JPH0641647Y2 - Rotary atomizing coating equipment - Google Patents

Rotary atomizing coating equipment

Info

Publication number
JPH0641647Y2
JPH0641647Y2 JP1989134263U JP13426389U JPH0641647Y2 JP H0641647 Y2 JPH0641647 Y2 JP H0641647Y2 JP 1989134263 U JP1989134263 U JP 1989134263U JP 13426389 U JP13426389 U JP 13426389U JP H0641647 Y2 JPH0641647 Y2 JP H0641647Y2
Authority
JP
Japan
Prior art keywords
shaped electrode
rotary atomizing
coating
paint
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989134263U
Other languages
Japanese (ja)
Other versions
JPH0375856U (en
Inventor
敦己 垰森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1989134263U priority Critical patent/JPH0641647Y2/en
Publication of JPH0375856U publication Critical patent/JPH0375856U/ja
Application granted granted Critical
Publication of JPH0641647Y2 publication Critical patent/JPH0641647Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、駆動源により回転駆動される回転霧化頭から
塗料を噴霧し、この回転霧化頭と、被塗装物との間に形
成された電位差に応じて塗料を被塗装物に静電吸着させ
る回転霧化塗装装置に関するものである。
[Detailed Description of the Invention] [Industrial field of application] The present invention sprays paint from a rotary atomizing head that is rotationally driven by a drive source, and forms between the rotary atomizing head and an object to be coated. The present invention relates to a rotary atomizing coating device that electrostatically adsorbs a coating material on an object to be coated according to the applied potential difference.

〔従来の技術〕[Conventional technology]

従来、例えば実開昭60-54754号公報に示されるように、
回転霧化頭を高速で回転させつつ、その先端部から塗料
を噴霧することにより、塗料を遠心力によって微粒化さ
せて拡散させるとともに、上記回転霧化頭に高電圧を印
加して、被塗装物との間に所定の電位差を形成し、この
電位差に応じて上記塗料を被塗装物に静電吸着させるよ
うにした回転霧化塗装装置が知られている。
Conventionally, for example, as shown in Japanese Utility Model Laid-Open No. 60-54754,
While rotating the rotary atomizing head at high speed, the paint is sprayed from the tip of the rotary atomizing head to atomize the paint by centrifugal force to diffuse it, and a high voltage is applied to the rotary atomizing head to apply the coating. There is known a rotary atomizing coating apparatus that forms a predetermined potential difference with an object and electrostatically adsorbs the paint to an object to be coated according to the potential difference.

上記回転霧化装置は、上記回転霧化頭の回転に応じて作
用する遠心力により、塗料がドーナッツ状に拡散するた
め、第14図に示すように、被塗装物H上に形成される塗
膜Tの中心部の厚みが薄くなるとともに、第15図に示す
ように、直線部Gを有する被塗装物Hに塗料を塗布する
場合に、上記直線部Gから食み出した部分、つまり斜線
で示した範囲Iの塗料が無駄に消費される等の問題があ
る。このため、上記従来装置では、塗料の噴霧方向を規
制する塗装パターン変形用のエアを噴出するパターン変
形用リングを設け、上記エアによって塗料の拡散を防止
して塗膜の厚みを均一化するとともに、塗料の無駄吹き
を抑制するようにしている。
In the rotary atomizer, the centrifugal force acting according to the rotation of the rotary atomizing head causes the paint to diffuse into a donut shape, so that as shown in FIG. As shown in FIG. 15, when the thickness of the central portion of the film T is reduced, when a coating material H having a straight line portion G is coated with a coating material, a portion protruding from the straight line portion G, that is, a diagonal line There is a problem that the paint in the range I shown in is wastefully consumed. Therefore, in the above-mentioned conventional apparatus, a pattern-deformation ring that ejects air for pattern-deformation that regulates the spray direction of the paint is provided to prevent the paint from diffusing by the air and to make the thickness of the coating film uniform. , I try to suppress the waste of paint.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

上記のように、塗料の射出方向を規制する塗装パターン
変形用のエアを供給することにより、噴霧された塗料を
中心部側に寄せて塗膜の厚みを均一化するように構成し
たものでは、上記パターン変形用リングに形成されたエ
アの吹き出し孔の配置に応じて塗装パターンが規定され
るため、被塗装物の形状に対応させて塗装パターンを適
正に設定することが困難であるという問題がある。また
上記エアによって塗料の射出方向を規制するように構成
した場合には、大量のエアを供給しなければ塗料の射出
方向を効果的に規制することができず、しかもエアの供
給量が過多になると、却って塗料の射出方向にばらつき
が生じるという問題がある。
As described above, by supplying air for coating pattern deformation that regulates the injection direction of the paint, the sprayed paint is moved toward the central portion side to make the thickness of the coating film uniform, Since the coating pattern is defined according to the arrangement of the air blowout holes formed in the pattern deforming ring, there is a problem that it is difficult to properly set the coating pattern corresponding to the shape of the object to be coated. is there. Further, in the case where the above-described air is used to control the injection direction of the paint, the injection direction of the paint cannot be effectively controlled unless a large amount of air is supplied, and the air supply amount becomes excessive. In that case, there is a problem that the direction in which the paint is ejected varies.

