JPH0641589B2 - Hydroprocessing method for heavy oil - Google Patents

Hydroprocessing method for heavy oil

Info

Publication number
JPH0641589B2
JPH0641589B2 JP62331046A JP33104687A JPH0641589B2 JP H0641589 B2 JPH0641589 B2 JP H0641589B2 JP 62331046 A JP62331046 A JP 62331046A JP 33104687 A JP33104687 A JP 33104687A JP H0641589 B2 JPH0641589 B2 JP H0641589B2
Authority
JP
Japan
Prior art keywords
oil
amount
heavy oil
phosphorus
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62331046A
Other languages
Japanese (ja)
Other versions
JPH01170688A (en
Inventor
暁 櫛山
玲司 相沢
悟 小林
豊 肥沼
日出夫 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62331046A priority Critical patent/JPH0641589B2/en
Publication of JPH01170688A publication Critical patent/JPH01170688A/en
Publication of JPH0641589B2 publication Critical patent/JPH0641589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、硫黄とともにバナジウムを含む重質油の水素
化処理方法に関するものである。
TECHNICAL FIELD The present invention relates to a hydrotreatment method for heavy oil containing vanadium together with sulfur.

〔従来技術〕[Prior art]

硫黄化合物、バナジウム等の金属化合物、アスファルテ
ン等を多く含む重質油を精製し、低公害な良質の燃料油
を製造するには、Mo、W、Co、Ni等をアルミナ等
の担体に担持した触媒を用い、水素加圧下で処理する方
法が一般的に用いられている。しかし、通常の水素化処
理用触媒を用いてバナジウム等の金属化合物やアスファ
ルテンを多量に含有する重質油を処理する場合には、こ
れらが水化処理反応過程において触媒表面に堆積し、触
媒の脱硫活性等を著しく低下させることが知られてい
る。この問題点を解決するため、使用する触媒や水素化
処理方法については、これまでにも多くの改良、開発が
行われてきた。その代表的な例としては、担体の細孔径
及び細孔容積を十分に大きくし、バナジウム等の堆積に
よっても劣化の少ない触媒を用いる方法(特開昭54-130
6号公報)、バイモーダルな細孔分布を有する担体触媒
を用いることにより、脱硫、脱金属いずれの反応に対し
ても高活性を維持しつつ、かつ活性劣化を少なくする方
法(小沼和彦ほか、石油学会誌、27巻、348頁、1984
年)、予め脱金属用触媒を用いて原料油中の金属含量を
少なくした後脱硫反応を行わせることにより、脱硫触媒
の活性劣化を防ぐ方法、反応装置の運転を停止すること
なく触媒の交換を可能とするため、反応器を移動床式ま
たは懸濁床式とする方法、担持触媒に代わり、油溶性金
属化合物を原料油に添加し、反応系内にて高分散触媒を
生成させることにより、バナジウム等の堆積による反応
器閉塞トラブルを回避すると同時に、単位触媒量当りの
活性を高める方法(米国特許第4,134,825号明細書、米国
特許第3,657,111号明細書)などが挙げられる。このよう
な、バナジウム化合物等の触媒被毒成分を多く含む重質
油の水素化処理方法に関しては、数多くの優れた技術開
発が進められているが、低公害な良質燃料油の効率的製
造のためには、なお一層の改良が望まれる。
In order to produce high-quality fuel oil with low pollution by refining heavy oil containing a large amount of sulfur compounds, metal compounds such as vanadium, etc., asphaltene, etc., Mo, W, Co, Ni, etc. were supported on a carrier such as alumina. A method of treating with hydrogen under pressure using a catalyst is generally used. However, when treating heavy oils containing a large amount of metal compounds such as vanadium and asphaltene using a conventional hydrotreating catalyst, these deposit on the catalyst surface during the hydrotreating reaction process, and It is known to significantly reduce desulfurization activity and the like. In order to solve this problem, many improvements and developments have been made on the catalyst used and the hydrotreatment method. As a typical example thereof, a method of using a catalyst in which the pore diameter and the pore volume of the carrier are made sufficiently large and the deterioration of which is small even by the deposition of vanadium or the like (JP-A-54-130)
No. 6), by using a carrier catalyst having a bimodal pore distribution, a method for maintaining high activity for both desulfurization and demetalization reactions, and reducing activity deterioration (Kazuhiko Konuma et al. Japan Petroleum Institute, 27, 348, 1984
Year), a method for preventing the activity deterioration of the desulfurization catalyst by reducing the metal content in the feed oil in advance using the catalyst for demetalization, and replacing the catalyst without stopping the operation of the reactor. In order to make it possible to use a moving bed type or a suspension bed type reactor, instead of the supported catalyst, an oil-soluble metal compound is added to the feedstock oil to form a highly dispersed catalyst in the reaction system. A method of avoiding the trouble of clogging the reactor due to the deposition of vanadium, etc. and at the same time increasing the activity per unit amount of catalyst (US Pat. No. 4,134,825, US Pat. No. 3,657,111) and the like. Regarding such a hydrotreatment method for heavy oil containing a large amount of catalyst poisoning components such as vanadium compounds, many excellent technological developments have been made, but it is possible to efficiently produce a low-pollution high-quality fuel oil. Therefore, further improvement is desired.

