JPH01170688A - Method for hydrotreating heavy oil - Google Patents

Method for hydrotreating heavy oil

Info

Publication number
JPH01170688A
JPH01170688A JP33104687A JP33104687A JPH01170688A JP H01170688 A JPH01170688 A JP H01170688A JP 33104687 A JP33104687 A JP 33104687A JP 33104687 A JP33104687 A JP 33104687A JP H01170688 A JPH01170688 A JP H01170688A
Authority
JP
Japan
Prior art keywords
oil
heavy oil
compound
amount
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33104687A
Other languages
Japanese (ja)
Other versions
JPH0641589B2 (en
Inventor
Akira Kushiyama
櫛山 暁
Reiji Aizawa
相沢 玲司
Satoru Kobayashi
悟 小林
Yutaka Hinuma
肥沼 豊
Hideo Ouchi
日出夫 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62331046A priority Critical patent/JPH0641589B2/en
Publication of JPH01170688A publication Critical patent/JPH01170688A/en
Publication of JPH0641589B2 publication Critical patent/JPH0641589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To enhance reaction rate, such as desulfurizing, demetalating, deasphalting, etc., by adding an Mo compound and specific amounts of a P compound and S compound to heavy oil and carrying out reaction under pressure of hydrogen. CONSTITUTION:(A) A molybdenum compound, such as molybdenum naphthenate, soluble in hydrocarbon oils, (B) a phosphorus compound, such as dioctyl phosphate, soluble in hydrocarbon oils and (C) a sulfur compound capable of readily generating hydrogen sulfide under hydrotreating conditions in a molar amount of the component (B) of 0.5-4 times expressed in terms of number of Pmol based on V contained in heavy oil are added thereto. The resultant heavy oil is then subjected to hydrotreating under conditions of 300-500 deg.C reaction temperature under 10-200kg/cm<2> hydrogen pressure for 5-300min reaction time.

Description

【発明の詳細な説明】 [技術分野] 本発明は、重質油の水素化処理方法に間するものである
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for hydrotreating heavy oil.

[従来技術] 硫黄化合物、バナジウム等の金属化合物、アスファルテ
ン等を多く含む重質油を精製し、低公害な良質の燃↑4
油を製造するには、Mo2讐、C01N1等をアルミナ
等の担体に担持した触媒を用い、水素加圧下で処理する
方法が一般的に用いられている。
[Prior technology] Refining heavy oil containing a large amount of sulfur compounds, metal compounds such as vanadium, asphaltene, etc., and producing low-pollution, high-quality fuel↑4
In order to produce oil, a method is generally used in which a catalyst in which Mo2, CO1N1, etc. are supported on a carrier such as alumina is used and treated under hydrogen pressure.