なお、上記構成に代えて回転噴霧頭の周縁部に針状のパ
ターン変形用の電極を設置し、このパターン変形用の電
極に高電圧を印加して電位差を生じさせることにより、
噴霧時に微粒化して帯電した塗料の噴射方向を、上記電
位差に応じて生じる電気力によって規制することが考え
られる。例えば、第15図の仮想線で示すように、被塗装
物Hの形状に対応させて塗装パターンを正方形に形成す
ることにより、塗料の無駄吹きを防止することができ
る。
Incidentally, in place of the above configuration, a needle-shaped electrode for pattern deformation is installed in the peripheral portion of the rotary spray head, and a high voltage is applied to the electrode for pattern deformation to generate a potential difference,
It is conceivable that the spraying direction of the paint that is atomized and charged during spraying is regulated by the electric force generated according to the potential difference. For example, as shown by the phantom line in FIG. 15, by forming the coating pattern in a square shape corresponding to the shape of the object H to be coated, it is possible to prevent wasteful spraying of the coating material.

しかし、上記針状のパターン変形用の電極を用いたもの
では、この電極の先端部と、被塗装物との距離が小さい
場合に、その間に形成された電位差に応じて電極の先端
部から被塗装物に向けて過電流が流れ、放電現象に起因
した火花が発生するという問題があった。
However, in the case of using the above-mentioned needle-shaped pattern-changing electrode, when the distance between the tip of this electrode and the object to be coated is small, the tip of the electrode is covered by the potential difference formed between them. There has been a problem that an overcurrent flows toward the coated object and a spark is generated due to the discharge phenomenon.

本考案は、上記問題点を解決するためになされたもので
あり、放電現象を生じることなく、被塗装物の形状に対
応させて塗装パターンを正確かつ容易に変化させること
ができる回転霧化塗装装置を提供することを目的として
いる。
The present invention has been made in order to solve the above problems, and rotary atomization coating capable of accurately and easily changing a coating pattern according to the shape of an object to be coated without causing a discharge phenomenon. The purpose is to provide a device.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案は、駆動部により回転駆動される回転霧化頭から
塗料を噴霧し、この回転霧化頭と、被塗装物との間に形
成された電位差に応じて塗料を被塗装物に静電吸着させ
る回転霧化塗装装置において、上記回転霧化頭の周囲に
四角形のリング状の電極を配設するとともに、このリン
グ状の電極のコーナ部から前方にピンを突設してその先
端部にボール状電極を配設し、上記回転霧化頭、リング
状の電極およびボール状電極にそれぞれ同極の電圧を印
加するように構成したものである。
The present invention sprays paint from a rotary atomizing head that is rotationally driven by a drive unit, and electrostatically applies the paint to the object to be coated according to the potential difference formed between the rotary atomizing head and the object to be coated. In the rotary atomizing coating device for adsorbing, a rectangular ring-shaped electrode is arranged around the rotary atomizing head, and a pin is projected from the corner portion of the ring-shaped electrode to the front end thereof. A ball-shaped electrode is provided and the same voltage is applied to the rotary atomizing head, the ring-shaped electrode and the ball-shaped electrode.

〔作用〕 上記構成の本考案によれば、回転霧化頭、リング状の電
極およびボール状電極に印加された電圧によって塗料の
噴霧方向が規制され、塗料の噴霧パターンが直線部を有
する被塗装物に対応した形状に形成されるとともに、被
塗装物に対向する電極がボール状に形成されているた
め、この電極から被塗装物に向けて過電流が流れる放電
現象の発生が効果的に防止される。
[Operation] According to the present invention having the above-described configuration, the spray direction of the paint is regulated by the voltage applied to the rotary atomizing head, the ring-shaped electrode, and the ball-shaped electrode, and the spray pattern of the paint has a straight portion. In addition to being formed in a shape corresponding to the object, the electrode facing the object to be coated is formed into a ball shape, so that the occurrence of a discharge phenomenon in which an overcurrent flows from this electrode toward the object to be coated is effectively prevented. To be done.

〔実施例〕〔Example〕

第1図は、本考案に係る回転霧化塗装装置の実施例を示
している。この回転霧化塗装装置は、図外のエアモータ
もしくは電動モータ等からなる回転駆動部1と、この回
転駆動部1によって25000rpm程度の高速で回転駆動され
るベル型の回転霧化頭2と、上記駆動部1のケーシング
3の周囲にブラケット4を介して設置されたリング状の
電極5と、このリング状の電極5から前方に突設された
ピン6と、このピン6の先端部に設けられたボール状の
電極7と、上記駆動部1のケーシング3に−70〜−100k
Vの高電圧を印加する高圧ケーブル8とを備えている。
FIG. 1 shows an embodiment of a rotary atomizing coating device according to the present invention. This rotary atomization coating apparatus includes a rotary drive unit 1 composed of an air motor or an electric motor (not shown), a bell type rotary atomization head 2 which is rotationally driven by the rotary drive unit 1 at a high speed of about 25000 rpm, and A ring-shaped electrode 5 is provided around a casing 3 of the drive unit 1 via a bracket 4, a pin 6 is provided so as to project forward from the ring-shaped electrode 5, and a pin 6 is provided at the tip of the pin 6. The ball-shaped electrode 7 and the casing 3 of the drive unit 1 have -70 to -100k.
And a high voltage cable 8 for applying a high voltage of V.