〔目的〕〔Purpose〕

本発明は、硫黄とともにバナジウムを含む重質油の水素
化処理において、脱硫、脱金属、アスファルテン除去等
の諸反応の反応率を高めるための方法を提供することを
目的とする。
An object of the present invention is to provide a method for increasing the reaction rate of various reactions such as desulfurization, demetalization, and asphaltene removal in the hydrotreatment of heavy oil containing vanadium together with sulfur.

〔構成〕〔Constitution〕

本発明者らは、前記目的を達成するため種々検討を重ね
た結果、硫黄とともにバナジウム等の金属を多く含む重
質油の水素化処理を行うに当り、予め、重質油中に適切
な量のリン化合物を添加溶解することにより、脱硫、脱
金属等の諸反応が著しく促進されることを見出した。
As a result of various studies to achieve the above-mentioned object, the present inventors have conducted an appropriate amount in the heavy oil in advance for hydrotreating the heavy oil containing a large amount of metal such as vanadium together with sulfur. It was found that various reactions such as desulfurization and demetallization are remarkably promoted by adding and dissolving the phosphorus compound.

即ち、本発明によれば、硫黄とともにバナジウムを含む
重質油に油溶性モリブデン化合物を添加溶解させて重質
油の水素化処理を行う方法において、該重質油に油溶性
リン化合物を、リン換算量で、該重質油に含まれるバナ
ジウム量の0.5〜4倍モルの割合で添加溶解させることを
特徴とする重質油の水素化処理方法が提供される。
That is, according to the present invention, in a method for hydrotreating a heavy oil by adding and dissolving an oil-soluble molybdenum compound to a heavy oil containing vanadium together with sulfur, an oil-soluble phosphorus compound is added to the heavy oil, Provided is a method for hydrotreating a heavy oil, which comprises adding and dissolving in a converted amount of 0.5 to 4 times the molar amount of vanadium contained in the heavy oil.

重質油中に添加溶解させるリン化合物としては、例え
ば、以下のものを示すことができる。
Examples of phosphorus compounds to be added and dissolved in heavy oil include the following.

(前記式中Rは炭化水素基であり、芳香族系及び脂肪族
系のものが含まれる) 本発明で用いるリン化合物は、油溶性のものであればよ
く、実施例3に記載したように、使用するリン化合物の
種類が異なっても、ほとんど同じ添加効果が得られる。
これは、触媒活性の向上をもたらす化学種が、添加溶解
させた油溶性リン化合物そのものでなく、それが高圧水
素の還元雰囲気の反応系内で分解して生成する還元性の
リン化学種であるためと考えられる。
(In the above formula, R is a hydrocarbon group, and aromatic and aliphatic compounds are included.) The phosphorus compound used in the present invention may be an oil-soluble one, as described in Example 3. Even if the type of phosphorus compound used is different, almost the same effect can be obtained.
This is not the oil-soluble phosphorus compound itself that has been added and dissolved in the chemical species that brings about an improvement in catalytic activity, but is a reducing phosphorus chemical species that is generated by decomposition in the reaction system in the reducing atmosphere of high-pressure hydrogen. It is thought to be because.

