JPH0641024Y2 - Pressure control valve - Google Patents

Pressure control valve

Info

Publication number
JPH0641024Y2
JPH0641024Y2 JP1988162854U JP16285488U JPH0641024Y2 JP H0641024 Y2 JPH0641024 Y2 JP H0641024Y2 JP 1988162854 U JP1988162854 U JP 1988162854U JP 16285488 U JP16285488 U JP 16285488U JP H0641024 Y2 JPH0641024 Y2 JP H0641024Y2
Authority
JP
Japan
Prior art keywords
flow path
pressure
load
pressure chamber
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988162854U
Other languages
Japanese (ja)
Other versions
JPH0281976U (en
Inventor
高橋  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP1988162854U priority Critical patent/JPH0641024Y2/en
Publication of JPH0281976U publication Critical patent/JPH0281976U/ja
Application granted granted Critical
Publication of JPH0641024Y2 publication Critical patent/JPH0641024Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)
  • Multiple-Way Valves (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、エアバランサの単動シリンダへ圧縮空気を供
給する圧力制御弁に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a pressure control valve for supplying compressed air to a single acting cylinder of an air balancer.

〔従来の技術〕[Conventional technology]

従来、この種の圧力制御弁は、第4図に示す如く、図示
略のエアバランサの単動シリンダ側へ連通する負荷流路
30と、圧縮空気が供給される供給流路31と、大気開放の
排出流路32とを開口する弁孔33に、スプール弁体34を摺
動自在に嵌挿し、弁孔33のスプール弁体34一端に区画形
成した第1圧力室35へ図示しない圧力調整弁により設定
圧力を調整自在にした圧縮空気を導入し、弁孔33のスプ
ール弁体34他端に区画形成した第2圧力室36へ負荷流路
30からの圧縮空気を導入している。スプール弁体34は第
1圧力室35と第2圧力室36の圧力に基づく作用力が平衡
するよう左右に移動してそのランド部34Aにより負荷流
路30を排出流路32や供給流路31に連通し、両作用力が平
衡すればランド部34で負荷流路30を閉じて負荷流路30に
第1圧力室35内と等しい圧力を得るようにしている。
Conventionally, this type of pressure control valve has a load flow path communicating with a single acting cylinder side of an air balancer (not shown), as shown in FIG.
A spool valve body 34 is slidably fitted into a valve hole 33 that opens a supply flow path 31 to which compressed air is supplied and a discharge flow path 32 that is open to the atmosphere. 34 Compressed air whose set pressure can be adjusted by a pressure adjusting valve (not shown) is introduced into the first pressure chamber 35 defined at one end, and the second pressure chamber 36 defined at the other end of the spool valve element 34 of the valve hole 33. Load channel
It introduces compressed air from 30. The spool valve element 34 moves to the left and right so that the acting forces based on the pressures of the first pressure chamber 35 and the second pressure chamber 36 are balanced, and the land portion 34A causes the load passage 30 to the discharge passage 32 and the supply passage 31. When the two acting forces are balanced, the load passage 30 is closed by the land portion 34 to obtain the same pressure in the load passage 30 as in the first pressure chamber 35.

〔考案が解決しようとする問題点〕[Problems to be solved by the invention]

ところが、かかる構成では、スプール弁体34の移動に応
じてランド部34Aが負荷流路30と排出流路32を連通した
り負荷流路30と供給流路31を連通したりする際、スプー
ル弁体34のランド部34Aと軸部34Bとが連設する端面は略
直角に形成されているので、スプール弁体34には軸方向
摺動に対向する流体力が発生し、流体力が作用する分だ
けスプール弁体34を軸方向摺動させる作用力を大きくし
なければならないことからスプール弁体34の操作性が悪
くエアバランサを軽やかに作動できない問題点があっ
た。
However, in such a configuration, when the land portion 34A communicates the load flow passage 30 and the discharge flow passage 32 or the load flow passage 30 and the supply flow passage 31 according to the movement of the spool valve body 34, the spool valve Since the end surface where the land portion 34A and the shaft portion 34B of the body 34 are connected to each other is formed at a substantially right angle, a fluid force that opposes the axial sliding is generated in the spool valve body 34, and the fluid force acts. Since the acting force for sliding the spool valve element 34 in the axial direction must be increased by the amount, the operability of the spool valve element 34 is poor and the air balancer cannot be operated lightly.