上記回転霧化頭2は、図外の塗料供給管から供給された
塗料を、回転霧化頭2の回転に応じて作用する遠心力に
より拡散させて噴霧するとともに、上記高圧ケーブル8
から駆動部1のケーシング3に印加される高電圧によっ
て上記塗料を陰イオン化するように構成されている。ま
た、駆動部1のケーシング3には、塗装パターン規制用
のエアを供給するエア供給管(図示せず)が接続され、
上記ケーシング3の先端部に形成されたエア導出孔から
上記回転霧化頭2の周縁部に向けて所定圧のエアが供給
されるようになっている。
The rotary atomizing head 2 diffuses and sprays the paint supplied from a paint supply pipe (not shown) by a centrifugal force that acts according to the rotation of the rotary atomizing head 2, and at the same time, the high-voltage cable 8
Is configured to be anionized by the high voltage applied to the casing 3 of the drive unit 1. Further, an air supply pipe (not shown) for supplying air for regulating the coating pattern is connected to the casing 3 of the drive unit 1,
Air of a predetermined pressure is supplied from an air outlet hole formed at the tip of the casing 3 toward the peripheral portion of the rotary atomizing head 2.

上記リング状の電極5は、第2図に示すように、回転霧
化頭2を囲繞する正方形に形成され、この電極5がブラ
ケット4内に設けられたリード線を介して上記駆動部1
のケーシング3に連結され、あるいは上記高圧ケーブル
8から分岐した高圧ケーブルが接続される等により、回
転霧化頭2と同極、つまり陰極の電圧が印加されるよう
に構成されている。また、上記ボール状の電極7および
ピン6は、正方形に形成されたリング状の電極5のコー
ナ部にそれぞれ配設され、ピン6を介してリング状の電
極5と同電圧が印加されている。
As shown in FIG. 2, the ring-shaped electrode 5 is formed in a square surrounding the rotary atomizing head 2, and the electrode 5 is connected to the drive unit 1 via a lead wire provided in the bracket 4.
Is connected to the casing 3 or is connected to a high-voltage cable branched from the high-voltage cable 8 so that the voltage of the same polarity as that of the rotary atomizing head 2, that is, the voltage of the cathode is applied. The ball-shaped electrode 7 and the pin 6 are respectively arranged at the corners of the ring-shaped electrode 5 formed in a square shape, and the same voltage as that of the ring-shaped electrode 5 is applied via the pin 6. .

上記構成の回転霧化塗装装置によって塗料を噴霧して塗
装を施すには、上記高圧ケーブル8および駆動部1のケ
ーシング3から回転霧化頭2、リング状の電極5および
ボール状の電極7に高電圧を印加するとともに、エア供
給管から回転霧化頭2の周囲に塗装パターン変形用のエ
アを供給しつつ、上記回転霧化頭2を回転させて塗料を
噴霧する。そして噴霧された塗料は、上記塗装パターン
変形用のエアによってその塗装範囲が規制されつつ、回
転霧化頭2の回転に応じて作用する遠心力と、リング状
の電極5およびボール状の電極7と、被塗装物との間に
形成された電位差に応じて作用する電気力とを受け、そ
の合力の方向に飛行して被塗装物に付着する。
In order to apply the paint by spraying with the rotary atomizing coating device having the above-mentioned configuration, the high pressure cable 8 and the casing 3 of the drive unit 1 are transferred to the rotary atomizing head 2, the ring-shaped electrode 5 and the ball-shaped electrode 7. While applying a high voltage and supplying air for deforming the coating pattern around the rotary atomizing head 2 from the air supply pipe, the rotary atomizing head 2 is rotated to spray the paint. The sprayed paint is subjected to a centrifugal force acting according to the rotation of the rotary atomizing head 2 and the ring-shaped electrode 5 and the ball-shaped electrode 7 while the coating range is regulated by the air for deforming the coating pattern. And an electric force that acts according to the potential difference formed between the object and the object to be coated, fly in the direction of the resultant force, and adhere to the object to be coated.

すなわち上記塗料は、回転霧化頭2から噴霧される際
に、微粒化するとともに、回転霧化頭2に印加された電
圧に応じて負電荷を帯びるため、第3図に示すように、
上記回転霧化頭2と被塗装物Hとの間に形成された電気
力線Aと、リング状の電極5およびボール状の電極7と
被塗装物Hとの間に形成された電気力線Bとの影響を受
けて飛行することとなる。上記電気力線Aの電気力E1お
よび電気力線Bの電気力E2は、下式に示す値となる。
That is, the above-mentioned paint is atomized when sprayed from the rotary atomizing head 2 and is negatively charged according to the voltage applied to the rotary atomizing head 2. Therefore, as shown in FIG.
Lines of electric force A formed between the rotary atomizing head 2 and the object H to be coated, and lines of electric force formed between the ring-shaped electrode 5 and the ball-shaped electrode 7 and the object H to be coated. It will be affected by B and will fly. The electric force E1 of the electric force line A and the electric force E2 of the electric force line B have the values shown in the following expressions.

E1=Q1×a1/2πε(a1+X1)3/2 E2=Q2×a2/2πε(a2+X2)3/2 この式において、Q1,Q2は電極5,7に付与される電荷、ε
は比誘電率、X1,X2は上記回転霧化頭2および電極5,7の
設置位置から測定点までの図面上の左右方向距離、a1
a2は回転霧化頭2および電極5,7の設置位置から被塗装
物Hまでの距離である。
E1 = Q1 × a 1 / 2πε (a 1 + X1) 3/2 E2 = Q2 × a 2 / 2πε (a 2 + X2) 3/2 In this formula, Q1 and Q2 are the charges given to electrodes 5 and 7, ε
Is the relative permittivity, X1 and X2 are the horizontal distances in the drawing from the installation position of the rotary atomizing head 2 and the electrodes 5 and 7 to the measurement point, a 1 ,
a 2 is the distance from the installation position of the rotary atomizing head 2 and the electrodes 5 and 7 to the object H to be coated.