本発明においては、重質油に溶解させた油溶性モリブデ
ン化合物は、重質油の水素化処理条件下で、硫化水素を
含む水素加圧下で加熱分解されて高分散の硫化モリブデ
ンに変換され、すぐれた触媒効果を示す。また、本発明
においては、従来、モリブデンと同様に水素化活性を有
することが知られているCo、Ni、Fe等の水素化活性金属を
含む油溶性化合物を、油溶性モリブデン化合物と共に添
加することができる。
In the present invention, the oil-soluble molybdenum compound dissolved in heavy oil is converted into highly dispersed molybdenum sulfide by being thermally decomposed under hydrogen pressure containing hydrogen sulfide under hydroprocessing conditions of heavy oil, It shows an excellent catalytic effect. Further, in the present invention, conventionally, it is known to have a hydrogenation activity similar to molybdenum, Co, Ni, an oil-soluble compound containing a hydrogenation-active metal such as Fe, to be added together with the oil-soluble molybdenum compound. You can

本発明の特徴は、水素化処理に当って重質油に予め添加
するリン化合物の量が、重質油にもともと含まれている
バナジウムの量に対応させた適切な量でなければならな
いというところにある。この点を詳細に説明するため、
以下では、油溶性モリブデン化合物、油溶性コバルト化
合物及び硫化水素を発生させるための硫黄を触媒原料と
する高分散系触媒を使用した場合につき、リン化合物の
添加量と脱硫性能との関係につき検討した結果を記す。
なお、その際に用いたリン化合物は、ジオクチルホスフ
ェートである。また、前記硫黄分は、単に硫黄水素の発
生を容易にするために用いられたものであり、実際の重
質油の脱硫プロセスでは、硫化水素と水素を含む加圧条
件が形成されていることから、その硫黄の添加は省略す
ることができる。
The feature of the present invention is that the amount of the phosphorus compound added to the heavy oil in the hydrotreatment in advance must be an appropriate amount corresponding to the amount of vanadium originally contained in the heavy oil. It is in. To explain this point in detail,
In the following, the relationship between the addition amount of the phosphorus compound and the desulfurization performance was examined in the case of using the oil-soluble molybdenum compound, the oil-soluble cobalt compound, and the high-dispersion catalyst using sulfur as a catalyst raw material for generating hydrogen sulfide. Write down the results.
The phosphorus compound used at that time was dioctyl phosphate. Further, the sulfur content is simply used for facilitating the generation of sulfur hydrogen, and in the actual desulfurization process of heavy oil, a pressurized condition containing hydrogen sulfide and hydrogen is formed. Therefore, the addition of the sulfur can be omitted.

第1図は、表1に示した種々の原料油を用い、リン(ジオ
クチルホスフェート)の添加量と生成油の硫黄濃度との
関係を示したものである。この図からわかるように、最
高の脱硫活性を得るためのリンの最適添加量は原料油の
種類によって著しく相違している。しかし、その量は原
料油に含まれるバナジウム量とよい相関のあることが判
明した。すなわち、第3図に示したように、リンの最適
添加量(リンのモル数)は反応に用いた原料油70gに含ま
れるバナジウム量(バナジウムのモル数)にほぼ比例し、
バナジウムのモル数のほぼ2倍であることがわかる。こ
れは誠に興味深い事実であり、このことから、リン化合
物は反応に際して原料油中のバナジウムと相互作用を持
ち、それがモリブデン系触媒の脱硫活性の向上に係って
いるものと推測される。
FIG. 1 shows the relationship between the amount of phosphorus (dioctyl phosphate) added and the sulfur concentration of the produced oil, using the various feed oils shown in Table 1. As can be seen from this figure, the optimum addition amount of phosphorus for obtaining the maximum desulfurization activity is significantly different depending on the type of feed oil. However, the amount was found to have a good correlation with the amount of vanadium contained in the feedstock. That is, as shown in FIG. 3, the optimum addition amount of phosphorus (the number of moles of phosphorus) is almost proportional to the amount of vanadium (the number of moles of vanadium) contained in 70 g of the feed oil used in the reaction,
It can be seen that it is almost twice the number of moles of vanadium. This is a very interesting fact, and it is speculated from this that the phosphorus compound interacts with vanadium in the feedstock during the reaction, which is responsible for improving the desulfurization activity of the molybdenum-based catalyst.