本考案は、かかる問題点を解決するもので、スプール弁
体に作用する流体力を低減してスプール弁体の操作性を
向上した圧力制御弁を提供するものである。
The present invention solves such a problem and provides a pressure control valve in which the fluid force acting on the spool valve element is reduced to improve the operability of the spool valve element.

〔問題点を解決するための手段〕[Means for solving problems]

このため、本考案は、エアバランサの単動シリンダへ負
荷に抗する圧縮空気を供給する圧力制御弁であって、弁
本体内にスプール弁体を摺動自在に嵌挿する弁孔を設
け、弁孔には単動シリンダ側へ連通する負荷流路と、負
荷流路の一側へ軸方向に間隔を有して圧縮空気が供給さ
れる供給流路と、負荷流路の他端へ軸方向に間隔を有し
て大気開放する排出流路とを開口して設け、弁孔へスプ
ール弁体を摺動自在に嵌挿することで弁孔の負荷流路開
口個所より供給流路開口個所側のスプール弁体一端に設
定圧力を調整自在にした圧力調整弁をへて供給流路側か
ら圧縮空気を導入する第1圧力室を区画形成すると共
に、弁孔の負荷流路開口個所より排出流路開口個所側の
スプール弁体他端に負荷流路に連通する第2圧力室を区
画形成し、スプール弁体は弁孔と摺動するランド部と、
ランド部両側に連設してランド部より小径の軸部を備
え、第1圧力室と第2圧力室の圧力に基づく作用力が平
衡作用することで負荷流路の弁孔への開口をランド部に
より閉塞して各流路間を遮断する第1位置と、第2圧力
室の圧力に基づく作用力が第1圧力室の圧力に基づく作
用力より大きいことでランド部が弁孔の負荷流路開口個
所と供給流路開口個所との間に軸方向摺動して負荷流路
と排出流路間が連通し供給流路を遮断する第2位置と、
第2圧力室の圧力に基づく作用力が第1圧力室の圧力に
基づく作用力より小さいことでランド部が弁孔の負荷流
路開口個所と排出流路開口個所との間に軸方向摺動して
負荷流路と供給流路間が連通し排出流路を遮断する第3
位置とを有し、スプール弁体のランド部には両軸部との
連設端面にこの端面から漸次縮径状に窪ませた環境の窪
み部を設け、弁本体には、ばねにより負荷流路を遮断す
るよう付勢されると共に、パイロット圧力の付与により
ばねの付勢に抗して負荷流路を開く開閉弁を設置し、こ
の開閉弁へのパイロット圧力を、供給流路側から導くよ
うに構成している。
Therefore, the present invention is a pressure control valve that supplies compressed air that resists a load to a single-acting cylinder of an air balancer, and has a valve hole in which a spool valve element is slidably inserted in a valve body. The valve hole has a load passage communicating with the single-acting cylinder side, a supply passage for supplying compressed air to one side of the load passage with an axial gap, and a shaft for the other end of the load passage. The discharge flow path that opens to the atmosphere with a gap in the direction is opened, and the spool valve element is slidably inserted into the valve hole so that the load flow path opening point of the valve hole changes to the supply flow path opening point. The first pressure chamber for introducing compressed air from the supply flow path side is defined by a pressure control valve that allows the set pressure to be freely adjusted at one end of the spool valve body on the side, and the discharge flow from the load flow path opening portion of the valve hole. A second pressure chamber communicating with the load flow passage is defined and formed at the other end of the spool valve element on the side of the passage opening, and the spool valve And the land portion for the valve hole and sliding,
A shaft portion having a diameter smaller than that of the land portion is provided continuously on both sides of the land portion, and the action force based on the pressures of the first pressure chamber and the second pressure chamber equilibrates to open the opening of the load passage to the valve hole. The first position where the flow path is closed by the portion to block between the flow paths, and the acting force based on the pressure in the second pressure chamber is larger than the acting force based on the pressure in the first pressure chamber, so that the land portion is the load flow of the valve hole. A second position that axially slides between the passage opening portion and the supply passage opening portion to communicate between the load passage and the discharge passage and block the supply passage;
Since the acting force based on the pressure of the second pressure chamber is smaller than the acting force based on the pressure of the first pressure chamber, the land portion axially slides between the load passage opening portion and the discharge passage opening portion of the valve hole. And a third flow path that connects the load flow path and the supply flow path and blocks the discharge flow path
The land portion of the spool valve element is provided with an indentation of the environment in which it is continuously recessed from both end portions in the land portion of the spool valve element and is gradually reduced in diameter from this end surface. An on-off valve is installed that opens the load flow path against the bias of the spring by applying a pilot pressure while guiding the pilot pressure to this on-off valve from the supply flow path side. Is configured.

