JPH0641724A - Apparatus for production of transparent conductive film - Google Patents

Apparatus for production of transparent conductive film

Info

Publication number
JPH0641724A
JPH0641724A JP4201504A JP20150492A JPH0641724A JP H0641724 A JPH0641724 A JP H0641724A JP 4201504 A JP4201504 A JP 4201504A JP 20150492 A JP20150492 A JP 20150492A JP H0641724 A JPH0641724 A JP H0641724A
Authority
JP
Japan
Prior art keywords
substrate
transparent conductive
conductive film
chamber
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4201504A
Other languages
Japanese (ja)
Inventor
Akira Ishibashi
暁 石橋
Hajime Nakamura
肇 中村
Junya Kiyota
淳也 清田
Kyuzo Nakamura
久三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP4201504A priority Critical patent/JPH0641724A/en
Publication of JPH0641724A publication Critical patent/JPH0641724A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and efficiently produce a transparent conductive film having a low resistivity by rapidly cooling a substrate in a vacuum to a specific temp. after the formation of the transparent conductive film. CONSTITUTION:The substrate 11 and a target 14 are provided to face each other in a vacuum chamber 1. While the substrate 11 is kept at >=300 deg.C, the transparent conductive film is formed by a sputtering method on the substrate 11 by the plasma discharge generated between the substrate 11 and the target 14. A substrate cooling device 22 which rapidly cools the substrate 11 in the vacuum down to <=250 deg.C after the formation of the transparent conductive film is arranged in this apparatus for production of the transparent conductive film. This substrate cooling device 22 is arranged in a substrate take-out chamber 3 and is arranged to face the position where the substrate 11 passes. As a result, the transparent conductive film to be formed on the substrate is so formed that carrier electrons are not decreased by oxidation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明導電膜の製造装置
に関し、更に詳細には、液晶を始めとする表示素子や、
太陽電池等に電極として用いられるIn−Sn−O系透
明導電膜を始めとする酸化物透明導電膜を製造する透明
導電膜の製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a transparent conductive film, more specifically, a display element such as a liquid crystal,
The present invention relates to a transparent conductive film manufacturing apparatus for manufacturing an oxide transparent conductive film including an In-Sn-O-based transparent conductive film used as an electrode in a solar cell or the like.

【0002】[0002]

【従来の技術】従来、この種の透明導電膜の製造方法と
しては、塗布法、スプレー法、蒸着法、スパッタ法等が
知られている。これら製造方法のうち、スパッタ法によ
るものは、比較的低抵抗な透明導電膜を得やすく、また
この透明導電膜を大面積基板上に均一に再現性よく形成
することが出来る点で他の製造方法より優れている。ま
た、液晶等に用いられる例えばIn−Sn−O系透明導
電膜(以下ITO膜という)を形成する量産用スパッタ
装置としては、真空室内に複数の基板を基板ホルダーに
設置し、バッチ毎に処理を行うバッチスパッタ装置と、
大気中からスパッタ室内に基板を連続的に送り込みなが
らスパッタ法で透明導電膜を形成し、これを連続的に取
り出すインラインスパッタ装置が知られており、用途に
応じて使い分けられていた。
2. Description of the Related Art Conventionally, a coating method, a spray method, a vapor deposition method, a sputtering method and the like have been known as methods for producing a transparent conductive film of this type. Among these manufacturing methods, the sputtering method makes it easy to obtain a transparent conductive film having a relatively low resistance, and the transparent conductive film can be uniformly and reproducibly formed on a large-area substrate. Better than method. Further, as a mass-production sputtering apparatus for forming, for example, an In-Sn-O-based transparent conductive film (hereinafter referred to as an ITO film) used for liquid crystal or the like, a plurality of substrates are placed in a substrate holder in a vacuum chamber and processed for each batch. A batch sputtering apparatus for performing
An in-line sputtering apparatus is known in which a transparent conductive film is formed by a sputtering method while continuously feeding a substrate into the sputtering chamber from the atmosphere, and the transparent conductive film is continuously taken out.

【0003】ITO膜の電導電子はInのサイトを置換
した添加物イオン(Sn4+ )と、化学量論組成から酸
素の欠損(酸素欠損ドナー)の2種類のドナーにより形
成されている。そして、スパッタ法でITO膜を形成す
る場合、成膜温度が膜特性に大きな影響を与える。一般
的に、成膜温度を上げることにより、膜の結晶性が向上
し、ドナーとなる添加元素のイオン化(Sn4+ )が促
進されるため、キャリア電子の移動度と密度の双方が改
善され、結果として抵抗率が低下する。
The electric conductor of the ITO film is formed by two kinds of donors, that is, an additive ion (Sn 4 +) substituting the In site and oxygen deficiency (oxygen deficiency donor) due to the stoichiometric composition. When the ITO film is formed by the sputtering method, the film forming temperature has a great influence on the film characteristics. In general, increasing the film formation temperature improves the crystallinity of the film and promotes the ionization (Sn 4 +) of the additive element serving as a donor, which improves both the mobility and density of carrier electrons. As a result, the resistivity decreases.

【0004】従って、スパッタ法で素ガラス上に直接形
成、或いは耐熱性の高い基板上にITO膜を形成する場
合は、スパッタ装置内で基板の温度を300℃以上に上
げて、成膜を行っていた。また、従来スパッタ装置では
いずれの場合も、成膜後、基板が高温度状態のまま大気
中に取り出すようにしていた。
Therefore, when the ITO film is formed directly on the glass substrate by the sputtering method or the ITO film is formed on the substrate having high heat resistance, the temperature of the substrate is raised to 300 ° C. or higher in the sputtering apparatus to form the film. Was there. Further, in any conventional sputtering apparatus, after the film formation, the substrate is taken out into the atmosphere while being in a high temperature state.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
スパッタ装置ではいずれの場合も高温度でITO膜を形
成した直後、大気中に取り出しているため、高温度のI
TO膜が空気に触れて酸化し低抵抗膜が得られないとい
う問題があった。何故ならば、300℃以上の高温度の
基板上に形成されたITO膜をそのまま大気中に晒すと
ITO膜に酸化が起こり、前記2つのドナーが消滅し、
抵抗率が劣化するからである。
However, in any conventional sputtering apparatus, since the ITO film is taken out into the atmosphere immediately after the ITO film is formed at a high temperature in any case, the high temperature I
There has been a problem that the TO film is exposed to air and is oxidized, and a low resistance film cannot be obtained. Because, when the ITO film formed on the substrate having a high temperature of 300 ° C. or higher is exposed to the atmosphere as it is, the ITO film is oxidized and the two donors disappear,
This is because the resistivity deteriorates.