第1図を更に詳細にみると、一般に、バナジウムの含有
量が多い原料油ほど、リン添加量がゼロの場合における
生成油の硫黄含量と最適なリン添加量における生成油の
硫黄含量との間の差が大きい。また、バナジウムの含有
量の少ない脱歴カフジ減圧残油やカフジ残油の場合に
は、最適リン添加量を越すと触媒の脱硫活性が極めて急
激に低下していくことがわかる。このことから、リンそ
のものは本質的にはモリブデン系触媒に対して被毒物質
であると解釈される。以上の事実より、Mo-P-S(又はこ
れに水素化活性金属を添加した)触媒においては、脱硫
反応を効果的に進行させるためのリンの添加量として
は、対象とする原料油に含まれるバナジウム量(モル数)
の2倍近傍が最も望ましく、リン添加量を多くしすぎる
とかえって好ましくない結果をもたらすと言える。リン
添加量の限界値、即ちその値を越えるとリンを添加しな
い場合よりも脱硫活性が低くなってしまう添加量は重質
油の種類により異なるが、重質油に含まれるバナジウム
量とのモル比で表すと、いずれの重質油でも3〜5のモル
比の範囲にあった。従って、リン添加量の限界値は概ね
重質油中のバナジウムの4倍モルと考えてよい。一方、
同じ原料油を用いた場合には、第2図に示されるよう
に、反応条件や触媒(モリブデン)濃度が異なっても、最
高の脱硫活性を発現させるためのリンの最適量には変化
はなく、ほぼ15〜18x10-4モル/70g−原料油の範囲にあ
るとの驚くべき結果が得られた。この事実から、リンは
脱硫反応に活性な触媒種の一成分となっているとは考え
難く、通常の触媒作用とは異なった役割を果たしている
ものと推測される。なお、バナジウム除去反応に対して
は、リンの添加量は多いほど良いことがわかっている。
しかし、上述のように、それが多すぎると脱硫反応には
好ましくなく、また、原料油のバナジウムの含有モル数
の2倍モル量程度を添加すれば十分に良好な結果が得ら
れるので、その程度の添加量で良い。
Looking at FIG. 1 in more detail, in general, the feedstock oil with a higher vanadium content is between the sulfur content of the produced oil when the phosphorus addition amount is zero and the sulfur content of the produced oil at the optimum phosphorus addition amount. The difference is large. Further, in the case of de-hidden kafji vacuum residual oil and kafuji residual oil having a low vanadium content, it is found that the desulfurization activity of the catalyst decreases extremely rapidly when the optimum phosphorus addition amount is exceeded. From this, it can be understood that phosphorus itself is essentially a poisoning substance for molybdenum-based catalysts. From the above facts, in the Mo-PS (or hydrogenation active metal added thereto) catalyst, the addition amount of phosphorus in order to effectively proceed the desulfurization reaction, vanadium contained in the target feed oil Amount (number of moles)
It is most desirable that the amount is approximately twice the above, and it can be said that when the amount of phosphorus added is too large, unfavorable results are brought about. The limit value of the amount of phosphorus added, that is, when the value exceeds that value, the desulfurization activity becomes lower than when phosphorus is not added.The amount added varies depending on the type of heavy oil, but the molar amount of vanadium contained in the heavy oil Expressed in terms of ratio, all heavy oils were in the molar ratio range of 3-5. Therefore, it can be considered that the limit value of the amount of phosphorus added is approximately four times the molar amount of vanadium in heavy oil. on the other hand,
When the same feedstock was used, as shown in Fig. 2, there was no change in the optimum amount of phosphorus for achieving the maximum desulfurization activity, even if the reaction conditions and catalyst (molybdenum) concentration were different. Surprising results were obtained, in the range of approximately 15-18x10 -4 mol / 70 g feedstock. From this fact, it is unlikely that phosphorus is one component of the catalytic species active in the desulfurization reaction, and it is presumed that phosphorus plays a role different from the ordinary catalytic action. It has been found that the larger the amount of phosphorus added, the better the vanadium removal reaction.
However, as described above, if it is too large, it is not preferable for the desulfurization reaction, and sufficiently good results can be obtained by adding about twice the molar amount of vanadium contained in the feed oil. The amount added may be about the same.

本発明の方法を用いて重質油の水素化処理を工業的に行
うには、原料重質油にリン化合物を単に添加溶解させ、
これを触媒の存在下で水素化処理条件に付せばよい。こ
の場合、水素化処理条件としては従来公知の条件、例え
ば、反応温度300〜500℃、水素圧力10〜200kg/cm2、反
応時間5〜300分が採用される。
In order to industrially carry out hydrotreatment of heavy oil using the method of the present invention, a phosphorus compound is simply added and dissolved in the raw heavy oil,
It may be subjected to hydrotreating conditions in the presence of a catalyst. In this case, conventionally known conditions for the hydrogenation treatment, for example, a reaction temperature of 300 to 500 ° C., a hydrogen pressure of 10 to 200 kg / cm 2 , and a reaction time of 5 to 300 minutes are adopted.

