動しているかは一
義的に知ることができ、なんら不都合は生じない。
Further, the object to be compensated for the tilt of the movable table is not limited to the fixed mirror, and an actuator may be attached to the movable mirror for compensation. Since the center of rotation of the movable mirror is fixed, it is possible to uniquely know how the movable table tilts while moving, and no inconvenience occurs.

移動台の移動変位量xの出力処理には、前記信号FF及
び、SF信号を用いる。まず、フィルムにより直流成分
等不要の周波数成分を除去し、π/2移相器15により信
号FSを発生する。次に、信号SFとFSとを入力信号
とした、また信号SFとFFとを入力信号とした第1及
び第2の同期検波回路(16,17)により低周波成分
sin(4π x/λ)及びcos(4π x/λ)成分を得る。
この二つの信号により、移動台7の移動方向判別が可能
で、通常、位相π/4ごと、すなわち光路長λ/8ステップ
での正負カウント用パルスが生成され、このパルスを可
逆カウンタ19により計数して、移動台の移動変位量x
すなわち、移動距離を測定することができる。
The signal FF and SF signals are used for the output processing of the moving displacement amount x of the moving table. First, unnecessary frequency components such as a DC component are removed by a film, and the π / 2 phase shifter 15 generates a signal FS. Next, low frequency components are generated by the first and second synchronous detection circuits (16, 17) using the signals SF and FS as input signals and the signals SF and FF as input signals.
Obtain the sin (4π x / λ) and cos (4π x / λ) components.
It is possible to determine the moving direction of the moving table 7 by these two signals, and normally, a pulse for positive / negative counting is generated at every phase π / 4, that is, at the optical path length λ / 8 step, and this pulse is counted by the reversible counter 19. Then, the displacement amount x of the moving table
That is, the moving distance can be measured.

〔考案の効果〕[Effect of device]

以上説明したように、本考案の移動台の移動距離測定装
置によれば、移動台の角度変動による移動距離測定の誤
差をなくすることができ、また移動台のヨーイング及び
ピッチングを簡単な手段で検出できる。したがって、性
能の劣る簡易な機構で作られた移動台であっても0.05〜
0.5μmの高精度の距離測定が可能である。このこと
は、たとえば電子ビーム装置において、容積または磁性
などの諸条件に制約されて高性能の移動台が導入し得な
い場合にも、本考案装置であれば、移動台の移動距離測
定または位置合せ用測長装置として適用可能である。
As described above, according to the moving distance measuring device for a moving table of the present invention, it is possible to eliminate an error in measuring the moving distance due to an angle variation of the moving table, and yawing and pitching the moving table with a simple means. Can be detected. Therefore, even with a moving table made with a simple mechanism with poor performance,
High-precision distance measurement of 0.5 μm is possible. This means that even if a high-performance mobile stand cannot be introduced in an electron beam system due to various conditions such as volume or magnetism, the device of the present invention can measure the moving distance or position of the mobile stand. It is applicable as a length measuring device for alignment.

また、本考案装置によれば、移動台の回動を補償するた
めに、高性能の光干渉計を複数台用うる必要がないの
で、構造的に小形・簡易、かつ廉価となる。
Further, according to the device of the present invention, it is not necessary to use a plurality of high-performance optical interferometers to compensate for the rotation of the movable table, so that it is structurally compact, simple, and inexpensive.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を示すブロック図、第2図は
移動鏡の傾きによる光路差を説明するための説明図、第
3図はヨーイング検出用光電変換器の受光面の説明図、
第4図はヨーイングとピッチング検出用光電変換器の受
光面の説明図である。 1……直交二周波光源、4……無偏光ビームスプリッ
タ、6……第1の光電変換器、7……移動台、8……偏
光ビームスプリッタ、9……1/4波長板、10……移動
鏡、11……固定鏡、13……第2の光電変換器、15
……π/2移相器、16……第1の同期検波回路、17
……第2の同期検波回路、18……位相弁別回路、19
……可逆カウンタ、20……位相差検出回路、23……
アクチュエータ、24……データ処理部、30……偏光
干渉計、40……信号処理手段
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is an explanatory view for explaining an optical path difference due to a tilt of a movable mirror, and FIG. 3 is an explanatory view of a light receiving surface of a yaw detecting photoelectric converter. ,
FIG. 4 is an explanatory view of the light receiving surface of the photoelectric converter for detecting yawing and pitching. 1 ... Orthogonal dual frequency light source, 4 ... Non-polarization beam splitter, 6 ... First photoelectric converter, 7 ... Moving stage, 8 ... Polarization beam splitter, 9 ... 1/4 wavelength plate, 10 ... … Movable mirror, 11 …… Fixed mirror, 13 …… Second photoelectric converter, 15
...... π / 2 phase shifter, 16 …… First synchronous detection circuit, 17
...... Second synchronous detection circuit, 18 ...... Phase discrimination circuit, 19
...... Reversible counter, 20 ...... Phase difference detection circuit, 23 ......
Actuator, 24 ... Data processing unit, 30 ... Polarization interferometer, 40 ... Signal processing means