そして回転霧化頭2と電極5,7との間の距離lを325mmに
設定すると、上記電気力E1,E2およびこれらの電気力線
A,Bが合成されることによって形成された電気力線の電
気力Eは、第4図に示すように分布する。また、上記合
成電気力Eは電気力E1とE2の和に等しくなり、上記距離
lを変更すると、電場の広さおよび電気力Eの強さが変
化することが想定される。したがって、上記距離lを適
正値に設定することにより、回転霧化頭2の回転に応じ
て生じる遠心力および塗装パター変形用のエアに応じて
塗料に作用する慣性力と、上記電気力線A,Bに応じて塗
料に作用する電気力E1,E2とのバランスを調節し、これ
によって塗装パターンの広がりを規制して塗着効率を向
上させることができる。
When the distance l between the rotary atomizing head 2 and the electrodes 5 and 7 is set to 325 mm, the electric forces E1 and E2 and the electric lines of force of these are set.
The electric force E of the electric line of force formed by combining A and B is distributed as shown in FIG. Further, the combined electric force E becomes equal to the sum of the electric forces E1 and E2, and it is assumed that when the distance 1 is changed, the width of the electric field and the strength of the electric force E change. Therefore, by setting the distance 1 to an appropriate value, the centrifugal force generated according to the rotation of the rotary atomizing head 2 and the inertial force acting on the paint according to the air for deforming the paint putter and the electric force line A , B, the balance with the electric forces E1, E2 acting on the paint is adjusted, whereby the spread of the coating pattern can be regulated and the coating efficiency can be improved.

上記慣性力と、電気力E1,E2とのバランスに応じた塗装
状態の変化を確認するために行った第1実験例につい
て、以下に説明する。すなわち、吐出量200cc/秒、回転
数25000rpm、パターン変形用のエアの吐出圧2.0kgf/cm2
に設定された回転霧化頭2を被塗装物から300mmの距離
に設置した状態で、粘度#4FC21″/20℃のメラミンアル
キッド系塗料(NO.4のフォードカップで塗料を掬い上げ
て20℃の温度で排出させるのに21秒を要する粘度の塗
料)を、0.3〜0.35m/秒のブース風速で約5秒間吹き付
けるとともに、回転霧化頭2と、リング状の電極5との
距離lを種々変化させて塗装パターン幅および塗着効率
を測定したところ、第5図に示すような塗装パターン幅
のデータαおよび塗着効率のデータβが得られた。な
お、この第1実験例においては、上記リング状の電極5
に高電圧を印加することによる塗装状態の変化を観測す
るため、ボール状の電極7を設けることなく、第6図お
よび第7図に示すように、円形に形成されたリング状の
電極5′を設けて実験を行った。
A first experimental example performed for confirming a change in the coating state according to the balance between the inertial force and the electric forces E1 and E2 will be described below. That is, the discharge rate is 200 cc / sec, the rotation speed is 25000 rpm, and the discharge pressure of the pattern deformation air is 2.0 kgf / cm 2.
With the rotary atomizing head 2 set to No. 4 at a distance of 300mm from the object to be coated, viscosity # 4 FC21 ″ / 20 ℃ melamine alkyd paint (Scatter the paint with a NO.4 Ford cup to 20 ℃ The paint with a viscosity that requires 21 seconds to discharge at the temperature of 3) is sprayed at a booth wind speed of 0.3 to 0.35 m / sec for about 5 seconds, and the distance 1 between the rotary atomizing head 2 and the ring-shaped electrode 5 is increased. When the coating pattern width and the coating efficiency were measured with various changes, the coating pattern width data α and the coating efficiency data β were obtained as shown in Fig. 5. In the first experimental example, , The ring-shaped electrode 5
In order to observe the change in the coating state due to the application of a high voltage to the electrodes, the ring-shaped electrode 5 ′ formed in a circular shape as shown in FIGS. 6 and 7 was provided without providing the ball-shaped electrode 7. Was set up and the experiment was conducted.

そして上記実験データから、回転霧化頭2とリング状の
電極5′との距離lが150mm以下の範囲では、上記距離
lの増大に応じて塗装パターン幅が減少するとともに塗
着効率が上昇し、上記距離lが150mmを越える範囲で
は、距離lの増大に応じて塗装パターン幅が増大すると
ともに塗着効率が低下し、回転霧化頭2と、リング状の
電極5′との距離lを150mmに設定した場合に、塗着効
率が最大値を示すことが確認された。これは、上記距離
lが150mm以下の範囲においては、リング状の電極5′
に高電圧を印加することによって塗料に作用する電気力
E2の影響よりも、回転霧化頭2の回転に応じて塗料に作
用する遠心力の影響の方が大きいため、上記電気力E2に
よる塗装パターンの広がり規制作用が不充分となること
を示している。
From the above experimental data, when the distance 1 between the rotary atomizing head 2 and the ring-shaped electrode 5'is 150 mm or less, the coating pattern width decreases and the coating efficiency increases as the distance 1 increases. In the range where the distance l exceeds 150 mm, the coating pattern width increases as the distance l increases and the coating efficiency decreases, so that the distance l between the rotary atomizing head 2 and the ring-shaped electrode 5'is reduced. It was confirmed that the coating efficiency showed the maximum value when it was set to 150 mm. This is because the ring-shaped electrode 5'is provided when the distance l is 150 mm or less.
Electric force acting on the paint by applying high voltage to the paint
Since the effect of centrifugal force acting on the paint according to the rotation of the rotary atomizing head 2 is greater than the effect of E2, it is shown that the effect of regulating the spreading of the coating pattern by the electric force E2 is insufficient. There is.