しかし、通常の水素化処理用触媒を用いてバナジウム等
の金属化合物やアスファルテンを多量に含有する重質油
を処理する場合には、これらが水素化処理反応過程にお
いて触媒表面に堆積し・、触媒の脱流活性等を著しく低
下させることが知られている。この問題点を解決するた
め、使用する触媒や水素化処理方法についてはこれまで
にも多くの改良、開発が行われてきた。その代表的な例
としては、担体の細孔径及び細孔容積を十分に大きくし
、バナジウム等の堆積によっても劣化の少ない触媒を用
いる方法(特開昭54−1306号公報)、バイモーダ
ルな細孔分布を有する担持触媒を用いることにより脱硫
、脱金属いずれの反応に対しても高活性を維持しつつ、
かつ活性劣化を少なくする方法(小沼和彦はか、石油学
会誌、27巻、348頁、1984年)、予め脱金属用
触媒を用いて原料油中の金属含量を少なくした後脱硫反
応を行わせることにより、脱硫触媒の活性劣化を防ぐ方
法、反応装置の運転を停止することなく触媒の交換を可
能とするため、反応器を移動床式または懸濁床式とする
方法、担持付触媒に代わり、油溶性金属化合物を原料油
に添加し、反応系内にて高分散触媒を生成させることに
より、バナジウム等の堆積による反応器閉塞トラブルを
回避すると同時に、単位触媒量当りの活性を高める方法
(米国特許第4,134,825号明細書、米国特許第
3,657,量1号)などが挙げられる。このように、
バナジウム化合物等の触媒被毒成分を多く含む重質油の
水素化処理法に関しては、数多くの優れた技術開発が進
められているが、低公害な良質燃料油の効率的製造のた
めには、なお−層の改良が望まれる。
However, when treating heavy oil containing a large amount of metal compounds such as vanadium and asphaltenes using a normal hydrotreating catalyst, these substances accumulate on the catalyst surface during the hydrotreating reaction process, and the catalyst is known to significantly reduce the deflow activity of. In order to solve this problem, many improvements and developments have been made in the catalysts and hydrogenation methods used. Typical examples include a method in which the pore diameter and pore volume of the carrier are made sufficiently large and a catalyst is used that is less likely to deteriorate even when vanadium is deposited (Japanese Unexamined Patent Publication No. 1306/1983), By using a supported catalyst with a pore distribution, it maintains high activity for both desulfurization and demetalization reactions.
and a method for reducing activity deterioration (Kazuhiko Onuma, Journal of the Japan Petroleum Institute, Vol. 27, p. 348, 1984), in which the metal content in the feedstock oil is reduced using a demetallizing catalyst in advance, and then the desulfurization reaction is carried out. Methods to prevent deterioration of desulfurization catalyst activity, methods to use a moving bed type or suspended bed type reactor to enable catalyst replacement without stopping the operation of the reactor, and methods to replace supported catalysts. , a method of adding an oil-soluble metal compound to the feedstock oil and producing a highly dispersed catalyst in the reaction system, thereby avoiding the trouble of clogging the reactor due to the accumulation of vanadium, etc., and at the same time increasing the activity per unit amount of catalyst ( U.S. Pat. No. 4,134,825, U.S. Pat. No. 3,657, Volume 1), and the like. in this way,
Many excellent technologies are being developed for the hydroprocessing of heavy oil containing a large amount of catalyst-poisoning components such as vanadium compounds, but in order to efficiently produce low-pollution, high-quality fuel oil, Note that improvements in the layers are desired.

[目的] 本発明は、重質油の水素化処理において、脱硫、脱金属
、アスファルテン除去等の諸反応の反応率を高めるため
の方法を提供することを目的とする。
[Objective] An object of the present invention is to provide a method for increasing the reaction rate of various reactions such as desulfurization, demetalization, asphaltene removal, etc. in the hydrotreatment of heavy oil.

[構成] 本発明者らは、前記目的を達成するため種々検討を重ね
た結果、バナジウム等の金属を多く含む重質油の水素化
処理を行うに当たり、予め、重質油中に適切な量のリン
化合物を添加することにより、脱硫、脱金属等の諸反応
が著しく促進されることを見いだした。
[Structure] As a result of various studies to achieve the above object, the inventors of the present invention discovered that when hydrogenating heavy oil containing a large amount of metals such as vanadium, an appropriate amount of metal is added to the heavy oil in advance. It has been found that various reactions such as desulfurization and demetalization are significantly accelerated by adding phosphorus compounds.

重質油に添加するリン化合物としては、例えば0=P(
OR)3 0=P(OR)2 H 83PO。
As a phosphorus compound to be added to heavy oil, for example, 0=P(
OR)3 0=P(OR)2H83PO.

(前記式中Rは炭化水素系基であり、芳香族系及び脂肪
族系のものが含まれる) などが挙げられろ。
(R in the above formula is a hydrocarbon group, including aromatic and aliphatic groups).