【0006】本発明は、従来スパッタ装置がもつ問題点
を解消するもので、300℃以上の高温で透明導電膜を
形成する場合に、より低抵抗な透明導電膜を得ることが
出来る透明導電膜の製造装置を提供することを目的とす
る。
The present invention solves the problems of the conventional sputtering apparatus, and when forming a transparent conductive film at a high temperature of 300 ° C. or higher, a transparent conductive film having a lower resistance can be obtained. It is an object of the present invention to provide a manufacturing apparatus of.

【0007】[0007]

【課題を解決するための手段】本発明の透明導電膜の製
造装置は、真空室内に基板とターゲットとを対向させて
設け、該基板を300℃以上に保持しながら、該基板と
ターゲットとの間に生ずるプラズマ放電により、基板上
に透明導電膜をスパッタ法で形成する透明導電膜の製造
装置において、該製造装置は透明導電膜の形成後、真空
中で基板を250℃以下に急冷する基板冷却装置を備え
ていることを特徴とする。
A transparent conductive film manufacturing apparatus according to the present invention is provided with a substrate and a target in a vacuum chamber so as to face each other, and the substrate and the target are maintained while the substrate is held at 300 ° C. or higher. In a transparent conductive film manufacturing apparatus for forming a transparent conductive film on a substrate by a sputtering method by a plasma discharge generated between the substrates, the manufacturing apparatus is a substrate for rapidly cooling the substrate to 250 ° C. or less in vacuum after forming the transparent conductive film. It is characterized by having a cooling device.

【0008】[0008]

【作用】本発明の透明導電膜の製造装置は、成膜後に真
空中で基板を250℃以下に急冷する冷却装置を備えて
いるため、基板を300℃以上の温度に保持しながらス
パッタ法で形成した透明導電膜を、250℃以下に急冷
することが出来て、その後大気中に取り出しても基板上
に形成された透明導電膜は酸化によるキャリア電子の減
少が生じないから、得られる透明導電膜の抵抗率は低い
ままの状態となる。
Since the apparatus for producing a transparent conductive film of the present invention is equipped with a cooling device for rapidly cooling the substrate to 250 ° C. or lower in a vacuum after the film formation, the substrate is kept at a temperature of 300 ° C. or higher by the sputtering method. The formed transparent conductive film can be rapidly cooled to 250 ° C. or lower, and even if taken out in the air, the transparent conductive film formed on the substrate does not cause reduction of carrier electrons due to oxidation. The resistivity of the film remains low.

【0009】[0009]

【実施例】本発明の実施例を添付図面に基づき説明す
る。
Embodiments of the present invention will be described with reference to the accompanying drawings.

【0010】図1は本発明の透明導電膜の製造装置の1
例を示すもので、図示例はトレイ搬送方式のスパッタ装
置の模式図であり、該スパッタ装置は、スパッタ室1、
基板仕込室2、および基板取出室3から構成されてお
り、バルブ4により基板仕込室2、スパッタ室1、基板
取出室3の順で互いに連通されている。そして、スパッ
タ室1内はバルブ5を介してクライオポンプ等で構成さ
れた真空排気装置6に接続されており、該真空排気装置
6によってスパッタ室1内の真空度を調整自在とすると
共に、該スパッタ室1内に連通されたガス導入管7から
例えばアルゴンガスと酸素ガスから成るスパッタガスを
単独ガスで或いは混合ガスでマスフローコントロール8
で流量を制御しながらノズル9より導入出来るようにし
た。
FIG. 1 shows an apparatus 1 for producing a transparent conductive film according to the present invention.
An example is shown, and the illustrated example is a schematic view of a tray transfer type sputtering apparatus.
It is composed of a substrate loading chamber 2 and a substrate unloading chamber 3, and a valve 4 connects the substrate loading chamber 2, the sputtering chamber 1, and the substrate unloading chamber 3 in this order in order. The inside of the sputtering chamber 1 is connected via a valve 5 to a vacuum exhaust device 6 composed of a cryopump or the like, and the vacuum exhaust device 6 makes it possible to adjust the degree of vacuum in the sputtering chamber 1 and A gas flow pipe 7 communicating with the inside of the sputtering chamber 1 is used for mass flow control 8 by using a single gas or a mixed gas of a sputtering gas composed of, for example, argon gas and oxygen gas.
The nozzle 9 can be used to control the flow rate.

【0011】また、スパッタ室1内に基板ホルダー10
に保持された基板11と、マグネトロンカソード12と
を平行状態で対向配置した。そして、基板ホルダー10
はマグネトロンカソード12と平行状態を保ったままで
スパッタ室1内を移動出来るように配置されている。
尚、図示していないが、該基板ホルダー10は前記のよ
うに直線移動させるための駆動装置が設けられている。
また、前記基板11の背後に成膜中の基板11温度を所
定温度に加熱制御するためのシースヒータ13を配置し
た。
Further, the substrate holder 10 is provided in the sputtering chamber 1.
The substrate 11 held by the magnetron cathode 12 and the magnetron cathode 12 were placed in parallel with each other. And the substrate holder 10
Is arranged so that it can move in the sputtering chamber 1 while maintaining a parallel state with the magnetron cathode 12.
Although not shown, the substrate holder 10 is provided with a driving device for linearly moving as described above.
A sheath heater 13 for heating and controlling the temperature of the substrate 11 during film formation to a predetermined temperature is arranged behind the substrate 11.

【0012】また、マグネトロンカソード12はその前
面にはロウ材でターゲット14が固定されており、該マ
グネトロンカソード12の背面に電磁石15が収容され
たカソードケース16を配置すると共に、カソードケー
ス16に直流電源17を接続し、該直流電源17でマグ
ネトロンカソード12に所定の電流を印加してスパッタ
室1内でマグネトロンスパッタを行えるようにした。
A target 14 is fixed on the front surface of the magnetron cathode 12 with a brazing material, and a cathode case 16 accommodating an electromagnet 15 is arranged on the back surface of the magnetron cathode 12, and a direct current is supplied to the cathode case 16. A power supply 17 was connected, and a predetermined current was applied to the magnetron cathode 12 by the DC power supply 17 so that magnetron sputtering could be performed in the sputtering chamber 1.

【0013】また、前記基板11は基板仕込室2側で基
板ホルダー10に装着された後、スパッタ室1内で表面
に透明導電膜が形成され、引続き基板11は基板取出室
3側から取り出されるようになっている。
After the substrate 11 is mounted on the substrate holder 10 on the substrate preparation chamber 2 side, a transparent conductive film is formed on the surface in the sputtering chamber 1, and the substrate 11 is subsequently taken out from the substrate taking-out chamber 3 side. It is like this.