次に、上記パターン変形用エアの供給圧力を変化させた
場合の塗装状態の変化を確認するため、上記距離lを15
0mmに設定した状態で、パターン変形用エアの供給圧力
を種々変化させて塗装パターン幅および塗着効率を測定
する第2実験を行ったところ、第8図に示すようなデー
タα,βが得られた。この実験データから上記エアの供
給圧力が低いほど塗着効率が上昇し、かつ塗装パターン
の幅が増大し、塗料の付着状態が良好であることが確認
された。これは、塗料の飛行方向を規制するリング状の
電極5′を設けた回転霧化塗装装置において、上記エア
を過度に供給した場合、その影響によって塗料の飛行方
向が乱れ、塗料の付着状態が却って不良になることを示
している。したがって上記のようにリング状の電極5,
5′を設けた場合には、従来塗料の拡散を防止するため
に必要とされていた上記パターン変形用のエアがそれ程
必要とされないことが確認された。
Next, in order to confirm the change in the coating state when the supply pressure of the pattern deforming air is changed, the distance l is set to 15
When the second experiment was performed to measure the coating pattern width and the coating efficiency by changing the supply pressure of the pattern-deforming air variously in the state of setting to 0 mm, the data α and β as shown in FIG. 8 were obtained. Was given. From this experimental data, it was confirmed that the lower the air supply pressure is, the higher the coating efficiency is, the more the width of the coating pattern is increased, and the better the adhesion state of the coating is. This is because, in a rotary atomizing coating device provided with a ring-shaped electrode 5'for controlling the flight direction of the paint, when the above air is excessively supplied, the flight direction of the paint is disturbed due to the influence of the air and the adhered state of the paint On the contrary, it shows that it becomes defective. Therefore, as described above, the ring-shaped electrode 5,
It was confirmed that when 5'is provided, the air for pattern deformation, which was conventionally required to prevent the diffusion of the paint, is not required so much.

また上記のように、リング状の電極5と、回転霧化頭2
との距離lに応じて塗装パターンの幅が変化するため、
例えば第9図に示すように、リング状の電極5を正方形
に形成し、回転霧化頭2とリング状の電極5との距離l
が、最大値1と最小値l2との間で 倍の差が生じるように構成する等により、塗装パターン
の形状を変化させることができる。そして、上記正方形
のリング状電極5の一辺の長さを種々変化させて形成さ
れる塗装パターンの形状を確認する第3実験を行ったと
ころ、以下に示すような実験データが得られた。
Further, as described above, the ring-shaped electrode 5 and the rotary atomizing head 2
Since the width of the coating pattern changes according to the distance l between
For example, as shown in FIG. 9, the ring-shaped electrode 5 is formed in a square shape, and the distance l between the rotary atomizing head 2 and the ring-shaped electrode 5 is increased.
Between the maximum value 1 and the minimum value l2 The shape of the coating pattern can be changed by, for example, arranging so as to produce a double difference. Then, a third experiment was carried out to confirm the shape of the coating pattern formed by changing the length of one side of the square ring electrode 5 variously, and the following experimental data were obtained.

すなわち、上記電極5の一辺の長さを150mm、200mm、30
0mmおよび400mmに変化させたところ、形成された塗装パ
ターンの長径の値、短径の値および正方形の場合を100
%とした場合における長径と短径の変化率の値は、以下
に示すように変化した。
That is, the length of one side of the electrode 5 is 150 mm, 200 mm, 30
When changed to 0 mm and 400 mm, the major axis value, minor axis value and square case of the formed coating pattern are 100
The value of the rate of change of the major axis and the minor axis in% was changed as shown below.

長径:700mm、650mm、600mm、600mm。Major axis: 700mm, 650mm, 600mm, 600mm.

短径:640mm、600mm、560mm、560mm。Minor axis: 640mm, 600mm, 560mm, 560mm.

変化率:29.3%、26.3%、22.8%、22.8%。Rate of change: 29.3%, 26.3%, 22.8%, 22.8%.

このようにリング状の電極5の形状を変化させただけで
は、塗装パターンの変化率は極めて低く、正方形の塗装
パターンを形成することができないことが確認された。
Thus, it was confirmed that the change rate of the coating pattern was extremely low and the square coating pattern could not be formed only by changing the shape of the ring-shaped electrode 5.

次に第10図に示すように、一辺の長さが300mmに形成さ
れた正方形のリング状電極5のコーナ部に、コロナピン
9を被塗装物に向けて突設して電荷を集中的に付与した
場合における塗装パターンの形状を確認する第4実験を
行ったところ、塗装パターンの長径の長さが750mm、短
径の長さが560mm、その変化率が86.5%になり、略正方
形の塗装パターンを形成できることが確認された。しか
し、上記コロナピン9の径が細く、かつその突出量が大
きい場合には、コロナピン9の先端から被塗装物に向け
て過電流が流れ、放電現象が発生する場合がある。この
ため、上記コロナピン9の径および突出量を種々の値に
設定し、通電される電流値(μA)測定して放電現象の
有無を確認する第5実験を行ったところ、下表に示すよ
うなデータが得られた。
Next, as shown in FIG. 10, corona pins 9 are projected toward the object to be coated at the corners of the square ring-shaped electrode 5 having a side length of 300 mm, and the charges are concentratedly applied. When a fourth experiment was performed to confirm the shape of the coating pattern in the case of being, the major axis length of the coating pattern was 750 mm, the minor axis length was 560 mm, and the rate of change was 86.5%. It was confirmed that However, when the corona pin 9 has a small diameter and a large protrusion amount, an overcurrent may flow from the tip of the corona pin 9 toward the object to be coated, and a discharge phenomenon may occur. Therefore, when the diameter and the amount of protrusion of the corona pin 9 were set to various values and a fifth experiment for confirming the presence or absence of the discharge phenomenon by measuring the current value (μA) being energized was performed, the results are shown in the table below. Data was obtained.