また、水素化処理に使用する触媒としてはMo、ν、C
01N1等の金属をアルミナ等の担体に担持し予va硫
化を行った担持触媒、あるいはMo、 Co、 Ni、
Fe、〜′等の油溶性化合物を重質油に溶解させ、これ
を硫化水素を含む水素の加圧下において加熱分解するこ
とにより高分散な金属硫化物とした触媒なと、従来から
公知の触媒が挙げられる。
In addition, the catalysts used for hydrogenation treatment include Mo, ν, and C.
Supported catalysts in which metals such as 01N1 are supported on a carrier such as alumina and pre-sulfurized, or Mo, Co, Ni,
A conventionally known catalyst is a catalyst in which an oil-soluble compound such as Fe, ~', etc. is dissolved in heavy oil, and this is thermally decomposed under pressure of hydrogen containing hydrogen sulfide to form a highly dispersed metal sulfide. can be mentioned.

本発明の特徴は、水素化処理に当たって重質油に予め添
加するリン化合物の量が、重質油にもともと含まれてい
るバナジウム等の金属化合物の量に対応させた適切な量
でなければならないというところにある。この点を詳細
に説明するため、以下では、油溶性モリブデン化合物、
油溶性コバルト化合物および硫化水素を発生させるため
の硫黄を′触媒原料とする高分散系触媒を使用した場合
につき、リン化合物の添加量と脱硫性能との関係につき
検討した結果を記す。なお、その際に用いたリン化合物
は、ジオクチルホスフェートである。
A feature of the present invention is that the amount of phosphorus compound added in advance to heavy oil during hydrogenation treatment must be an appropriate amount corresponding to the amount of metal compounds such as vanadium originally contained in the heavy oil. It's there. In order to explain this point in detail, below, oil-soluble molybdenum compounds,
This paper describes the results of an investigation into the relationship between the amount of phosphorus compound added and desulfurization performance when using a highly dispersed catalyst that uses oil-soluble cobalt compounds and sulfur as the catalyst raw material to generate hydrogen sulfide. Note that the phosphorus compound used at that time was dioctyl phosphate.

第1図は、表1に示した種々の原料油を用い、リン(ジ
オクチルホスフェート)の添加量と生成油の硫黄濃度と
の関係を示したものである。この図かられかるように、
最高の脱流活性を得るためのリンの最適添加量は原料油
の種類によって著しく相違し、しかもその量は、表1の
バナジウム、鉄等の含有量とほぼ比例関係にある。そし
て、リン最適添加量は、原料油中のバナジウム等の金属
量の1.8〜2.4倍モルであることがわかる。これは
誠に興味深い事実であり、このことから、リン化合物は
反応に際して原料油中のバナジウム等の金属成分と相互
作用をもち、それがモリブデン触媒の脱流活性の向上に
係わっているものと推測され第1図をさらに詳細に見る
と、一般に、バナジウム等の金属の含有量が多い原料油
はど、リン添加量がゼロの場合における生成油の硫黄含
量と最適なリン添加量におけるそれとの差が大きい、ま
た、バナジウム等の含有量の少ない脱歴カフジ減圧残油
やカフジ残油の場合には、最適リン添加量を越すと触媒
の脱流活性が極めて急激に低下していくことがわかる。
FIG. 1 shows the relationship between the amount of phosphorus (dioctyl phosphate) added and the sulfur concentration of the produced oil using the various feedstock oils shown in Table 1. As you can see from this diagram,
The optimum amount of phosphorus added to obtain the highest deflow activity varies significantly depending on the type of feedstock oil, and the amount is almost proportional to the contents of vanadium, iron, etc. shown in Table 1. It can be seen that the optimum amount of phosphorus to be added is 1.8 to 2.4 times the mole amount of metals such as vanadium in the raw oil. This is a really interesting fact, and from this it can be assumed that the phosphorus compound interacts with metal components such as vanadium in the feedstock oil during the reaction, and that this is involved in improving the deflow activity of the molybdenum catalyst. Looking at Figure 1 in more detail, it can be seen that, in general, for feedstock oils with a high content of metals such as vanadium, there is a difference between the sulfur content of the produced oil when the amount of phosphorus added is zero and that at the optimal amount of phosphorus added. It can be seen that in the case of deasphalted Kafji vacuum residual oil or Kafji residual oil that is large and has a low content of vanadium, etc., the deasphalting activity of the catalyst decreases extremely rapidly when the optimum phosphorus addition amount is exceeded.