本発明の方法は、各種の重質油の水素化処理に適用され
るが、特に、バナジウム、ニッケル等の金属化合物や灰
分、更にはアスファルテン等の触媒被毒成分を多量に含
む劣質な重質油、例えば重質原油、常圧蒸留残渣油、減
圧蒸留残渣油、分解残渣油、脱れき残渣油、石炭液化
油、タールサンドビチューメン等の水素化処理方法とし
て好適である。
The method of the present invention is applied to the hydrotreatment of various heavy oils, but in particular, it is a poor heavy oil containing a large amount of metal compounds such as vanadium and nickel and ash, and catalyst poisoning components such as asphaltene. It is suitable as a hydrotreatment method for oils such as heavy crude oil, atmospheric distillation residual oil, vacuum distillation residual oil, cracked residual oil, deasphalted residual oil, coal liquefied oil and tar sand bitumen.

〔実施例〕〔Example〕

次に本発明を実施例により更に詳細に説明する。水素化
処理反応に用いた反応器は、内容積300mの電磁攪拌
式オートクレーブである。
Next, the present invention will be described in more detail with reference to Examples. The reactor used for the hydrotreatment reaction was an electromagnetic stirring autoclave with an internal volume of 300 m.

実施例1 オートクレーブに原料重質油70g、ナフテン酸モリブデ
ン4.2x10-4モル、オクチル酸コバルト1.7x10-4モル、硫
黄14.7x10-4モル及び所定量のジオクチルホスフェート
を入れ、水素初圧を100kg/cm2とした後、430℃まで昇温
し、この温度で30分間反応させた。反応後、ただちにオ
ートクレーブを電気炉から取り出し、空気を吹き付けて
冷却後、生成ガスを抜き出し、内容物を遠心分離及びフ
ィルター濾過によって、生成油と固形物(触媒及びカー
ボン質)に分離し、生成油について硫黄及びバナジウム
等の分析を行った。
Example 1 autoclave raw material heavy oil 70 g, molybdenum naphthenate 4.2 x 10 -4 mol, cobalt octylate 1.7 × 10 -4 mol, placed dioctyl phosphate sulfur 14.7X10 -4 mol and a predetermined amount, a hydrogen initial pressure 100 kg / After adjusting to cm 2 , the temperature was raised to 430 ° C., and the reaction was performed at this temperature for 30 minutes. Immediately after the reaction, remove the autoclave from the electric furnace, cool it by blowing air, extract the produced gas, separate the produced oil and solid matter (catalyst and carbonaceous matter) by centrifugation and filter filtration, and Was analyzed for sulfur and vanadium.

以上の実験を、後記する表1に示した種々の重質油につ
き、ジオクチルホスフェートの添加量を変化させて行っ
た。その結果を第1図に示す。この図から、生成油の硫
黄濃度が最小(脱硫率が最高)となるリン添加量は、原料
油によって著しく異なること、また、表1と対比する
と、バナジウム含量の大きい原料油ほどそれが大きくな
ることがわかる。
The above experiment was carried out for various heavy oils shown in Table 1 below, while changing the addition amount of dioctyl phosphate. The results are shown in Fig. 1. From this figure, the amount of phosphorus added that produces the lowest sulfur concentration in the produced oil (maximum desulfurization rate) differs significantly depending on the feedstock, and in comparison with Table 1, the feedstock with a higher vanadium content has a greater value. I understand.

実施例2 実験作法は実施例1と同じであるが、原料油として表1
のモリチャル原油を用い、主触媒原料であるナフテン酸
モリブデン添加量及び反応条件がそれぞれ異なる4種類
の場合について、ジオクチルホスフェートの添加量と生
成油の硫黄濃度との関係を調べた。なお、オクチル酸コ
バルトの添加量は、ナフテン酸モリブデンの0.4倍モ
ル、硫黄の添加量はS/(Co+Mo)モル比として2.5倍モル
とした。その結果は第2図のとおりである。
Example 2 The experimental procedure is the same as in Example 1, except that
The relationship between the amount of dioctyl phosphate added and the sulfur concentration of the produced oil was investigated for four types of molybdenum crude oil with different amounts of molybdenum naphthenate as the main catalyst and different reaction conditions. The amount of cobalt octylate added was 0.4 times that of molybdenum naphthenate, and the amount of sulfur added was 2.5 times the S / (Co + Mo) molar ratio. The results are shown in Figure 2.