上記実験データからコロナピン9の突出量と直径の比が
1:1の場合、あるいはコロナピン9の形状を球形に近い
形状に形成した場合には、過電流が流れず、放電現象が
発生しないことが確認された。
From the above experimental data, the ratio of the protrusion amount of the corona pin 9 to the diameter is
It was confirmed that in the case of 1: 1 or when the shape of the corona pin 9 was formed into a shape close to a sphere, overcurrent did not flow and the discharge phenomenon did not occur.

次に上記第1図および第2図に示す構造において、回転
霧化頭2の先端部から55mm上方の位置にリング状の電極
5を配設し、このリング状の電極5のコーナ部にピン6
を突設するとともに、このピン6の先端部に、上記球形
のコロナピンに相当するボール状の電極7を設置した場
合における放電現象の発生状態および塗装状態を確認す
るために行った第6実験例について説明する。すなわ
ち、上記ボール状の電極7の突出量Lおよび直径Dを種
々変化させて過電流の発生状態を確認したところ、第11
図に示すように、ボール状の電極7の直径Dが5mmおよ
び10mmの場合には、すべての領域で過電流が発生し、上
記直径Dが20mmの場合には、突出量Lが60mm以下の領域
で過電流が生じないことが確認された。
Next, in the structure shown in FIG. 1 and FIG. 2, the ring-shaped electrode 5 is arranged 55 mm above the tip of the rotary atomizing head 2 and the pin of the corner of the ring-shaped electrode 5 is pinned. 6
6th experimental example carried out to confirm the generation state of the discharge phenomenon and the coating state when the ball-shaped electrode 7 corresponding to the spherical corona pin is installed at the tip of this pin 6 Will be described. That is, when the amount L of projection of the ball-shaped electrode 7 and the diameter D are variously changed and the state of occurrence of overcurrent is confirmed,
As shown in the drawing, when the diameter D of the ball-shaped electrode 7 is 5 mm and 10 mm, overcurrent occurs in all regions, and when the diameter D is 20 mm, the protrusion amount L is 60 mm or less. It was confirmed that no overcurrent occurred in the area.

また、直径20mmのボール状電極7の突出量Lを種々変化
させ、形成される塗装パターンの形状を確認する第7実
験を行ったところ、第12図に示すようなデータが得られ
た。すなわち、上記突出量Lを30mm、40mm、50mm、60m
m、70mmおよび90mmに変化させたところ、塗装パターン
の長径と短径との差、つまり長径と短径との変化率が理
想とする正方形に対して以下に示すパーセンテイジとな
った。
In addition, when a seventh experiment was performed in which the projection amount L of the ball-shaped electrode 7 having a diameter of 20 mm was variously changed and the shape of the formed coating pattern was confirmed, the data shown in FIG. 12 were obtained. That is, the protrusion amount L is 30 mm, 40 mm, 50 mm, 60 m
When changed to m, 70 mm, and 90 mm, the difference between the major axis and the minor axis of the coating pattern, that is, the rate of change between the major axis and the minor axis became the following percentages for an ideal square.

変化率:16.2%、36.5%、57.4%、80.8%、100%、110
%。
Rate of change: 16.2%, 36.5%, 57.4%, 80.8%, 100%, 110
%.

したがって、上記ボール状の電極7の突出量Lを60mm程
度に設定し、この電極7の位置と、回転霧化頭2の先端
部の位置とを略同位置に設定することにより、理想とす
る正方形に近い形状の塗装パターンを形成することがで
きる。しかも、上記ボール状の電極7の突出量Lが70mm
以下の場合には、この電極7に塗料が付着することによ
る汚れも発生していないことが確認された。
Therefore, the projection amount L of the ball-shaped electrode 7 is set to about 60 mm, and the position of this electrode 7 and the position of the tip of the rotary atomizing head 2 are set to substantially the same position, which is ideal. It is possible to form a coating pattern having a shape close to a square. Moreover, the protrusion amount L of the ball-shaped electrode 7 is 70 mm.
In the following cases, it was confirmed that no stain was caused by the paint adhering to the electrode 7.

次に上記第1図および第2図に示す本考案の実施例に係
る回転霧化塗装装置によって塗料を塗布した場合と、上
記第1実験例において使用した回転霧化塗装装置、つま
り直径150mmのリング状電極5′を設けた塗装装置によ
って塗料を塗布した場合とにおいて、塗膜の厚みを測定
する第8実験例について説明する。すなわち、それぞれ
3個の回転霧化塗装装置を550mm間隔で配設し、これら
を420mmのストロークで往復動させつつ、幅1500mmの被
塗装物に塗装を行う実験を行ったところ、本考案装置に
よる場合には、被塗装部における塗膜の厚みが第13図の
実線に示すように、破線で示す第1実験例の装置による
場合に比べて厚くなることが確認された。
Next, the case where the paint is applied by the rotary atomization coating apparatus according to the embodiment of the present invention shown in FIGS. 1 and 2 and the rotary atomization coating apparatus used in the first experimental example, that is, the diameter of 150 mm An eighth experimental example for measuring the thickness of the coating film when the coating material is applied by a coating device having the ring-shaped electrode 5'is described. That is, three rotary atomizing coating devices were arranged at 550 mm intervals, respectively, and an experiment was conducted in which the objects to be coated having a width of 1500 mm were coated while reciprocating with a stroke of 420 mm. In this case, as shown by the solid line in FIG. 13, it was confirmed that the thickness of the coating film on the coated portion was thicker than that by the device of the first experimental example shown by the broken line.

