JPH0641899B2 - Method for measuring physical properties of fluid in fluid treatment device - Google Patents

Method for measuring physical properties of fluid in fluid treatment device

Info

Publication number
JPH0641899B2
JPH0641899B2 JP60298134A JP29813485A JPH0641899B2 JP H0641899 B2 JPH0641899 B2 JP H0641899B2 JP 60298134 A JP60298134 A JP 60298134A JP 29813485 A JP29813485 A JP 29813485A JP H0641899 B2 JPH0641899 B2 JP H0641899B2
Authority
JP
Japan
Prior art keywords
fluid
measuring
physical properties
separating
treatment device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60298134A
Other languages
Japanese (ja)
Other versions
JPS62156537A (en
Inventor
己喜男 佐藤
常雄 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wako Sangyo KK
Original Assignee
Wako Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Sangyo KK filed Critical Wako Sangyo KK
Priority to JP60298134A priority Critical patent/JPH0641899B2/en
Publication of JPS62156537A publication Critical patent/JPS62156537A/en
Publication of JPH0641899B2 publication Critical patent/JPH0641899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、石油精製,石油化学などのいわゆる流体処理
装置(プラント)における流体の物性測定方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for measuring physical properties of a fluid in a so-called fluid treatment device (plant) such as petroleum refining, petrochemistry and the like.

[従来技術] 従来、流体処理装置の系に流体のPHや密度を測定する計
測器を接続し、該計測器の前段の系に、流体に混入する
不要物質を分離させる分離装置を接続する流体の物性測
定方法は、例えば特開昭60−91233号(以下先行例1)
や特開昭49−119382号(以下先行例2)によって知られ
ている。
[Prior Art] Conventionally, a fluid is connected to a system of a fluid treatment device with a measuring instrument for measuring PH and density of a fluid, and a system before the measuring instrument is connected with a separating device for separating unnecessary substances mixed in the fluid. The method for measuring the physical properties is described in, for example, JP-A-60-91233 (hereinafter referred to as Prior Example 1).
And JP-A-49-119382 (hereinafter referred to as prior art 2).

[発明が解決しようとする課題] 従来技術で述べた先行例1による流体の物性測定方法
は、系中の流体を分離装置を構成する沈降槽に流入させ
て静置させ、静置による不要物質の浮遊又は沈降によっ
てクリーンとなった流体を計測器に流入せしめて計測す
る方法であるが、静置による間歇分離では非常に時間が
かかり、測定時間にタイムラグがでるため正確な測定が
できない。加えて連続測定もできない。
[Problems to be Solved by the Invention] In the method for measuring physical properties of a fluid according to Prior Art 1 described in the prior art, a fluid in a system is caused to flow into a settling tank constituting a separation apparatus and allowed to stand still, and an unnecessary substance caused by standing still This is a method of measuring by flowing a fluid that has become clean due to suspension or sedimentation into a measuring instrument, but intermittent separation by standing still takes a very long time, and a time lag occurs in the measurement time, which makes accurate measurement impossible. In addition, continuous measurement is not possible.

一方、先行例2による流体の物性測定方法は、多数の沈
降槽を落差を有して上流側から下流側に多段状に配置
し、上流側の槽から下流側の槽に流体をオーバーフロー
により不要物質を各槽で順次沈降分離させながら、最下
流の槽からオーバーフローした上澄水を計測器に流入さ
せて計測するものであるが、この方法だと、流体の連続
測定は可能なるも、問題は流体が最上流側の槽から最下
流の槽に到達する迄は相当な時間がかかる。
On the other hand, in the method for measuring physical properties of a fluid according to the second prior art, a large number of settling tanks are arranged in a multi-stage from the upstream side to the downstream side with a head, and the fluid is unnecessary from the upstream side tank to the downstream side tank due to overflow. While the substances are sequentially settled and separated in each tank, the supernatant water that overflows from the most downstream tank is made to flow into a measuring instrument for measurement, but this method allows continuous measurement of the fluid, but there is no problem. It takes a considerable amount of time for the fluid to reach the most downstream tank from the most upstream tank.

例えば上記到達迄に30分を要するとすると、測定値は30
分前に流入した流体の測定値であって、この間にもし最
上流の槽に異なる値の流体が流入した場合、その値を直
ちに計測することはできず、従ってこの方法もまたタイ
ムラグによる計測となるため測定値に信頼がもてず、こ
のことから例えば生産量に応じて処理流体の流速や物性
が絶えず変化する石油プラントなどの流体の物性測定に
は不適である。
For example, if it takes 30 minutes to reach the above, the measured value is 30
The measured value of the fluid that flowed in a minute before, and if a different value of the fluid flowed into the most upstream tank during this time, that value cannot be measured immediately, so this method is also a measurement with a time lag. Therefore, the measured values are not reliable, which makes it unsuitable for measuring the physical properties of fluids such as oil plants, where the flow velocity and physical properties of the treated fluid constantly change depending on the production amount.