第2図から、反応条件や触媒濃度には係りなく、最適な
リン化合物の添加量が15〜18x10-4モル/70g−原料油近
辺でほぼ一定であることが明らかである。
From FIG. 2, it is clear that the optimum addition amount of the phosphorus compound is almost constant in the vicinity of 15 to 18 × 10 −4 mol / 70 g-feed oil regardless of the reaction conditions and the catalyst concentration.

実施例3 油溶性リン化合物の種類を変えて、その添加効果を確認
した。使用したリン化合物は、ジオクチルホスフェート
(A)、トリオクチルホスフェート(B)、トリフェニルホス
ファイト(c)である。オートクレーブにモリチャル原油7
0g、触媒原料としてナフテン酸モリブデン5.9×10-4
ル、硫黄14.7×10-4モル、上記のリン化合物の中の一つ
を17.4×10-4モル添加し、実施例1と同様の操作で実験
した。得られた生成油の硫黄濃度は、上記のA、B、Cのリ
ン化合物を用いた場合につき、それぞれ、1.59wt%、1.58
wt%、1.50wt%であり、油溶性リン化合物の種類が異なっ
ても脱硫率はほとんど同じであった。そして、油溶性リ
ン化合物を添加しないで同様の実験を行った場合の生成
油硫黄濃度(2.34wt%)と比較すると、油溶性リン化合物
の添加によって脱硫反応が著しく促進されていることが
わかる。
Example 3 The effect of addition was confirmed by changing the type of the oil-soluble phosphorus compound. The phosphorus compound used was dioctyl phosphate.
(A), trioctyl phosphate (B) and triphenyl phosphite (c). Morichal crude oil 7 in autoclave
0 g, molybdenum naphthenate 5.9 × 10 −4 mol as a catalyst raw material, sulfur 14.7 × 10 −4 mol, and 17.4 × 10 −4 mol of one of the above phosphorus compounds were added, and the same operation as in Example 1 was performed. I experimented. The sulfur concentrations of the obtained product oils were 1.59 wt% and 1.58% respectively when the above phosphorus compounds of A, B and C were used.
wt% and 1.50 wt%, and the desulfurization rate was almost the same even if the type of oil-soluble phosphorus compound was different. Then, comparing with the produced oil sulfur concentration (2.34 wt%) when the same experiment was performed without adding the oil-soluble phosphorus compound, it can be seen that the desulfurization reaction was remarkably promoted by the addition of the oil-soluble phosphorus compound.

実施例4 オートクレーブにモリチャル原油70g、ジオクチルホス
フェート17.4×10-4モル、硫黄20.5×10-4モルを加え、
触媒原料として、(A)ナフテン酸モリブデン8.2×10-4
ルを加えた場合と、(B)ナフテン酸モリブデン5.85×10
-4モルとオクチル酸コバルト2.35×10-4モル(Co/Mo比0.
4)を加えた場合について反応性を調べた、反応条件は、
水素初圧100Kg/cm2、反応温度470℃、反応時間10分とし
た。得られた生成油の硫黄濃度は、(A)では1.72wt%、
(B)では1.39wt%であった。(B)においてCoとMoの合計添
加量は8.2×10-4モルで、(A)と同じであるのでCoの助触
媒効果が発現していることは明らかである。なお、生成
油のバナジウム含量は、(A)、(B)ともに等しく、10ppm
(脱バナジウム率として98%)であり、脱バナジウム活性
は非常に優れていることがわかる。
Example 4 To an autoclave was added 70 g of molychal crude oil, 17.4 × 10 −4 mol of dioctyl phosphate and 20.5 × 10 −4 mol of sulfur,
As a catalyst raw material, (A) when adding molybdenum naphthenate 8.2 × 10 -4 mol, and (B) molybdenum naphthenate 5.85 × 10
-4 mol and cobalt octylate 2.35 × 10 -4 mol (Co / Mo ratio of 0.
The reaction conditions were investigated when 4) was added.
The initial hydrogen pressure was 100 kg / cm 2 , the reaction temperature was 470 ° C., and the reaction time was 10 minutes. The sulfur concentration of the obtained product oil is 1.72 wt% in (A),
In (B), it was 1.39 wt%. In (B), the total amount of Co and Mo added is 8.2 × 10 −4 mol, which is the same as in (A), and therefore it is clear that the cocatalyst effect of Co is exhibited. The vanadium content of the produced oil was the same for both (A) and (B) and was 10 ppm.
(The vanadium removal rate is 98%), indicating that the vanadium removal activity is very excellent.