【0014】また、基板仕込室2および基板取出室3に
は夫々クライオポンプ等で構成される真空排気装置1
8,19がバルブ20,21を介して接続されている。
Further, the substrate loading chamber 2 and the substrate unloading chamber 3 are each provided with a vacuum exhaust device 1 which is constituted by a cryopump or the like.
8 and 19 are connected via valves 20 and 21.

【0015】かかる構成は従来の透明導電膜の製造装置
と特に変わりはないが、本発明装置は、基板取出室3内
に基板冷却装置22を配置したもので、図示例では基板
取出室3内の基板11の通過位置に一対の基板冷却装置
22を対向させて配置した。そして、該基板冷却装置2
2は基板取出室3外に配置せる循環ポンプ23より一定
温度の液体(例えば温度24℃の恒温水)を循環パイプ
24を介して基板冷却装置22内に循環せしめて基板1
1を温度250℃以下に冷却出来るようにした。
Although such a construction is not particularly different from the conventional transparent conductive film manufacturing apparatus, the apparatus of the present invention has the substrate cooling device 22 arranged in the substrate unloading chamber 3, and in the illustrated example, the substrate unloading chamber 3 is inside. A pair of substrate cooling devices 22 were arranged facing each other at the passage position of the substrate 11. Then, the substrate cooling device 2
Reference numeral 2 denotes a substrate 1 in which a liquid having a constant temperature (for example, constant temperature water having a temperature of 24 ° C.) is circulated in a substrate cooling device 22 through a circulation pipe 24 from a circulation pump 23 arranged outside the substrate unloading chamber 3.
1 can be cooled to a temperature of 250 ° C. or lower.

【0016】尚、図中、25は所定の開口部26が設け
られた防着板、27はスパッタ室1に接続したアース、
28はストップバルブ付きスパッタガス供給源、29は
基板仕込室2に設けたバルブ、30は基板取出室3に設
けたバルブを示す。
In the figure, reference numeral 25 is an attachment plate having a predetermined opening 26, 27 is a ground connected to the sputtering chamber 1, and
28 is a sputter gas supply source with a stop valve, 29 is a valve provided in the substrate preparation chamber 2, and 30 is a valve provided in the substrate unloading chamber 3.

【0017】ここで前記図1の透明導電膜の製造装置を
用いて基板上への成膜のプロセスを簡単に説明する。
Here, the process of film formation on a substrate will be briefly described using the transparent conductive film manufacturing apparatus of FIG.

【0018】先ず、基板仕込室2内で基板ホルダー10
に基板11を保持せしめる。そして、スパッタ室1内を
真空排気装置6で、基板仕込室2内を真空排気装置18
で、基板取出室3内を真空排気装置19で夫々で粗引き
および高真空排気を行う。続いて高真空排気されたスパ
ッタ室1内に基板11をバルブ4を介して搬送せしめた
後、基板11をシースヒータ13により例えば温度40
0℃に加熱し、次いで、スパッタ室1内にアルゴンガス
および酸素ガスから成るスパッタガスを導入して、所定
圧力に調整した後、スパッタを開始する。そして、基板
11をマグネトロンカソード12上を一定速度で通過さ
せると共に、基板11上に所定の膜厚の透明導電膜を形
成させるようにする。成膜が完了した後、スパッタガス
の導入と、スパッタを停止し、基板11を基板取出室3
内にバルブ4を介して搬送せしめた後、該基板取出室3
内で基板冷却装置22により基板11を温度250℃以
下に急冷する。続いて、基板11が250℃以下に冷却
された後、基板取出室3内に空気を導入せしめて大気圧
に戻した後、基板11を基板取出室3内より取り出すよ
うにする。
First, the substrate holder 10 in the substrate preparation chamber 2
Then, the substrate 11 is held. The inside of the sputtering chamber 1 is evacuated by the vacuum exhaust device 6, and the inside of the substrate preparation chamber 2 is evacuated by the vacuum exhaust device 18.
Then, the inside of the substrate unloading chamber 3 is roughly evacuated and highly evacuated by the vacuum exhaust device 19. Then, after the substrate 11 is transferred into the sputtering chamber 1 which is evacuated to a high vacuum via the valve 4, the substrate 11 is heated by the sheath heater 13 to a temperature of, for example,
After heating to 0 ° C., a sputtering gas composed of an argon gas and an oxygen gas is introduced into the sputtering chamber 1 and adjusted to a predetermined pressure, and then sputtering is started. Then, the substrate 11 is passed over the magnetron cathode 12 at a constant speed, and a transparent conductive film having a predetermined thickness is formed on the substrate 11. After the film formation is completed, the sputtering gas is introduced, the sputtering is stopped, and the substrate 11 is removed from the substrate extraction chamber 3
After being transferred into the substrate via the valve 4, the substrate unloading chamber 3
Inside, the substrate cooling device 22 rapidly cools the substrate 11 to a temperature of 250 ° C. or less. Subsequently, after the substrate 11 is cooled to 250 ° C. or lower, air is introduced into the substrate unloading chamber 3 to return to atmospheric pressure, and then the substrate 11 is taken out from the substrate unloading chamber 3.

【0019】尚、スパッタ室1内での成膜中の真空度と
しては基板に形成する透明導電膜の種類によって異なる
が、一般的には1×10- 3〜1×10- 2Torr程度とす
ればよい。また、成膜後の基板の冷却中の真空度として
は基板に形成する透明導電膜の種類によって異なるが、
一般的には1×10- 5〜1×10- 4Torr程度とすれば
よい。
[0019] Although the degree of vacuum during film formation in a sputtering chamber 1 varies depending on the type of the transparent conductive film formed on the substrate, is generally 1 × 10 - and about 2 Torr - 3 ~1 × 10 do it. The degree of vacuum during cooling of the substrate after film formation varies depending on the type of the transparent conductive film formed on the substrate,
In general, 1 × 10 - it may be a 4 Torr about - 5 ~1 × 10.

【0020】次に前記図1に示す装置を用いて、In−
Sn−O系透明導電膜(以下ITO膜という)の製造例
を説明する。
Next, using the device shown in FIG.
An example of manufacturing a Sn—O-based transparent conductive film (hereinafter referred to as an ITO film) will be described.