そこで本発明は、流体に混入する不要物質の対象が油ま
たは水などの液分に特定されるが、要するに連続流動す
る流体が分離装置を通過する際に瞬時に不要液分を分離
させて、直ちに計測器によりタイムラグなく計測できる
ようにし、それにより処理流体の流速や物性が絶えず変
化する石油プラントなどの流体の物性測定に、有効に採
用できるようにすることを目的とするものである。
Therefore, the present invention, the target of the unnecessary substances mixed in the fluid is specified to the liquid content such as oil or water, in short, by separating the unnecessary liquid content instantly when the fluid that continuously flows passes through the separation device, An object of the present invention is to enable measurement with a measuring instrument immediately without a time lag, and thereby to be effectively applicable to measurement of physical properties of fluids such as oil plants in which the flow velocity and physical properties of the treated fluid constantly change.

[課題を解決するための手段] 上記目的を達成するための本発明は、流体処理装置の系
中に、PHや密度を測定する計測器を接続し、該計測器の
前段の系に系中の流体にエマルジヨン状に混入する水ま
たは油などの不要な液分を分離させる分離装置を接続さ
せる流体の物性測定方法において、上記分離装置による
液分の分離方法が、系中の流体を分離装置を構成する繊
維層を連続通過させて液分を繊維との衝突によって破壊
させ、破壊された液分が繊維間の毛細管に流れにのって
通過する過程で液分を滴状に成長させ、成長により生じ
た液分の質量と流体との比重差による液分の沈降または
浮上により液分を分離させてクリーンとなった流体を上
記計測器に流入させることを要旨とするものである。
[Means for Solving the Problems] The present invention for achieving the above-mentioned object is to connect a measuring instrument for measuring PH and density to the system of a fluid treatment device, and connect the measuring instrument to the system in the preceding stage of the measuring instrument. In the method for measuring the physical properties of a fluid, which is connected to a separation device for separating unnecessary liquid components such as water or oil mixed in the fluid of emulsification, the method for separating the liquid component by the above-mentioned separation device is a device for separating the fluid in the system. By continuously passing through the fiber layer constituting the liquid component to destroy the liquid component by collision with the fiber, and the liquid component that has been destroyed grows in a drop shape in the process of passing through the capillary tube between the fibers. The gist of the present invention is to allow a fluid, which has been cleaned by separating the liquid component due to sedimentation or floating of the liquid component due to a difference in specific gravity between the fluid and the mass of the liquid component generated by the growth, to flow into the measuring instrument.

[実施例] 図は本発明方法を実施するための概略構成を示してい
る。
[Example] The figure shows a schematic configuration for carrying out the method of the present invention.

1は、石油精製,石油化学プラントからなる流体処理装
置で、この処理装置1から導出された系中の流体、つま
り油の密度を測定する密度計からなる計測器2が接続さ
れ、この計測器2の前段の系中に分離装置3が介在接続
される。
Reference numeral 1 is a fluid treatment apparatus comprising a petroleum refining and petrochemical plant, to which is connected a measuring instrument 2 comprising a densitometer for measuring the density of the fluid in the system derived from this treating apparatus 1, that is, oil. The separation device 3 is interveningly connected in the system of the preceding stage of 2.

分離装置3は、入口ポート4を備えたケーシング5の内
部に、上記入口ポート4に連なる溜室6,該溜室6に連
なる誘導管7,該誘導管7の先方に着脱交換可能に取付
けた円筒状の繊維層8、ケーシング5の上部に設けた出
口ポート9、ケーシングの下部に設けたドレーン口10と
で構成されている。そして上記入口ポート4と出口ポー
ト9とが系中に接続されるものである。
The separation device 3 is detachably mounted inside a casing 5 having an inlet port 4 in a reservoir chamber 6 connected to the inlet port 4, a guide pipe 7 connected to the reservoir chamber 6, and a tip of the guide pipe 7. It is composed of a cylindrical fiber layer 8, an outlet port 9 provided in the upper part of the casing 5, and a drain port 10 provided in the lower part of the casing. The inlet port 4 and the outlet port 9 are connected in the system.