〔効果〕〔effect〕

以上に示した実験から、本発明の水素化処理方法によっ
て重質油の脱硫、脱金属反応が著しく促進されることが
わかる。
From the experiments described above, it can be seen that the desulfurization and demetalization reactions of heavy oil are significantly promoted by the hydrotreating method of the present invention.

【図面の簡単な説明】[Brief description of drawings]

第1は、表1に記した各種の原料油について、原料油70g
当りのジオクチルホスフェートの添加モル数と水素化処
理油の硫黄含量との関係を示したものである。触媒の濃
度及び組成はいずれもMo570ppm(原料油当り4.2x10-4
ル)、Co/Mo:0.4,S/(Co+Mo):2.5である。 水素化処理条件は、430℃,30分であり、また水素初圧
は100kg/cm2である。 第2は、原料油として表1のモリチャル原油を用い、反応
条件及びモリブデン濃度の異なる4種類の場合につい
て、原料油70g当りのジオクチルホスフェートの添加モ
ル数と水素化処理油の硫黄含量を示したものである。触
媒の組成はいずれの場合もCo/Mo原子比:0.4,S/(Co+M
o)原子比:2.5である。 第3は、第1図において脱硫率が最高(生成油中の硫黄濃
度が最低)になるときのリン添加量(モル数)と、反応に
用いた原料油70gに含まれるバナジウム量(モル数)との
関係を示したものである。
First, for each type of feedstock listed in Table 1, 70g feedstock
1 shows the relationship between the number of moles of dioctyl phosphate added per unit of time and the sulfur content of hydrotreated oil. The concentration and composition of the catalyst are Mo570ppm (4.2x10 -4 mol per feedstock), Co / Mo: 0.4, S / (Co + Mo): 2.5. The hydrotreatment conditions are 430 ° C. and 30 minutes, and the initial hydrogen pressure is 100 kg / cm 2 . Secondly, using the molichal crude oil of Table 1 as the feedstock, the number of moles of dioctyl phosphate added per 70 g of the feedstock and the sulfur content of the hydrotreated oil were shown for four different reaction conditions and molybdenum concentrations. It is a thing. In any case, the composition of the catalyst is Co / Mo atomic ratio: 0.4, S / (Co + M
o) Atomic ratio: 2.5. Thirdly, in Fig. 1, the amount of phosphorus added (mol number) when the desulfurization rate is the highest (the sulfur concentration in the produced oil is the lowest) and the amount of vanadium contained in 70 g of the feed oil used in the reaction (the number of moles) ) Is shown.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 肥沼 豊 茨城県つくば市小野川16番3 工業技術院 公害資源研究所内 (72)発明者 大内 日出夫 茨城県つくば市小野川16番3 工業技術院 公害資源研究所内 (56)参考文献 特開 昭52−13503(JP,A) 特開 昭59−150537(JP,A) 特開 昭61−143490(JP,A) 特開 昭56−76247(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yutaka Konuma 16-3 Onogawa, Tsukuba-shi, Ibaraki Institute of Industrial Technology, Institute of Pollution Resources (72) Hideo Ouchi Inogawa 16-3 Onogawa, Tsukuba, Ibaraki Institute of Industrial Technology Pollution resources In the laboratory (56) Reference JP-A 52-13503 (JP, A) JP-A 59-150537 (JP, A) JP-A 61-143490 (JP, A) JP-A 56-76247 (JP, A) )