このことから、リンそのものは本質的にはモリブデン触
媒に対して被毒物質であると解釈される。以上の事実よ
り、Mo−P−S (またはこれに水素化活性金属を添
加した)触媒においては、脱流反応を効果的に進行させ
るためのリンの添加量としては、対象とする原料油に含
まれるバナジウム等の金属量(モル数)の2倍近傍が最
も望ましく、リン添加量を多くしすぎると反って好まし
くない結果をもたらすと言える。  一方、同じ原料油
を用いた場合には、第2図に示されるように、反応条件
や触媒(モリブデン)g!4度が異なっても、最高の脱
硫活性を発現させるためのリンの最適量には変化はなく
、はぼ15〜18X10−’モルフッ0g−原料油の範
囲にあるとの驚くべき結果が得られた。この事実から、
リンは脱流反応に活性な触媒種の一成分となっていると
は考え難く、通常の触媒作用とは異なった役割を果して
いるものと推測される。なお、バナジウム除去反応に対
しては、リンの添加量は多いほどよいことが分かってい
る。しかし、上述のように、それが多すぎると脱流反応
には好ましくなく、また、原料油のバナジウム等の含有
モル数の2倍モル量程度を添加すれば十分に良好な結果
が得られるので、その程度の添加量でよい。
From this, it is interpreted that phosphorus itself is essentially a poisonous substance to the molybdenum catalyst. Based on the above facts, in the Mo-P-S (or a hydrogenation-active metal added to it) catalyst, the amount of phosphorus added in order to effectively advance the deflow reaction is It is most desirable that the amount of metal such as vanadium (mol number) be approximately twice that of the metal contained therein, and if the amount of phosphorus added is too large, it can be said that warping may occur, resulting in unfavorable results. On the other hand, when the same feedstock oil is used, the reaction conditions and catalyst (molybdenum) g! The surprising result was that even if the 4 degrees were different, the optimal amount of phosphorus to express the highest desulfurization activity did not change, and was in the range of 15 to 18 x 10-' mol fluoride to 0 g of feedstock oil. Ta. From this fact,
It is difficult to imagine that phosphorus is a component of the catalyst species active in the deflow reaction, and it is presumed that it plays a role different from that of normal catalysis. It is known that the larger the amount of phosphorus added, the better for the vanadium removal reaction. However, as mentioned above, too much of it is unfavorable for the deflow reaction, and sufficiently good results can be obtained by adding about twice the molar amount of vanadium etc. contained in the feedstock oil. , the amount added is sufficient.

本発明の方法を用いて重質油の水素化処理を行うには、
原料重質油にリン化合物を単に添加溶解させ、これを触
媒の存在下で水素化処理条件に付せばよい。この場合、
水素化処理条件としては従来公知の条件、例えば、反応
温度300〜500℃、水素圧力10〜200kg/ 
cm2.反応時間5〜300分が採用される。
To hydrotreat heavy oil using the method of the present invention,
The phosphorus compound may be simply added and dissolved in the raw material heavy oil, and then subjected to hydrotreating conditions in the presence of a catalyst. in this case,
The hydrogenation treatment conditions are conventionally known conditions, such as reaction temperature of 300 to 500°C, hydrogen pressure of 10 to 200 kg/
cm2. Reaction times of 5 to 300 minutes are employed.

本発明の方法は、各種の重質油の水素化処理に適用され
るが、特に、バナジウム、ニッケル等の金属化合物や灰
分、さらにはアスファルテン等の触媒被毒成分を多量に
含む劣質な重質油、例えは重質原油、常圧蒸留残渣油、
減圧蒸留残渣油、分解残渣油、脱れき残渣油、石炭?α
1ヒ油、タールサントビチューメン等の水素化処理に好
適である。
The method of the present invention is applied to the hydroprocessing of various types of heavy oil, but it is particularly applicable to poor quality heavy oil containing large amounts of metal compounds such as vanadium and nickel, ash, and even catalyst-poisoning components such as asphaltenes. Oil, such as heavy crude oil, atmospheric distillation residue oil,
Vacuum distillation residue oil, cracked residue oil, deasphalting residue oil, coal? α
Suitable for hydrogenation treatment of arsenic oil, tarsant bitumen, etc.