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】周波数が異なり、かつ互に直交する二つの
偏光で成る光束を発する直交二周波光源(1)と; 該直交二周波光源が発する光束を第1及び第2の光路へ
進む二つの光束に分ける光学素子(4)と; 該第1の光路へ進む光束を受けて前記二つの偏光光束の
差周波数の電気信号FFを得る第1の光電変換器(6)
と; 該第1の光電変換器の出力信号FFとπ/2の位相差を
もつ第2の信号FSを出力する移相器(15)と; 該第2の光路を通る光束を受けて、移動台に設けられた
反射鏡の位置及び角度の偏り情報を帯びた光束を出射す
る偏光干渉計(30)と; 少くとも二つに分割された受光面をもち、該偏光干渉計
の出射光束を少くとも二つの電気信号に変換する第2の
光電変換器(13)と; 該第2の光電変換器の出力信号のうち所定の二信号の位
相差を検出する位相差検出回路(20)と; 該検出された位相差により該偏光干渉計を構成する一方
の反射鏡の位置及び角度を制御するアクチュエータ(23)
と; 該第2の光電変換器の出力信号のうち所定の一つと、該
移相器の出力信号の一つとを入力信号とする第1の同期
検波回路(16)と; 該第1の光電変換器の出力信号と、該第2の光電変換器
の出力信号のうち所定の一つとを入力信号とする第2の
同期検波回路(17)と; 該第1及び第2の同期検波回路の出力信号を比較して移
動台の移動方向を判別し、かつ移動距離を算出する信号
処理手段(40)とを備えた移動台の移動距離測定装置。
1. A quadrature dual-frequency light source (1) which emits a light flux composed of two polarizations having different frequencies and orthogonal to each other; a light flux emitted by the quadrature dual-frequency light source to travel to first and second optical paths. An optical element (4) for splitting into one light beam; a first photoelectric converter (6) for receiving a light beam traveling to the first optical path and obtaining an electric signal FF having a difference frequency between the two polarized light beams
And; a phase shifter (15) that outputs a second signal FS having a phase difference of π / 2 from the output signal FF of the first photoelectric converter; and a light beam that passes through the second optical path, A polarization interferometer (30) that emits a light beam with deviation information on the position and angle of a reflecting mirror provided on the movable table; and a light beam emitted from the polarization interferometer that has a light-receiving surface divided into at least two. A second photoelectric converter (13) for converting the signal into at least two electric signals; and a phase difference detection circuit (20) for detecting a phase difference between two predetermined signals of the output signals of the second photoelectric converter. An actuator (23) for controlling the position and angle of one of the reflecting mirrors that compose the polarization interferometer based on the detected phase difference
A first synchronous detection circuit (16) having a predetermined one of the output signals of the second photoelectric converter and one of the output signals of the phase shifter as input signals; A second synchronous detection circuit (17) which receives the output signal of the converter and a predetermined one of the output signals of the second photoelectric converter as input signals; and of the first and second synchronous detection circuits A moving distance measuring device for a moving table, which comprises a signal processing means (40) for comparing the output signals to determine the moving direction of the moving table and calculating the moving distance.
JP6106487U 1987-04-22 1987-04-22 Moving distance measuring device Expired - Lifetime JPH064247Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6106487U JPH064247Y2 (en) 1987-04-22 1987-04-22 Moving distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6106487U JPH064247Y2 (en) 1987-04-22 1987-04-22 Moving distance measuring device

Publications (2)

Publication Number Publication Date
JPS63167207U JPS63167207U (en) 1988-10-31
JPH064247Y2 true JPH064247Y2 (en) 1994-02-02

Family

ID=30894056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6106487U Expired - Lifetime JPH064247Y2 (en) 1987-04-22 1987-04-22 Moving distance measuring device

Country Status (1)

Country Link
JP (1) JPH064247Y2 (en)

Also Published As

Publication number Publication date
JPS63167207U (en) 1988-10-31

Similar Documents

Publication Publication Date Title
EP0740769B1 (en) Heterodyne interferometer with second harmonic correction
US6084673A (en) Lithographic apparatus for step-and-scan imaging of mask pattern with interferometer mirrors on the mask and wafer holders
JP5350285B2 (en) Multi-degree-of-freedom interferometer
US3790284A (en) Interferometer system for measuring straightness and roll
US5517307A (en) Probe measurement apparatus using a curved grating displacement interferometer
US4693605A (en) Differential plane mirror interferometer
US20070041022A1 (en) Interferometer for measuring perpendicular translations
CN107806821B (en) With the difference single-frequency interference signal processing unit and method of integrated four photodetectors
EP0244275B1 (en) Angle measuring interferometer
CN111735391B (en) Double-phase measurement type laser interference straightness and displacement simultaneous measurement device and method
US20150103356A1 (en) Interferometer, System, and Method of Use
JPH064247Y2 (en) Moving distance measuring device
US11940349B2 (en) Plane grating calibration system
JP2004245634A (en) Rotation angle measuring device
Usuda et al. Development of laser interferometer for a sine-approximation method
JPS635208A (en) Apparatus for measuring surface shape
JP2003232606A (en) Angle detection system, angle detection method, and laser beam machining device
JP3045567B2 (en) Moving object position measurement device
GB2389896A (en) Interferometer for measurement of angular displacement
JPH0510733A (en) Three-dimensional shape measuring apparatus
JPH0914929A (en) Level difference measuring device
JPH07270183A (en) Fixed point-detecting apparatus
JPH03235006A (en) Method and apparatus for measuring progressive linearity of moving body
JPH0599612A (en) Laser interferometer
SU1569544A1 (en) Apparatus for determining angles of inclination of mobile object