したがって、上記のように回転霧化頭2の周囲に、回転
霧化頭2と同極の電圧が印加される四角形のリング状の
電極5およびそのコーナ部から前方に突出するボール状
の電極7を配設した場合には、これらの電極5,7から被
塗装物に過電流が流れる放電現象を生じることなく、塗
装パターンを任意の形状に変化させることができるとと
もに、塗装効率を効果的に向上させることができる。
Therefore, as described above, around the rotary atomizing head 2, a square ring-shaped electrode 5 to which a voltage having the same polarity as that of the rotary atomizing head 2 is applied and a ball-shaped electrode 7 protruding forward from the corner portion thereof. In the case of arranging, the coating pattern can be changed into an arbitrary shape without causing a discharge phenomenon in which an overcurrent flows from the electrodes 5 and 7 to the object to be coated, and the coating efficiency is effectively increased. Can be improved.

すなわち、上記ボール状の電極7に印加された電圧に応
じて作用する電気力により上記電極7の設置部における
塗料の塗布範囲が規制されるとともに、この塗装範囲の
規制によって相隣接するボール状電極7,7の中間部にお
ける塗料の塗布範囲が第16図の破線I′に示すように広
がることが、上記リング状の電極5に印加される電圧に
応じて作用する電気力で規制されるため、塗料の塗布範
囲が、実線Iに示すように、正方形に近い状態に設定さ
れることになる。
That is, the coating range of the paint in the installation portion of the electrode 7 is regulated by the electric force acting according to the voltage applied to the ball-shaped electrode 7, and the ball-shaped electrodes adjacent to each other are regulated by the regulation of the coating range. The fact that the coating range of the paint in the middle part of 7, 7 expands as shown by the broken line I ′ in FIG. 16 is restricted by the electric force acting according to the voltage applied to the ring-shaped electrode 5. As shown by the solid line I, the coating range of the paint is set to a state close to a square.

なお、被塗装物の形状等に応じて塗装パターンの形状を
任意に変形できるように構成するため、リング状の電極
5およびボール状の電極7を支持するブラケット4の取
付位置を調節可能に構成する等により、上記ボール状の
電極7と、被塗装物との間隔を変更し、あるいは上記ボ
ール状の電極7と、回転霧化頭2との距離lを変更して
電気力E2の大きさを調節できるようにすることが望まし
い。
Since the shape of the coating pattern can be arbitrarily changed according to the shape of the object to be coated, the mounting position of the bracket 4 supporting the ring-shaped electrode 5 and the ball-shaped electrode 7 can be adjusted. By changing the distance between the ball-shaped electrode 7 and the object to be coated, or by changing the distance 1 between the ball-shaped electrode 7 and the rotary atomizing head 2, the magnitude of the electric force E2 is changed. It is desirable to be able to adjust.

〔考案の効果〕[Effect of device]