【0021】実験例1 本実験例では、基板11は縦210 mm、横210 mm、厚さ1.
1 mmのガラスNo.7059(コーニング社製)を用い、ま
た、ターゲット14はIn23に10wt%SnO2
混入した焼結体ターゲットを用いた。また、基板11と
ターゲット14との距離を80mmに設定し、マグネトロン
カソード12に供給する直流電力を630Wとし、基板
11の温度は450℃とした。
Experimental Example 1 In this experimental example, the substrate 11 has a length of 210 mm, a width of 210 mm, and a thickness of 1.
1 mm glass No. 7059 (manufactured by Corning) was used, and the target 14 was a sintered body target in which 10 wt% SnO 2 was mixed with In 2 O 3 . The distance between the substrate 11 and the target 14 was set to 80 mm, the DC power supplied to the magnetron cathode 12 was 630 W, and the temperature of the substrate 11 was 450 ° C.

【0022】先ず、基板仕込室2内で基板ホルダー10
に基板11を保持した後、基板仕込室2内を真空排気系
18により、スパッタ室1内を真空排気系6により、ま
た基板取出室3内を真空排気系19により夫々1×10
- 5Torrに設定した後、スパッタ室1内にアルゴンガス
をノズル8より導入して5×10- 3Torrに設定した。
そして基板11を速度80mm/minで基板仕込室2よりバ
ルブ4を介してスパッタ室1内に搬送し、前記速度でス
パッタ室1内のマグネトロンカソード12上を通過させ
ながら、マグネトロンスパッタ法で1.25分間成膜し、基
板11上に膜厚1000ÅのITO膜を形成した。そし
て成膜中スパッタ室1内に酸素ガスを分圧0〜5×10
- 5Torrのの範囲で種々導入して形成されたITO膜中
の酸素欠損ドナーの最適化を行ってITO膜の抵抗率が
最小となる条件を求めた。その結果導入する酸素ガスの
分圧は1×10- 5Torrであった。
First, the substrate holder 10 in the substrate preparation chamber 2
After the substrate 11 is held on the substrate, the inside of the substrate preparation chamber 2 is evacuated by the vacuum exhaust system 18, the inside of the sputtering chamber 1 is evacuated by the vacuum exhaust system 6, and the inside of the substrate unload chamber 3 is evacuated by the vacuum exhaust system 19.
- after setting 5 Torr, argon gas 5 × 10 introduced from a nozzle 8 into the sputtering chamber 1 - was set to 3 Torr.
Then, the substrate 11 is transferred from the substrate preparation chamber 2 into the sputtering chamber 1 through the valve 4 at a speed of 80 mm / min, and while passing over the magnetron cathode 12 in the sputtering chamber 1 at the speed, the magnetron sputtering method is performed for 1.25 minutes. A film was formed, and an ITO film having a film thickness of 1000 Å was formed on the substrate 11. During the film formation, the partial pressure of oxygen gas in the sputtering chamber 1 is 0 to 5 × 10.
By optimizing the oxygen deficient donor in the ITO film formed by variously introducing it in the range of- 5 Torr, the conditions for minimizing the resistivity of the ITO film were obtained. The partial pressure of the oxygen gas to the result introduced 1 × 10 - was 5 Torr.

【0023】続いて、スパッタ室1内でITO膜が形成
された基板11をバルブ4を介して基板取出室3内に搬
送し、該基板取出室3内で基板冷却装置22で基板11
を急冷した後、該基板取出室3に空気を導入し、該基板
取出室3内を大気圧に戻し、基板11を取り出した。
Subsequently, the substrate 11 on which the ITO film is formed in the sputtering chamber 1 is transferred into the substrate unloading chamber 3 via the valve 4, and in the substrate unloading chamber 3 the substrate 11 is cooled by the substrate cooling device 22.
After being rapidly cooled, air was introduced into the substrate unloading chamber 3, the inside of the substrate unloading chamber 3 was returned to atmospheric pressure, and the substrate 11 was taken out.

【0024】そして、基板取出室3内で基板冷却装置2
2により冷却された基板11の温度を測定し、その温度
を表1に示した。また、基板11上に形成されたITO
膜の抵抗率を測定し、その結果を表1に示した。
Then, the substrate cooling device 2 is placed in the substrate unloading chamber 3.
The temperature of the substrate 11 cooled by 2 was measured, and the temperature is shown in Table 1. In addition, the ITO formed on the substrate 11
The resistivity of the film was measured, and the results are shown in Table 1.

【0025】比較実験例1 スパッタ室1内でITO膜が形成された基板11が基板
取出室3内に搬送された後、基板11を冷却することな
く直ちに基板取出室3内に空気を導入し、大気圧になっ
た時点で基板11を高温度状態のまま基板取出室3より
取出した以外は前記実験例1と同様の方法で基板11上
にITO膜を形成した。
Comparative Experimental Example 1 After the substrate 11 on which the ITO film was formed was transferred into the substrate unloading chamber 3 in the sputtering chamber 1, air was immediately introduced into the substrate unloading chamber 3 without cooling the substrate 11. An ITO film was formed on the substrate 11 in the same manner as in Experimental Example 1 except that the substrate 11 was taken out from the substrate taking-out chamber 3 while being kept at a high temperature when the atmospheric pressure was reached.

【0026】そして、ITO膜が形成された後、基板取
出室3内に搬送され、基板取出室3内が大気圧となった
時点で基板11の温度を測定し、その結果を表1に示
す。また、基板11上に形成されたITO膜の抵抗率を
測定し、その結果を表1に示す。
After the ITO film is formed, the substrate 11 is transferred into the substrate unloading chamber 3 and the temperature of the substrate 11 is measured when the substrate unloading chamber 3 reaches the atmospheric pressure. The results are shown in Table 1. . Further, the resistivity of the ITO film formed on the substrate 11 was measured, and the results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】表1から明らかなように、成膜後、基板が
急冷された実験例1のITO膜の抵抗率は1.5×10
- 4Ωcmであるのに対し、基板が冷却されることなく
空気に晒された比較実験例1のITO膜の抵抗率は2.
4×10- 4Ωcmであった。これは基板が340℃と
いう高温度のため空気に晒されたITO膜の酸化により
キャリア電子が減少し、その結果得られたITO膜の抵
抗率が劣化したためと考えられる。また、実験例1のよ
うにITO膜が形成された基板を基板冷却装置で急冷す
れば基板温度は230℃であるのに対し、ITO膜が形
成された基板をそのまま大気中に晒した比較実験例1で
は基板温度が340℃と高温度であった。従って、本発
明装置では基板を急冷して温度250℃以下に下げ得る
ことが確認された。
As is clear from Table 1, the resistivity of the ITO film of Experimental Example 1 in which the substrate was rapidly cooled after the film formation was 1.5 × 10 5.
- 4 a is whereas [Omega] cm, the resistivity of the ITO film of Comparative Example 1 was exposed to air without the substrate is cooled 2.
4 × 10 - it was 4 [Omega] cm. It is considered that this is because the number of carrier electrons decreased due to the oxidation of the ITO film exposed to the air due to the high temperature of the substrate of 340 ° C., resulting in the deterioration of the resistivity of the resulting ITO film. In addition, the substrate temperature is 230 ° C. when the substrate having the ITO film formed thereon is rapidly cooled by the substrate cooling device as in Experimental Example 1, while the substrate having the ITO film formed is exposed to the atmosphere as it is. In Example 1, the substrate temperature was as high as 340 ° C. Therefore, it was confirmed that the apparatus of the present invention can rapidly cool the substrate to lower the temperature to 250 ° C. or lower.