[実施例] 次に本発明を実施例によりさらに詳細に説明する。水素
化処理反応に用いた反応器は、内容積3001の電磁攪
拌式オートクレーブである。
[Example] Next, the present invention will be explained in more detail with reference to Examples. The reactor used for the hydrogenation reaction was a magnetically stirred autoclave with an internal volume of 3,001 cm.

実施例1 オートクレーブに原料重質油70g、ナフテン酸モリブ
デン4.2xl□−’モル、オクチル酸コバルト1゜7
xlO−’モル、硫黄14.7xlo−’モル及び所定
量のジオクチルホスフェートを入れ、水素初圧を100
J/cm2とした後、430℃まで昇温し、この温度で
30分間反応させた。反応後、直ちにオートクレーブを
電気炉から取り出し、空気を吹き付けて冷却後、生成ガ
スを抜き出し、内容物を遠心分離及びフィルター濾過に
よって、生成油と固形物(触媒及びカーボン質)に分離
し、生成油について硫黄及びバナジウム等の分析を行っ
た。
Example 1 In an autoclave, 70 g of raw material heavy oil, 4.2xl□-' mole of molybdenum naphthenate, and 1°7 cobalt octylate were placed in an autoclave.
xlO-' moles, 14.7xlo-' moles of sulfur, and a predetermined amount of dioctyl phosphate were added, and the initial pressure of hydrogen was set to 100
After adjusting the temperature to J/cm2, the temperature was raised to 430°C, and the reaction was carried out at this temperature for 30 minutes. Immediately after the reaction, the autoclave is taken out of the electric furnace, cooled by blowing air, and the produced gas is extracted.The contents are centrifuged and filtered to separate the produced oil and solids (catalyst and carbonaceous matter). Sulfur, vanadium, etc. were analyzed.

以上の実験を、表1に示した種々の重質油につき、ジオ
クチルホスフェートの添加量を変化させて行った。その
結果を第1図に示す、この図から、生成油の硫黄濃度が
最少(脱硫率が最高)となるリン添加量は、原料油によ
って著しく異なること、また、表1と対比すると、バナ
ジウム等の金属含量の大きい原料油はどそれが大きくな
ることがわかる。
The above experiments were conducted on various heavy oils shown in Table 1, while varying the amount of dioctyl phosphate added. The results are shown in Figure 1. This figure shows that the amount of phosphorus added at which the sulfur concentration of the produced oil is the minimum (the desulfurization rate is the highest) varies significantly depending on the feedstock oil. It can be seen that the feedstock oil with a large metal content has a large amount of metal.

実施例2 実験操作法は実施例1と同じであるが、主触媒原料であ
るナフテン酸モリブデンの添加量及び反応条件がそれぞ
れ異なる4種類の場合について、ジオクチルホスフェー
トの添加量と生成油の硫黄1度との関係を調べた。なお
オクチル散コバルトの添加量は、ナフテン酸モリブデン
の0.4倍モル、硫黄の添加量はS/(Co+Mo)モ
ル比として2.5倍モルとし・た。結果は第2図のとお
りである。
Example 2 The experimental procedure was the same as in Example 1, but for four cases in which the amount of molybdenum naphthenate, which is the main catalyst raw material, added and the reaction conditions were different, the amount of dioctyl phosphate added and the sulfur 1 of the produced oil were changed. We investigated the relationship between The amount of octyl-dispersed cobalt added was 0.4 times mole of molybdenum naphthenate, and the amount of sulfur added was 2.5 times mole as S/(Co+Mo) molar ratio. The results are shown in Figure 2.