尚、上記繊維層8は、凝集分離が有効に働き、かつ、流
体の物性である密度や水のPH値を把握すると同時に運転
条件などを考慮した適切な均一密度と一定の厚みをもっ
たグラスファイバーなどの適宜の繊維にて形成されてい
ることは物論である。
The fiber layer 8 is a glass having an appropriate uniform density and a certain thickness, in which cohesive separation works effectively, and the physical properties of the fluid, such as the density and the PH value of water, are grasped, and at the same time, operating conditions are taken into consideration. It is a matter of theory that they are formed of appropriate fibers such as fibers.

[作 用] 流体処理装置1の系中を流動する流体、本例では油は、
分離装置3の入口ポート4,誘導管7を経て繊維層8内
に連続的に流入してその内側から外側に流れ、そして繊
維層を通過する際に油中にエマルジョン状に混入する微
細な水分が繊維との衝突によって破壊され、破壊された
水分が繊維間の流れにのって通過する過程で凝集されて
滴状に成長し、成長により生じた水分の質量との油との
比重差によって水分は自重沈降して下部ドレーン口10か
ら放出され、又上記水分の沈降により分離されてクリー
ンとなった油は上部の出口ポート9を経て計測器2に流
入し、密度が連続測定されることになる。そしてこの測
定値に応じて図示しない密度調整装置がコントロールさ
れるものである。
[Operation] The fluid flowing in the system of the fluid treatment device 1, oil in this example, is
Fine water that continuously flows into the fiber layer 8 through the inlet port 4 and the guide tube 7 of the separation device 3, flows from the inside to the outside, and is mixed into the oil in an emulsion state when passing through the fiber layer. Are destroyed by the collision with the fibers, and the destroyed water is aggregated and grows in the form of drops in the process of passing along the flow between the fibers, depending on the difference in specific gravity between the mass of water generated by the growth and the oil. Moisture settles by gravity and is discharged from the lower drain port 10. Also, the oil separated by the settling of water and becoming clean flows into the measuring instrument 2 through the upper outlet port 9, and the density is continuously measured. become. A density adjusting device (not shown) is controlled according to the measured value.

上記実施例では、石油精製,石油化学プラントにおける
油の密度の測定の例を述べたが、石油化学プラントなど
で酸性水アルカリ性水による洗浄を行う系において、PH
調整用の酸やアルカリの注入量を最適にする目的でPH計
測器による測定がおこなわれるが、この場合は水中の微
量油分を分離するものであるからドレーン口10にPH計測
器が接続され、該計測器からの指示によりPH調整装置が
コントロールされることは勿論である。
In the above example, an example of oil density measurement in a petroleum refining and petrochemical plant was described. However, in a system that performs washing with acidic water and alkaline water in a petrochemical plant, PH
PH measurement is performed with the purpose of optimizing the injection amount of acid and alkali for adjustment, but in this case a PH measurement is connected to the drain port 10 because it separates a small amount of oil in water. Of course, the PH adjusting device is controlled by the instruction from the measuring instrument.

[発明の効果] 上述のように本発明によれば、次の効果が得られる。[Effects of the Invention] As described above, according to the present invention, the following effects can be obtained.

(a)流体が繊維層を通過することによる繊維との衝突に
よって液分を破壊させ、かつ破壊された液分が繊維間の
毛細管の流れにのって通過する過程で液分を成長させ、
成長した液分の質量と流体との比重差で液分を分離させ
る、つまり流体が繊維層を通過する際に瞬時に液分を分
離させるため、直ちに上記分離によりクリーンとなつた
流体をタイムラグなく計測でき、信頼性の高い計測を可
能とすることができる。。
(a) the fluid is destroyed by collision with the fibers due to the fluid passing through the fiber layer, and the destroyed liquid is grown in the process of passing along the flow of the capillary between the fibers,
The liquid is separated by the difference in the specific gravity between the grown liquid and the fluid, that is, the liquid is instantly separated when the fluid passes through the fiber layer. Measurement can be performed, and highly reliable measurement can be performed. .