【0029】図2は本発明の製造装置の他の実施例であ
り、図示例はバッチ処理方式のスパッタ装置の模式図で
あり、該スパッタ装置は基板上への成膜と、基板の急冷
を組み込んだスパッタ室31で構成されている。そし
て、スパッタ室31内に一定速度で回転する多面体のド
ラム型の基板ホルダー32を配設し、バルブ33を通し
て基板34を基板ホルダー32の所定位置に設置し、或
いは成膜された基板34を取出せるようにした。
FIG. 2 shows another embodiment of the manufacturing apparatus of the present invention. The illustrated example is a schematic view of a batch processing type sputtering apparatus. The sputtering apparatus performs film formation on a substrate and quenching of the substrate. It is composed of a built-in sputtering chamber 31. Then, a polyhedral drum-shaped substrate holder 32 that rotates at a constant speed is provided in the sputtering chamber 31, a substrate 34 is set at a predetermined position of the substrate holder 32 through a valve 33, or the substrate 34 having a film formed thereon is removed. I made it available.

【0030】また、スパッタ室31内はバルブ35を介
してクライオポンプ等の真空排気装置36に接続されて
おり、該真空排気装置36によってスパッタ室31内の
真空度を調整自在とすると共に、該スパッタ室31内に
連通されたガス導入管37から例えばアルゴンガスと酸
素ガスから成るスパッタガスを単独ガス或いは混合ガス
でマスフローコントロール38で流量を制御しながらノ
ズル39より導入出来るようにした。
The inside of the sputter chamber 31 is connected to a vacuum exhaust device 36 such as a cryopump through a valve 35. The vacuum exhaust device 36 makes it possible to adjust the degree of vacuum in the sputter chamber 31, and A gas introduction pipe 37 communicating with the inside of the sputtering chamber 31 is used to introduce a sputtering gas composed of, for example, argon gas and oxygen gas from a nozzle 39 while controlling the flow rate of a single gas or a mixed gas with a mass flow control 38.

【0031】また、スパッタ室31内に回転する基板ホ
ルダー32に保持された基板34が通過する位置であっ
て、基板34の対向位置にマグネトロンカソード40を
基板34と平行状態に配置した。また、マグネトロンカ
ソード40の前面にはロウ材でターゲット41が固定さ
れており、該マグネトロンカソード40の背面に電磁石
42が収容されたカソードケース43を配置すると共
に、カソードケース43に直流電源44を接続し、該直
流電源44でマグネトロンカソード40に所定の電流を
印加してスパッタ室31内でマグネトロンスパッタを行
えるようにした。
Further, the magnetron cathode 40 is arranged in parallel with the substrate 34 at a position where the substrate 34 held by the substrate holder 32 rotating in the sputtering chamber 31 passes, and at a position facing the substrate 34. A target 41 is fixed to the front surface of the magnetron cathode 40 with a brazing material, a cathode case 43 containing an electromagnet 42 is arranged on the back surface of the magnetron cathode 40, and a DC power source 44 is connected to the cathode case 43. Then, a predetermined current is applied to the magnetron cathode 40 by the DC power supply 44 so that magnetron sputtering can be performed in the sputtering chamber 31.

【0032】また、スパッタ室31内に回転する基板ホ
ルダー32に保持された基板34が通過する位置であっ
て、基板34の対向位置に基板34を所定温度に加熱す
るシースヒータ45を配置した。図示例ではシースヒー
タ45の2個を対向させて配置した。
Further, a sheath heater 45 for heating the substrate 34 to a predetermined temperature is arranged at a position where the substrate 34 held by the substrate holder 32 rotating in the sputtering chamber 31 passes, and at a position facing the substrate 34. In the illustrated example, two sheath heaters 45 are arranged to face each other.

【0033】また、スパッタ室31内に回転する基板ホ
ルダー32に保持された基板34が通過する位置であっ
て、基板34の対向位置に基板34を冷却する基板冷却
装置46を配置すると共に、スパッタ室31外に配置せ
る循環ポンプ47より一定温度の液体(例えば温度24
℃の恒温水)を循環パイプ48を介して基板冷却装置4
6内に循環せしめて基板34を温度250℃以下に冷却
出来るようにした。図示例では基板冷却装置46の2個
を対向させて配置した。
Further, a substrate cooling device 46 for cooling the substrate 34 is arranged at a position where the substrate 34 held by the substrate holder 32 rotating in the sputter chamber 31 passes, and at a position facing the substrate 34, and the sputtering is performed. A liquid of a constant temperature (for example, a temperature of 24
Substrate cooling device 4 through the circulation pipe 48
The substrate 34 was circulated in the chamber 6 so that the substrate 34 could be cooled to a temperature of 250 ° C. or lower. In the illustrated example, two substrate cooling devices 46 are arranged to face each other.

【0034】尚、図中、49は所定の開口部50が設け
られた防着板、51はスパッタ室31に接続したアー
ス、52はストップバルブ付きスパッタガス供給源を示
す。
In the figure, reference numeral 49 is a deposition preventive plate provided with a predetermined opening 50, 51 is an earth connected to the sputter chamber 31, and 52 is a sputter gas supply source with a stop valve.

【0035】ここで前記図2の透明導電膜の製造装置を
用いて基板上への成膜のプロセスを簡単に説明する。
Here, a process of forming a film on a substrate will be briefly described by using the transparent conductive film manufacturing apparatus of FIG.