二の図から、反応条件や触媒1度には係わりなく、最適
なリン化合物の添加量カ月5〜18xlO−’モル/7
0g−原料油近辺でほぼ一定であることが明らかである
From the second figure, the optimum amount of phosphorus compound added per month is 5 to 18xlO-'mol/7, regardless of the reaction conditions and the catalyst concentration.
It is clear that it is almost constant around 0g-stock oil.

[効果] 以上に示した実験結果から、本発明の水素化処理方法に
よって重質油の脱硫、脱金属反応が著しく促進されるこ
とが分かる。
[Effect] From the experimental results shown above, it can be seen that the hydrotreating method of the present invention significantly accelerates the desulfurization and demetalization reactions of heavy oil.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、表1に記した各種の原料油について、原料油
70g当りのジオクチルホスフェートの添加モル数と水
素化処理油の硫黄含量との関係を示したものである。触
媒の濃度及び組成はいずれもM。 570pHIl+ <原料油70g当り4.2xlO−
’モル) 、 (o/Mo0.4.  S/(Co+M
o)2.5である。 水素化処理反応条件は、430℃、30分であり、また
水素初圧は100に、g/cn+2である。 第2図は、反応条件及びモリブデン濃度の異なる4種類
の場合について、原料油70g当りのジオクチルホスフ
ェートの添加モル数と水素化処理油の硫黄含量を示した
ものである。触媒の組成はいずれの場合もCo/Mo原
子比0.4. S/(Co+Mo)原子比2.5である
。 も 9 リ  ζ  1〜  朧 第  1  図
FIG. 1 shows the relationship between the number of moles of dioctyl phosphate added per 70 g of feedstock oil and the sulfur content of the hydrotreated oil for the various feedstock oils listed in Table 1. The concentration and composition of the catalyst are both M. 570pHIl+ <4.2xlO- per 70g of raw oil
'mol), (o/Mo0.4.S/(Co+M
o) 2.5. The hydrogenation reaction conditions are 430° C. for 30 minutes, and the initial hydrogen pressure is 100 g/cn+2. FIG. 2 shows the number of moles of dioctyl phosphate added per 70 g of feedstock oil and the sulfur content of the hydrotreated oil for four different reaction conditions and molybdenum concentrations. In both cases, the composition of the catalyst was a Co/Mo atomic ratio of 0.4. The S/(Co+Mo) atomic ratio is 2.5. 9 ri ζ 1 ~ Oboro 1st figure

Claims (2)

【特許請求の範囲】[Claims] (1)炭化水素油に可溶なモリブデン化合物と、炭化水
素油に可溶なリン化合物、及び、水素化処理反応条件下
で容易に硫化水素を発生し得る硫黄化合物を重質油に添
加し、これを水素加圧下において反応させる水素化処理
において、重質油に添加するリン化合物の量(リンのモ
ル数)を、重質油に含まれているバナジウムの量(バナ
ジウムのモル数)の0.5〜4倍の範囲内とする水素化
処理方法
(1) Molybdenum compounds soluble in hydrocarbon oil, phosphorus compounds soluble in hydrocarbon oil, and sulfur compounds that can easily generate hydrogen sulfide under hydrotreating reaction conditions are added to heavy oil. In the hydrotreating process in which this is reacted under hydrogen pressure, the amount of phosphorus compound added to the heavy oil (number of moles of phosphorus) is calculated as the amount of vanadium (number of moles of vanadium) contained in the heavy oil. Hydrogenation method within the range of 0.5 to 4 times
(2)水素化活性金属を含む炭化水素油可溶性化合物を
さらに重質油に添加して行う特許請求の範囲第1項の水
素化処理方法
(2) The hydrotreating method according to claim 1, which is carried out by further adding a hydrocarbon oil-soluble compound containing a hydrogenation-active metal to heavy oil.
JP62331046A 1987-12-25 1987-12-25 Hydroprocessing method for heavy oil Expired - Lifetime JPH0641589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62331046A JPH0641589B2 (en) 1987-12-25 1987-12-25 Hydroprocessing method for heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62331046A JPH0641589B2 (en) 1987-12-25 1987-12-25 Hydroprocessing method for heavy oil