〔作用〕[Action]

かかる本考案の構成において、スプール弁体が第1位置
から第2位置および第3位置へ軸方向摺動する際、ラン
ド部の両軸部の連設端面にこの端面から窪ませた側に向
けて漸次縮径する形状に形成して設けた環状の窪み部に
より摺動に対向する流体力が低減される。このため、従
来弁に比し、小さな作用力でスプール弁体を軸方向摺動
させることができ、スプール弁体の操作性を向上するこ
とができる。
In the structure of the present invention, when the spool valve element axially slides from the first position to the second position and the third position, the spool valve element is directed toward the recessed side of the continuous end faces of both shaft parts of the land part. As a result, the fluid force that opposes the sliding movement is reduced by the annular recessed portion formed so as to have a gradually decreasing diameter. Therefore, the spool valve element can be slid in the axial direction with a smaller acting force than that of the conventional valve, and the operability of the spool valve element can be improved.

〔実施例〕〔Example〕

以下、本考案の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図ないし第3図において、1は弁本体で、下方端面
1Aの第1図で右側に開口して圧縮空気源2側へ連通する
供給流路3と、下方端面1A左側に開口して大気開放する
排出流路4と、上方端面1B中央に開口して後述のエアバ
ランサにおける単動形のシリンダ側へ連通する負荷流路
5とをそれぞれ備えている。7は弁本体1内に設けた環
状スリーブで、各流路3、4、5と連通する複数の開口
孔7Aを軸方向に間隔を有して開口した弁孔6を設けてい
る。8は弁孔6へ摺動自在に嵌挿するスプール弁体で、
中立位置で負荷流路5との連通を開閉する大径の中央ラ
ンド部8Aと、中央ランド部8Aの両側端面から小径の軸部
8B、8Eに連設した大径の側方ランド部8C、8Dとを形成し
ている。9は軸部8B、8Eと中央ランド部8Aとの連設端面
を窪ませた環状の窪み部で、外周面9Aを端面から窪ませ
側に向けて漸次縮径した形状にしている。10および11は
弁孔6の側方開口を閉塞するよう弁本体1の左右各側面
1C、1Dに固設させた側板である。そして、弁孔6へスプ
ール弁体8を摺動自在に嵌挿することで弁孔6の負荷流
路5開口個所より供給流路3開口個所側のスプール弁体
8の一方の側方ランド部8Cと側板10とにより区画形成し
た第1圧力室12と、弁孔6の負荷流路5開口個所より排
出流路4開口個所側のスプール弁体8の他方の側方ラン
ド部8Dと側板11とにより区画形成した第2圧力室13を設
けている。第1圧力室12には、供給流路3を圧縮空気源
2へ通じさせる流路から、設定圧力を調整自在とする圧
力制御弁14をへて圧縮空気を側板10に貫通した制御流路
15を介し導くと共に、第2圧力室13には負荷流路5から
の圧縮空気を弁本体1に設けた分岐流路16を介して導い
ている。17、18は各圧力室12、13に収装してスプール弁
体8を中心位置に付勢するばねである。そして、スプー
ル弁体8は第1圧力室12と第2圧力室13の圧力に基づく
作用力が平衡作用することで、負荷流路5の弁孔6への
開口を中央ランド部8Aにより閉塞して負荷流路5が供給
流路3および排出流路4と遮断する第1位置と、第2圧
力室13の圧力に基づく作用力が第1圧力室12の圧力に基
づく作用力より大きいことで中央ランド部8Aが弁孔6の
負荷流路5開口個所と供給流路3開口個所との間に軸方
向摺動して負荷流路5と排出流路4間が連通し供給流路
3を遮断する第2位置と、第2圧力室13の圧力に基づく
作用力が第1圧力室12の圧力に基づく作用力より小さい
ことで中央ランド部8Aが弁孔6の負荷流路5開口個所と
排出流路4開口個所との間に軸方向摺動して負荷流路5
と供給流路4間が連通し排出流路4を遮断する第3位置
とを有している。19は弁本体1の上方端面1Bに載置した
開閉弁で、下方に弁本体1の負荷流路5と連通する流入
路20と上方に後述するエアバランサのシリンダ側へ連通
する流出路22とをそれぞれ設けている。23は開閉弁19内
の流入路20と流出路22とを連通した摺動孔に摺動自在に
嵌挿した開閉弁体で開閉弁体23は一方の付勢ばね23Bの
ばね力により摺動孔の異径の連設段部により形成した弁
座23Aへ着座して流入出路20、22間を遮断するように付
勢して、供給流路3を圧縮空気源2へ通じさせる流路か