【0036】先ず、バルブ33よりスパッタ室31内の
基板ホルダー32の所定位置の夫々に基板34を保持せ
しめた後、基板ホルダー32を一定速度で回転させる。
そして、スパッタ室31内を真空排気装置36で粗引き
および高真空排気を行い、続いて高真空排気されたスパ
ッタ室31内にアルゴンガスおよび酸素ガスからなるス
パッタガスを導入して、所定圧力に調整し、基板ホルダ
ー32により一定速度で回転する基板34をシースヒー
タ45により例えば温度400℃に加熱した後、スパッ
タを開始する。そして、基板34をマグネトロンカソー
ド40の前方を通過させて基板34上に所定の膜厚の透
明導電膜を形成させるようにする。成膜が完了した時点
で、基板34の加熱およびスパッタを停止し、基板ホル
ダー32により一定速度で回転せる基板34を基板冷却
装置46で250℃以下に急冷させる。基板ホルダー3
2に保持された各基板34上での成膜と、基板冷却とが
終了した時点でスパッタガスの導入を停止し、スパッタ
室31内に空気を導入せしめて大気圧に戻した後、基板
34をバルブ33を介してスパッタ室31より取り出す
ようにする。
First, after the substrate 34 is held by the valve 33 at each predetermined position of the substrate holder 32 in the sputtering chamber 31, the substrate holder 32 is rotated at a constant speed.
Then, the interior of the sputtering chamber 31 is roughly evacuated and evacuated to a high vacuum by a vacuum exhaust device 36, and subsequently, a sputtering gas consisting of argon gas and oxygen gas is introduced into the highly evacuated sputtering chamber 31 to a predetermined pressure. After adjusting and heating the substrate 34 which rotates at a constant speed by the substrate holder 32 to a temperature of 400 ° C. by the sheath heater 45, the sputtering is started. Then, the substrate 34 is passed in front of the magnetron cathode 40 to form a transparent conductive film having a predetermined thickness on the substrate 34. When the film formation is completed, the heating and sputtering of the substrate 34 are stopped, and the substrate 34 rotated by the substrate holder 32 at a constant speed is rapidly cooled to 250 ° C. or less by the substrate cooling device 46. Board holder 3
When the film formation on each of the substrates 34 held at 2 and the cooling of the substrates are completed, the introduction of the sputtering gas is stopped, air is introduced into the sputtering chamber 31 to return to atmospheric pressure, and then the substrates 34 Is taken out from the sputtering chamber 31 via the valve 33.

【0037】尚、スパッタ室31内での成膜中および冷
却中の真空度としては基板に形成する透明導電膜の種類
によって異なるが、一般的には1×10- 3〜1×10-
2Torr程度とすればよい。
[0037] Although the degree of vacuum in the film forming and cooling of the sputtering chamber 31 depends on the type of the transparent conductive film formed on the substrate, it is generally 1 × 10 - 3 ~1 × 10 -
It should be about 2 Torr.

【0038】次に前記図2に示す装置を用いて、In−
Sn−O系透明導電膜(以下ITO膜という)の製造例
を説明する。
Next, using the device shown in FIG.
An example of manufacturing a Sn—O-based transparent conductive film (hereinafter referred to as an ITO film) will be described.

【0039】実験例2 本実験例では、基板34に縦100 mm、横100 mm、厚さ1.
1 mmのガラスNo.7059(コーニング社製)を用い、ま
た、ターゲット41はIn23に10wt%SnO2
混入した焼結体ターゲットを用いた。また、基板34と
ターゲット41との距離を60mmに設定し、マグネトロン
カソード40に供給する直流電力を630Wとした。
Experimental Example 2 In this experimental example, the substrate 34 has a length of 100 mm, a width of 100 mm, and a thickness of 1.
1 mm glass No. 7059 (manufactured by Corning Incorporated) was used, and the target 41 was a sintered body target in which 10 wt% SnO 2 was mixed with In 2 O 3 . The distance between the substrate 34 and the target 41 was set to 60 mm, and the DC power supplied to the magnetron cathode 40 was 630 W.

【0040】先ず、基板ホルダー32に基板34(図示
例では8個)を保持した後、基板ホルダー32を速度3
0RPMで回転した。次いで、スパッタ室31内を真空
排気装置36により1×10- 6Torrに設定した後、ス
パッタ室31内にアルゴンガスをノズル39より導入し
て5×10- 3Torrに設定した。前記回転速度で基板3
4をシースヒータ45の前方を順次通過させながら、基
板34を加熱して温度400℃になった時点で、マグネ
トロンカソード40に印加してスパッタを開始し、マグ
ネトロンカソード40の前方を順次通過させながら、マ
グネトロンスパッタ法で11分間成膜し、各基板34上
に夫々膜厚1000ÅのITO膜を形成した後、基板3
4の加熱と、スパッタを停止した。そして成膜中スパッ
タ室31内に酸素ガスを分圧0〜5×10- 5Torrの範
囲内で種々導入して形成されたITO膜の酸素欠損ドナ
ーの最適化を行ってITO膜の抵抗率が最小となる条件
を求めた。その結果導入する酸素ガスの分圧は1×10
- 5Torrであった。
First, after holding the substrates 34 (8 in the illustrated example) in the substrate holder 32, the substrate holder 32 is moved at a speed of 3
Rotated at 0 RPM. Then, a sputtering chamber 31 by the vacuum exhaust device 36 1 × 10 - after setting 6 Torr, argon gas 5 × 10 introduced from the nozzle 39 into the sputtering chamber 31 - was set to 3 Torr. Substrate 3 at the rotation speed
4, while sequentially passing the front of the sheath heater 45, when the substrate 34 is heated to a temperature of 400 ° C., it is applied to the magnetron cathode 40 to start sputtering, and while sequentially passing the front of the magnetron cathode 40, After forming a film by the magnetron sputtering method for 11 minutes and forming an ITO film having a film thickness of 1000 Å on each substrate 34, the substrate 3 is formed.
The heating of No. 4 and the sputtering were stopped. And oxygen gas in the sputtering chamber 31 during film formation the partial pressure 0 to 5 × 10 - resistivity of the ITO film with optimization of the oxygen-deficient donor 5 Torr various introduced ITO film formed in the range of The condition that minimizes is obtained. As a result, the partial pressure of oxygen gas introduced is 1 x 10
- was 5 Torr.

【0041】そして、ITO膜が形成された各基板34
を前記回転速度で基板冷却装置46の前方を順次通過さ
せながら各基板34を急冷した。
Then, each substrate 34 on which the ITO film is formed
Each substrate 34 was rapidly cooled while sequentially passing through the front of the substrate cooling device 46 at the above rotation speed.

【0042】基板ホルダー32に保持された基板34の
全てにITO膜が形成され、かつ基板34が冷却された
時点で、スパッタガスの導入を停止し、スパッタ室31
内に空気を導入し、スパッタ室31内を大気圧に戻し、
各基板34をバルブ33より取り出した。
When the ITO film is formed on all of the substrates 34 held by the substrate holder 32 and the substrate 34 is cooled, the introduction of the sputtering gas is stopped and the sputtering chamber 31
Air is introduced into the inside of the sputtering chamber 31 to return it to the atmospheric pressure,
Each substrate 34 was taken out from the valve 33.