Publications (2)

Publication Number Publication Date
JPH01170688A true JPH01170688A (en) 1989-07-05
JPH0641589B2 JPH0641589B2 (en) 1994-06-01

Family

ID=18239235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62331046A Expired - Lifetime JPH0641589B2 (en) 1987-12-25 1987-12-25 Hydroprocessing method for heavy oil

Country Status (1)

Country Link
JP (1) JPH0641589B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162129A (en) * 2006-12-28 2008-07-17 Matsushita Electric Ind Co Ltd Screen printing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213503A (en) * 1975-07-23 1977-02-01 Exxon Research Engineering Co Catalyst and method for removing sulfur and metal contamination from hydrocarbon feed oil
JPS5676247A (en) * 1979-11-26 1981-06-23 Exxon Research Engineering Co High surface area catalyst
JPS59150537A (en) * 1982-12-06 1984-08-28 アモコ コーポレーション Hydrotreating catalyst and hydrotreating of hydrocarbon
JPS61143490A (en) * 1984-12-17 1986-07-01 エクソン・リサーチ・アンド・エンジニアリング・カンパニー Hydrogenation conversion method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213503A (en) * 1975-07-23 1977-02-01 Exxon Research Engineering Co Catalyst and method for removing sulfur and metal contamination from hydrocarbon feed oil
JPS5676247A (en) * 1979-11-26 1981-06-23 Exxon Research Engineering Co High surface area catalyst
JPS59150537A (en) * 1982-12-06 1984-08-28 アモコ コーポレーション Hydrotreating catalyst and hydrotreating of hydrocarbon
JPS61143490A (en) * 1984-12-17 1986-07-01 エクソン・リサーチ・アンド・エンジニアリング・カンパニー Hydrogenation conversion method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162129A (en) * 2006-12-28 2008-07-17 Matsushita Electric Ind Co Ltd Screen printing apparatus

Also Published As

Publication number Publication date
JPH0641589B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
CA1238289A (en) Heavy oil hydroprocessing
US4067799A (en) Hydroconversion process
EP3010996B1 (en) Slurry hydroconversion with high activity catalyst
US4626340A (en) Process for the conversion of heavy hydrocarbon feedstocks characterized by high molecular weight, low reactivity and high metal contents
US5024751A (en) Catalytic composition comprising a metal sulfide suspended in a liquid containing asphaltenes and hydrovisbreaking process of a hydrocarbon charge
KR101716989B1 (en) Residue hydrocracking
US4340466A (en) Process for hydrotreating heavy oils containing metals
JPH0598270A (en) Catalytic hydrogenation of heavy hydrocarbon oil
JP2001009282A (en) Heavy oil hydrocracking catalyst and hydrocracking method
CN118028017A (en) Ebullated bed reactor using upgrades of opportunistic feedstock
US5928502A (en) Process for reducing total acid number of crude oil
JPH0790282A (en) Cracking and hydrogenation treatment of heavy oil
JPH03229795A (en) Preparation of catalytic cracking feed
GB1584785A (en) Hydroconversion of heavy hydrocarbons
US4139453A (en) Hydrorefining an asphaltene- containing black oil with unsupported vanadium catalyst
EP0026508B1 (en) Process and apparatus for the demetallization of a hydrocarbon oil
US3948756A (en) Pentane insoluble asphaltene removal
JPS6039112B2 (en) How to hydrotreat oil
JPH01170688A (en) Method for hydrotreating heavy oil
US6589418B2 (en) Method for selective cat naphtha hydrodesulfurization
CA2149595C (en) Process for the conversion of a residual hydrocarbon oil
JP2000256678A (en) Method for hydro-refining of heavy oil
JP2000005609A (en) Method for regeneration of hydrotreating catalyst
US5043056A (en) Suppressing sediment formation in an ebullated bed process
JP2012197350A (en) Hydrorefining method of heavy oil

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term