以上説明したように、本考案は、回転霧化頭の周囲に四
角形のリング状の電極を配設するとともに、このリング
状の電極のコーナ部から前方にピンを突設してその先端
部にボール状電極を配設し、上記回転霧化頭、リング状
の電極およびボール状電極にそれぞれ同極の電圧を印加
するように構成したため、簡単な構成で塗料が拡散した
り、塗装パターン中央部の厚みが薄くなったりするのを
防止することができるとともに、直線部を有する被塗装
物の形状に応じて塗装パターンを規制することにより、
塗料の無駄吹きを防止することができる等の利点があ
る。また、上記ボール状の電極から被塗装物に過電流が
流れるのを効果的に防止し、放電現象の発生を確実に防
止することができる。
As described above, according to the present invention, the rectangular ring-shaped electrode is arranged around the rotary atomizing head, and the pin is projected from the corner of the ring-shaped electrode to the front end. Since a ball-shaped electrode is provided and the same voltage is applied to the rotary atomizing head, the ring-shaped electrode and the ball-shaped electrode, respectively, the paint can be diffused and the central portion of the coating pattern can be covered with a simple structure. It is possible to prevent the thickness of the product from becoming thin, and by controlling the coating pattern according to the shape of the object to be coated that has a straight portion,
There are advantages such as preventing wasteful spraying of the paint. Further, it is possible to effectively prevent an overcurrent from flowing from the ball-shaped electrode to the object to be coated, and to reliably prevent the occurrence of a discharge phenomenon.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案に係る回転霧化塗装装置の実施例を示す
概略図、第2図は上記塗装装置の底面図、第3図は電気
力線の形成状態を示す説明図、第4図は電気力の大きさ
を示すグラフ、第5図は本考案の効果を確認するために
行った第1実験例の実験データを示すグラフ、第6図は
上記第1実験例に使用した装置の正面図、第7図は上記
第1実験例に使用した装置の底面図、第8図は第2実験
例の実験データを示すグラフ、第9図は第3実験例に使
用した装置の底面図、第10図は第4実験例に使用した装
置の正面図、第11図は上記第4実験例の実験データを示
すグラフ、第12図は第7実験例の実験データを示すグラ
フ、第13図は第8実験例の実験データを示すグラフ、第
14図は従来装置の塗装パターンを示す断面図、第15図は
従来装置による塗装状態を示す説明図、第16図は塗料の
塗布パターンを示す説明図である。 1……駆動部、2……回転霧化頭、5……リング状の電
極、6……ピン、7……ボール状の電極、H……被塗装
物。
FIG. 1 is a schematic view showing an embodiment of a rotary atomizing coating apparatus according to the present invention, FIG. 2 is a bottom view of the coating apparatus, FIG. 3 is an explanatory view showing a state of forming electric lines of force, and FIG. Is a graph showing the magnitude of electric force, FIG. 5 is a graph showing experimental data of the first experimental example conducted to confirm the effect of the present invention, and FIG. 6 is a graph showing the apparatus used in the first experimental example. Front view, FIG. 7 is a bottom view of the device used in the first experimental example, FIG. 8 is a graph showing experimental data of the second experimental example, and FIG. 9 is a bottom view of the device used in the third experimental example. , FIG. 10 is a front view of the apparatus used in the fourth experimental example, FIG. 11 is a graph showing experimental data of the fourth experimental example, FIG. 12 is a graph showing experimental data of the seventh experimental example, and FIG. The figure is a graph showing the experimental data of the eighth experimental example.
FIG. 14 is a cross-sectional view showing a coating pattern of a conventional device, FIG. 15 is an explanatory diagram showing a coating state by the conventional device, and FIG. 16 is an explanatory diagram showing a coating pattern of paint. 1 ... driving part, 2 ... rotary atomizing head, 5 ... ring-shaped electrode, 6 ... pin, 7 ... ball-shaped electrode, H ... painted object.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】駆動部により回転駆動される回転霧化頭か
ら塗料を噴霧し、この回転霧化頭と、被塗装物との間に
形成された電位差に応じて塗料を被塗装物に静電吸着さ
せる回転霧化塗装装置において、上記回転霧化頭の周囲
に四角形のリング状の電極を配設するとともに、このリ
ング状の電極のコーナ部から前方にピンを突設してその
先端部にボール状電極を配設し、上記回転霧化頭、リン
グ状の電極およびボール状電極にそれぞれ同極の電圧を
印加するように構成したことを特徴とする回転霧化塗装
装置。
1. A paint is sprayed from a rotary atomizing head which is rotationally driven by a drive unit, and the paint is statically applied to the object to be coated according to a potential difference formed between the rotary atomizing head and the object to be coated. In a rotary atomizing coating device for electroadsorption, a rectangular ring-shaped electrode is arranged around the rotary atomizing head, and a pin is provided so as to project from a corner portion of the ring-shaped electrode to the front side. A rotary atomization coating apparatus, wherein a ball-shaped electrode is provided in the rotary atomization head, and the same voltage is applied to the rotary atomization head, the ring-shaped electrode, and the ball-shaped electrode, respectively.
JP1989134263U 1989-11-17 1989-11-17 Rotary atomizing coating equipment Expired - Lifetime JPH0641647Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989134263U JPH0641647Y2 (en) 1989-11-17 1989-11-17 Rotary atomizing coating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989134263U JPH0641647Y2 (en) 1989-11-17 1989-11-17 Rotary atomizing coating equipment

Publications (2)

Publication Number Publication Date
JPH0375856U JPH0375856U (en) 1991-07-30
JPH0641647Y2 true JPH0641647Y2 (en) 1994-11-02

Family

ID=31681611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989134263U Expired - Lifetime JPH0641647Y2 (en) 1989-11-17 1989-11-17 Rotary atomizing coating equipment

Country Status (1)

Country Link
JP (1) JPH0641647Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006015477D1 (en) * 2005-08-01 2010-08-26 Abb Kk ELECTROSTATIC COATING DEVICE
EP2543443B1 (en) 2010-03-04 2019-01-09 Imagineering, Inc. Coating forming device, and method for producing coating forming material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120648A3 (en) * 1983-03-24 1985-10-16 Nordson Corporation Method and apparatus for inductively charging centrifugally atomized conductive coating material
JPS6346136U (en) * 1986-09-11 1988-03-29

Also Published As

Publication number Publication date
JPH0375856U (en) 1991-07-30

Similar Documents

Publication Publication Date Title
US20200254480A1 (en) Electrostatic atomizing coating apparatus and coating method
JPH08153669A (en) Thin film forming method and formation device
JP2926071B2 (en) Electrostatic coating equipment
JPH0615048B2 (en) Electrostatic coating device and method
JP2009202131A (en) Liquid coating apparatus and liquid coating method
US3129112A (en) Electrostatic coating operations
JPH0641647Y2 (en) Rotary atomizing coating equipment
JP2015073948A (en) Rotary atomization electrostatic coating device
KR100507838B1 (en) Electrospray Device Having Guard Plate Of Insulated Electric Potential And Method Thereof
JP2001212479A (en) Electrostatic coating device and electrostatic coating method
JPH07256156A (en) Rotary-atomization electrostatic coating application device
JP5802787B1 (en) Liquid coating method and liquid coating apparatus
US3186864A (en) Method for electrostatic painting
JP2002355582A (en) Electrostatic coating apparatus
JP2000167446A (en) Coating head
JPS62216670A (en) Rotary atomization electrostatic coating method
JP2003334491A (en) Coating method for water-based coating material
JPH08108106A (en) Method for electrostatic coating and electrostatic coating machine
JPH07213956A (en) Electrostatic coater
JPH0113572Y2 (en)
JPH10151376A (en) Powder coating gun
JPH1034027A (en) Gun for forming electrostatic film and electrostatic film forming device
JPS62216661A (en) Rotating atomization electrostatic coating device
JPH0924306A (en) Electrostatic coating apparatus
JPS62216664A (en) Rotating atomization electrostatic coating device