【0043】そして、基板冷却装置46により冷却され
た基板34の温度を測定し、その結果を表2に示した。
また、基板34上に形成されたITO膜の抵抗率を測定
し、その結果を表2に示した。
Then, the temperature of the substrate 34 cooled by the substrate cooling device 46 was measured, and the results are shown in Table 2.
Further, the resistivity of the ITO film formed on the substrate 34 was measured, and the results are shown in Table 2.

【0044】比較実験例2 基板冷却装置を全く作動させずに、成膜後、直ちにスパ
ッタ室31内に空気を導入し、大気圧に戻した以外は前
記実験例2と同様の方法で基板34上にITO膜を形成
した。
Comparative Experimental Example 2 The substrate 34 was prepared in the same manner as in Experimental Example 2 except that the substrate cooling device was not operated at all and air was immediately introduced into the sputtering chamber 31 immediately after the film formation to restore the atmospheric pressure. An ITO film was formed on top.

【0045】そして、成膜後、直ちにスパッタ室31内
に空気を導入し、大気圧となった時点で基板34の温度
を測定し、その結果を表2に示した。また、基板34上
に形成されたITO膜の抵抗率を測定し、その結果を表
2に示した。
Then, immediately after the film formation, air was introduced into the sputtering chamber 31, and the temperature of the substrate 34 was measured when the atmospheric pressure was reached. The results are shown in Table 2. Further, the resistivity of the ITO film formed on the substrate 34 was measured, and the results are shown in Table 2.

【0046】[0046]

【表2】 [Table 2]

【0047】表2から明らかなように、成膜後、基板が
急冷された実験例2のITO膜の抵抗率は1.6×10
- 4Ωcmであるのに対し、基板が冷却されることなく
空気に晒された比較実験例2のITO膜の抵抗率は2.
8×10- 4Ωcmであった。これは基板が360℃と
いう高温度のため空気に晒されたITO膜の酸化により
キャリア電子が減少し、その結果得られたITO膜の抵
抗率が劣化したためと考えられる。また、実験例2のよ
うにITO膜が形成された基板を基板冷却装置で急冷す
れば基板温度は230℃であるのに対し、ITO膜が形
成された基板をそのまま大気中に晒した比較実験例2で
は基板温度が360℃と高温度であった。従って、本発
明装置では基板を急冷して温度250℃以下に下げ得る
ことが確認された。図2装置ではマグネトロンカソード
40をスパッタ室内に1個所配置したが、本発明はこれ
に限定されるものではなく、基板ホルダー32の基板の
保持個数に合わせて2個所以上としてもよい。また、図
2装置では基板34を加熱するシースヒータ45および
基板冷却装置46を夫々2個所ずつ配置したが、本発明
はこれに限定されるものではなく、基板ホルダー32の
基板34の保持個数およびマグネトロンカソード40の
個数に合わせて1個所或いは3個所以上としてもよい。
また、図2装置では基板を加熱する加熱装置(シースヒ
ータ)と、基板を冷却する基板冷却装置とを夫々別個の
装置としたが、両装置を組み込んだ基板加熱、冷却装置
としてもよい。
As is clear from Table 2, the resistivity of the ITO film of Experimental Example 2 in which the substrate was rapidly cooled after the film formation was 1.6 × 10 5.
- 4 a is whereas [Omega] cm, the resistivity of the Comparative Example 2 of the ITO film was exposed to the air without the substrate is cooled 2.
8 × 10 - it was 4 [Omega] cm. It is considered that this is because the number of carrier electrons decreased due to the oxidation of the ITO film exposed to the air because the substrate had a high temperature of 360 ° C., and the resistivity of the resulting ITO film deteriorated. Further, as in Experimental Example 2, the substrate temperature was 230 ° C. when the substrate on which the ITO film was formed was rapidly cooled by the substrate cooling device, whereas the substrate on which the ITO film was formed was directly exposed to the atmosphere. In Example 2, the substrate temperature was as high as 360 ° C. Therefore, it was confirmed that the apparatus of the present invention can rapidly cool the substrate to lower the temperature to 250 ° C. or lower. In the apparatus shown in FIG. 2, the magnetron cathode 40 is arranged in one place in the sputtering chamber, but the present invention is not limited to this, and the number may be two or more according to the number of substrates held by the substrate holder 32. Further, in the apparatus shown in FIG. 2, the sheath heater 45 for heating the substrate 34 and the substrate cooling device 46 are arranged at two places each, but the present invention is not limited to this, and the number of substrates 34 held by the substrate holder 32 and the magnetron. The number of the cathodes 40 may be one, or three or more.
In the apparatus shown in FIG. 2, the heating device (sheath heater) for heating the substrate and the substrate cooling device for cooling the substrate are separate devices, but a substrate heating / cooling device incorporating both devices may be used.

【0048】前記図1装置、図2装置ではマグネトロン
カソードに印加する電力の電源を直流電源としたが、本
発明はこれに限定されるものではなく、直流電源を主電
源とし、高周波電源を副電源としてスパッタ時に直流電
力に高周波電力を重畳するようにしてもよい。
In the apparatus of FIGS. 1 and 2, the power source for the power applied to the magnetron cathode is the DC power source, but the present invention is not limited to this, and the DC power source is the main power source and the high frequency power source is the sub power source. As a power source, high frequency power may be superimposed on DC power during sputtering.

【0049】前記前記実験例1,2ではターゲットとし
てIn23にSnO2を10wt%混入した焼結体ター
ゲットを用いたが、該ターゲットに代えてIn23への
SnO2の混入量が10wt%以外の組成とした焼結体
ターゲット、In23、SnO2、ZnO、CdO−S
nO2等を基本組成とするターゲットを用いてスパッタ
を行ったところ実験例1,2と同様の結果が得られた。
即ち酸素欠損ドナーにより導電性を得る酸化物透明導電
膜の製造において低抵抗率のITO膜を製造出来ると同
様の効果が得られる。
In the above-mentioned Experimental Examples 1 and 2, a sintered compact target in which SnO 2 was mixed with In 2 O 3 in an amount of 10 wt% was used as the target, but the amount of SnO 2 mixed in In 2 O 3 was used instead of the target. Content of a sintered body target other than 10 wt%, In 2 O 3 , SnO 2 , ZnO, CdO-S
When sputtering was performed using a target having nO 2 or the like as a basic composition, the same results as in Experimental Examples 1 and 2 were obtained.
That is, the same effect can be obtained when an ITO film having a low resistivity can be produced in the production of an oxide transparent conductive film that obtains conductivity by using an oxygen-deficient donor.