(b)また、上記瞬時分離により絶えず変化するその時々
の流体の状態を捉えて計測できるので、生産量に応じて
処理流体の流速や物性が絶えず変化する例えば石油プラ
ントなどの流体の物性測定に有効に採用することができ
る。
(b) In addition, since it is possible to capture and measure the state of the fluid at any given time that is constantly changing due to the instantaneous separation, it is possible to measure the physical properties of fluids such as oil plants where the flow velocity and physical properties of the treated fluid constantly change depending on the production volume. Can be effectively adopted.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法を実施するための装置の説明図、第
2図は仝上分離装置の断面図である。 1……石油プラントからなる流体処理装置,2……計測
器,3……分離装置。
FIG. 1 is an explanatory view of an apparatus for carrying out the method of the present invention, and FIG. 2 is a sectional view of an upper separation apparatus. 1 ... Fluid processing device consisting of petroleum plant, 2 ... Measuring instrument, 3 ... Separation device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流体処理装置の系中に、PHや密度を測定す
る計測器を接続し、該計測器の前段の系に系中の流体に
エマルジョン状に混入する水または油などの不要な液分
を分離させる分離装置を接続させる流体の物性測定方法
において、 上記分離装置による液分の分離方法が、系中の流体を分
離装置を構成する繊維層を連続通過させて液分を繊維と
の衝突によって破壊させ、破壊された液分が繊維間の毛
細管に流れにのって通過する過程で液分を滴状に成長さ
せ、成長により生じた液分の質量と流体との比重差によ
る液分の沈降または浮上により液分を分離させてクリー
ンとなった流体を上記計測器に流入させることを特徴と
する物体処理装置における流体の物性測定方法。
1. A measuring device for measuring PH and density is connected to the system of a fluid treatment device, and water or oil which is mixed in an emulsion state with a fluid in the system is unnecessary in a system in the preceding stage of the measuring device. In the method for measuring the physical properties of a fluid to which a separation device for separating a liquid component is connected, the method for separating a liquid component by the separation device is such that the fluid in the system is continuously passed through a fiber layer constituting the separation device to form a liquid component with a fiber. The liquid content is destroyed by the collision of the fibers, and the liquid content grows in the form of a droplet in the process of the liquid content passing through the capillaries between the fibers. A method for measuring physical properties of a fluid in an object processing apparatus, characterized in that a fluid that has become clean by separating the fluid by settling or floating of the fluid flows into the measuring instrument.
JP60298134A 1985-12-27 1985-12-27 Method for measuring physical properties of fluid in fluid treatment device Expired - Lifetime JPH0641899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60298134A JPH0641899B2 (en) 1985-12-27 1985-12-27 Method for measuring physical properties of fluid in fluid treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60298134A JPH0641899B2 (en) 1985-12-27 1985-12-27 Method for measuring physical properties of fluid in fluid treatment device

Publications (2)

Publication Number Publication Date
JPS62156537A JPS62156537A (en) 1987-07-11
JPH0641899B2 true JPH0641899B2 (en) 1994-06-01

Family

ID=17855623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60298134A Expired - Lifetime JPH0641899B2 (en) 1985-12-27 1985-12-27 Method for measuring physical properties of fluid in fluid treatment device

Country Status (1)

Country Link
JP (1) JPH0641899B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247905B2 (en) * 1973-03-23 1977-12-06
JPS6091233A (en) * 1983-10-26 1985-05-22 Mitsui Toatsu Chem Inc Sample feeding method to ph meter

Also Published As

Publication number Publication date
JPS62156537A (en) 1987-07-11

Similar Documents

Publication Publication Date Title
EP0814887B1 (en) Filtration monitoring and control system
US4978506A (en) Corrosion product monitoring method and system
US3395510A (en) Gas scrubber
CA1105845A (en) Method and apparatus for separating solids from liquids
Puig-Bargués et al. Filtration of effluents for microirrigation systems
EA009831B1 (en) Filter assembly for sampling
JP5595956B2 (en) Evaluation method of fouling of separation membrane and operation method of membrane separation equipment
JPH0747089B2 (en) Tubular clarifier method for monitoring and / or controlling clarification process
JPH0641899B2 (en) Method for measuring physical properties of fluid in fluid treatment device
DE60104023T2 (en) METHOD AND EVAPORATOR FOR THE PRODUCTION OF AMMONIA WITH ULTRANOULAR METAL CONTENT
JP3283580B2 (en) How to clean mineral short fibers
US3131143A (en) Ultra-filtration apparatus and method
JPS62286586A (en) Water treatment plant
US420428A (en) Process of filtering oil
US6018989A (en) Method and apparatus for measuring the properties of a fiber or colloid suspension
JPH01310703A (en) Method for controlling concentration in membrane separator
RU2059066C1 (en) Method for bringing gas and gas-condensate wells into production and device to implement the same
JPH09150012A (en) Precipitation and separation apparatus and manufacture thereof
SU1288230A1 (en) Device for sampling filtrate from digesters
SU1044705A1 (en) Apparatus for monitoring the disintegration degree of fibrous mass
SU829168A1 (en) Continuous-sction ion exchange plant
KR840000406Y1 (en) Settling device
NL2019967B1 (en) Duration cell for direct steam injection into a liquid stream, process device and method for killing microorganisms
US4043915A (en) Filter for use with irrigation systems
DE3130231C2 (en) Method and device for centrifuging and redissolving sugar