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】硫黄とともにバナジウムを含む重質油に油
溶性モリブデン化合物を添加溶解させて重質油の水素化
処理を行う方法において、該重質油に油溶性リン化合物
を、リン換算量で、該重質油に含まれるバナジウム量の
0.5〜4倍モルの割合で添加溶解させることを特徴とする
重質油の水素化処理方法。
1. A method for hydrotreating a heavy oil by adding and dissolving an oil-soluble molybdenum compound to a heavy oil containing vanadium together with sulfur, wherein the oil-soluble phosphorus compound is added to the heavy oil in a phosphorus conversion amount. , The amount of vanadium contained in the heavy oil
A method for hydrotreating a heavy oil, which comprises adding and dissolving it in a proportion of 0.5 to 4 times by mole.
【請求項2】原料重質油に対し、油溶性リン化合物を、
リン換算量で該重質油中に含まれているバナジウム量の
1.5〜2.5倍モルの割合で添加溶解させる特許請求の範囲
第1項の方法。
2. An oil-soluble phosphorus compound is added to a raw material heavy oil,
The amount of vanadium contained in the heavy oil in terms of phosphorus
The method according to claim 1, wherein the solution is added and dissolved at a ratio of 1.5 to 2.5 times mol.
JP62331046A 1987-12-25 1987-12-25 Hydroprocessing method for heavy oil Expired - Lifetime JPH0641589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62331046A JPH0641589B2 (en) 1987-12-25 1987-12-25 Hydroprocessing method for heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62331046A JPH0641589B2 (en) 1987-12-25 1987-12-25 Hydroprocessing method for heavy oil

Publications (2)

Publication Number Publication Date
JPH01170688A JPH01170688A (en) 1989-07-05
JPH0641589B2 true JPH0641589B2 (en) 1994-06-01

Family

ID=18239235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62331046A Expired - Lifetime JPH0641589B2 (en) 1987-12-25 1987-12-25 Hydroprocessing method for heavy oil

Country Status (1)

Country Link
JP (1) JPH0641589B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910692B2 (en) * 2006-12-28 2012-04-04 パナソニック株式会社 Screen printing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003828A (en) * 1975-07-23 1977-01-18 Exxon Research And Engineering Company Catalyst and process for removing sulfur and metal contaminants from hydrocarbon feedstocks
JPS5676247A (en) * 1979-11-26 1981-06-23 Exxon Research Engineering Co High surface area catalyst
JPS59150537A (en) * 1982-12-06 1984-08-28 アモコ コーポレーション Hydrotreating catalyst and hydrotreating of hydrocarbon
JPS61143490A (en) * 1984-12-17 1986-07-01 エクソン・リサーチ・アンド・エンジニアリング・カンパニー Hydrogenation conversion method

Also Published As

Publication number Publication date
JPH01170688A (en) 1989-07-05

Similar Documents

Publication Publication Date Title
US5591325A (en) Process for hydrotreating heavy oil and hydrotreating apparatus
US5024751A (en) Catalytic composition comprising a metal sulfide suspended in a liquid containing asphaltenes and hydrovisbreaking process of a hydrocarbon charge
US5779992A (en) Process for hydrotreating heavy oil and hydrotreating apparatus
US5624547A (en) Process for pretreatment of hydrocarbon oil prior to hydrocracking and fluid catalytic cracking
US4196072A (en) Hydroconversion process
US5320741A (en) Combination process for the pretreatment and hydroconversion of heavy residual oils
US4051021A (en) Hydrodesulfurization of hydrocarbon feed utilizing a silica stabilized alumina composite catalyst
US4652647A (en) Aromatic-metal chelate compositions
US4485183A (en) Regeneration and reactivation of deactivated hydrorefining catalyst
EP0559399A1 (en) Hydroprocessing of heavy hydrocarbonaceous feeds
EP0759964B1 (en) Stacked bed catalyst system for deep hydrosulfurization
JPS60226595A (en) Hydrogenation purification of hydrocarbon- containing raw material flow
JPH0790282A (en) Cracking and hydrogenation treatment of heavy oil
US3252895A (en) Crude oil hydrorefining process
JP3875001B2 (en) Hydrocracking method of heavy petroleum oil
US4139453A (en) Hydrorefining an asphaltene- containing black oil with unsupported vanadium catalyst
GB1584785A (en) Hydroconversion of heavy hydrocarbons
EP0026508B1 (en) Process and apparatus for the demetallization of a hydrocarbon oil
US3948756A (en) Pentane insoluble asphaltene removal
US4836912A (en) Hydroconversion process using aromatic metal chelate compositions
US4581129A (en) Hydrorefining with a regenerated catalyst
EP0512778B1 (en) Hydroconversion process
EP0483923B1 (en) Hydrodenitrification process
US4396495A (en) Reduction of foaming in a slurry catalyst hydrocarbon conversion process
JPH0641589B2 (en) Hydroprocessing method for heavy oil

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term