【0050】[0050]

【発明の効果】このように本発明の透明導電膜の製造装
置によるときは、真空中で基板を250℃以下に急冷す
る基板冷却装置を備えるようにしたので、成膜後、基板
は250℃以下に冷却されるから、その後大気中に晒さ
れても基板上に形成された透明導電膜は従来装置で製造
された透明導電膜のような酸化によるキャリア電子の減
少が生じないため、低抵抗率の透明導電膜を容易にかつ
能率よく製造することが出来る装置を提供出来る効果が
ある。
As described above, the transparent conductive film manufacturing apparatus of the present invention is provided with the substrate cooling device for rapidly cooling the substrate to 250 ° C. or lower in vacuum. Since it is cooled below, even if it is exposed to the atmosphere after that, the transparent conductive film formed on the substrate does not have a decrease in carrier electrons due to oxidation unlike the transparent conductive film manufactured by the conventional device, and thus has a low resistance. There is an effect that it is possible to provide an apparatus capable of easily and efficiently producing a transparent conductive film having a high rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明装置の1実施例の模式図、FIG. 1 is a schematic view of an embodiment of the device of the present invention,

【図2】 本発明装置の他の実施例の模式図。FIG. 2 is a schematic view of another embodiment of the device of the present invention.

【符号の説明】[Explanation of symbols]

1,31 真空室、 6,36 真空排気装置、
11,34 基板、 14,41 ターゲット、
13,45 シースヒータ、 22,46 基板
冷却装置。
1,31 vacuum chamber, 6,36 vacuum exhaust device,
11,34 substrate, 14,41 target,
13,45 Sheath heater, 22,46 Substrate cooling device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 久三 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉県超材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisami Nakamura 523 Yokota, Yamatake-cho, Yamatake-gun, Chiba Pref.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空室内に基板とターゲットとを対向さ
せて設け、該基板を300℃以上に保持しながら、該基
板とターゲットとの間に生ずるプラズマ放電により、基
板上に透明導電膜をスパッタ法で形成する透明導電膜の
製造装置において、該製造装置は透明導電膜の形成後、
真空中で基板を250℃以下に急冷する基板冷却装置を
備えていることを特徴とする透明導電膜の製造装置。
1. A transparent conductive film is sputtered on a substrate by arranging a substrate and a target in a vacuum chamber so as to face each other and maintaining the substrate at 300 ° C. or higher, by plasma discharge generated between the substrate and the target. In the manufacturing apparatus of the transparent conductive film formed by the method, the manufacturing apparatus, after forming the transparent conductive film,
An apparatus for producing a transparent conductive film, comprising a substrate cooling device for rapidly cooling a substrate to 250 ° C. or lower in vacuum.
JP4201504A 1992-07-28 1992-07-28 Apparatus for production of transparent conductive film Pending JPH0641724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4201504A JPH0641724A (en) 1992-07-28 1992-07-28 Apparatus for production of transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4201504A JPH0641724A (en) 1992-07-28 1992-07-28 Apparatus for production of transparent conductive film

Publications (1)

Publication Number Publication Date
JPH0641724A true JPH0641724A (en) 1994-02-15

Family

ID=16442155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4201504A Pending JPH0641724A (en) 1992-07-28 1992-07-28 Apparatus for production of transparent conductive film

Country Status (1)

Country Link
JP (1) JPH0641724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084862A (en) * 2005-09-20 2007-04-05 Shibaura Mechatronics Corp Vacuum treatment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0170383U (en) * 1987-10-29 1989-05-10
JP2002015624A (en) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd Magnet wire and soldering method and soldering device using it
JP2003154450A (en) * 2001-11-15 2003-05-27 Ushio Inc Treatment for solder-joining insulating-film conductor and apparatus for this joining
JP2011258590A (en) * 2010-06-04 2011-12-22 Shinko Electric Ind Co Ltd Wiring board and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0170383U (en) * 1987-10-29 1989-05-10
JP2002015624A (en) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd Magnet wire and soldering method and soldering device using it
JP2003154450A (en) * 2001-11-15 2003-05-27 Ushio Inc Treatment for solder-joining insulating-film conductor and apparatus for this joining
JP2011258590A (en) * 2010-06-04 2011-12-22 Shinko Electric Ind Co Ltd Wiring board and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084862A (en) * 2005-09-20 2007-04-05 Shibaura Mechatronics Corp Vacuum treatment device

Similar Documents

Publication Publication Date Title
JP2936276B2 (en) Method and apparatus for manufacturing transparent conductive film
TWI524432B (en) Method and system for depositing a thin-film transistor
US6383345B1 (en) Method of forming indium tin oxide thin film using magnetron negative ion sputter source
US7989072B2 (en) Coated article with transparent conductive oxide film doped to adjust Fermi level, and method of making same
US4424101A (en) Method of depositing doped refractory metal silicides using DC magnetron/RF diode mode co-sputtering techniques
US5470618A (en) Method of making zinc-based transparent conductive film
JP2003520296A (en) Electron beam evaporation method of transparent indium tin oxide
US20120160663A1 (en) Sputter Deposition and Annealing of High Conductivity Transparent Oxides
JPH0772346B2 (en) Method for producing low resistance transparent conductive film
US5473456A (en) Method for growing transparent conductive gallium-indium-oxide films by sputtering
JPH0641724A (en) Apparatus for production of transparent conductive film
EP1184484B1 (en) METHOD FOR FABRICATING MgO POLYCRYSTALLINE THIN FILM
JPH0874034A (en) Formation of ito transparent conductive film
JPH11260724A (en) Method and device for manufacturing compound semiconductor thin film
KR20120071100A (en) Method for fabricating transparent conductive film and transparent conductive film by thereof
JP2633340B2 (en) Method for forming transparent conductive film
Ishibashi et al. Large area deposition of ITO films by cluster type sputtering system
EP0421015B1 (en) Process for producing transparent conductive film
JP4316265B2 (en) Manufacturing method of liquid crystal display panel
JP2688999B2 (en) Method for producing transparent conductive film
JP4587548B2 (en) Method for producing oxide transparent conductive film
JP3298055B2 (en) Method for forming transparent conductive film
JPS63243261A (en) Production of electrically conductive transparent film having low resistance
JPH07224383A (en) Method for making indium-tin oxide film high in resistance
JPH1046331A (en) Sputter film deposition method and its device