ら導くパイロット圧力が他方の開閉路23Cを介して導入
されることでばね23Bの付勢に抗して流入路20と流出路2
2間を連通するようにされている。21はエアバランサに
おける単動形のシリンダで、シリンダ21のヘッド側室21
Aは大気開放し、ロッド側室21Bは開閉弁19の流出口22と
連通して、チェイン24を介して接続されたバランス用ウ
ェイト25と平衡するようにロッド21Cを上下動させてい
る。
1 to 3, 1 is a valve body, which is a lower end face.
In FIG. 1A of FIG. 1, a supply flow path 3 that opens to the right and communicates with the compressed air source 2 side, a discharge flow path 4 that opens to the left of the lower end face 1A and opens to the atmosphere, and an open end to the center of the upper end face 1B. A load passage 5 communicating with a single-acting cylinder side of an air balancer described later is provided. Reference numeral 7 denotes an annular sleeve provided in the valve body 1, and has a valve hole 6 in which a plurality of opening holes 7A communicating with the respective flow paths 3, 4, 5 are opened at intervals in the axial direction. 8 is a spool valve element slidably fitted into the valve hole 6,
A large-diameter central land portion 8A that opens and closes communication with the load flow path 5 at the neutral position, and a small-diameter shaft portion from both end faces of the central land portion 8A.
Large-diameter side land portions 8C and 8D connected to 8B and 8E are formed. Reference numeral 9 denotes a ring-shaped recess formed by recessing the end face of the shaft 8B, 8E and the central land 8A, and the outer peripheral face 9A has a diameter gradually reduced from the end face toward the recess. 10 and 11 are left and right side surfaces of the valve body 1 so as to close the lateral opening of the valve hole 6.
Side plates fixed to 1C and 1D. The spool valve element 8 is slidably fitted into the valve hole 6 so that one side land portion of the spool valve element 8 on the supply channel 3 opening side from the load channel 5 opening point of the valve hole 6 The first pressure chamber 12 defined by the 8C and the side plate 10 and the other side land portion 8D and the side plate 11 of the spool valve element 8 closer to the discharge passage 4 opening than the load passage 5 opening of the valve hole 6. A second pressure chamber 13 defined by and is provided. In the first pressure chamber 12, a control flow path in which compressed air penetrates the side plate 10 from a flow path that allows the supply flow path 3 to communicate with the compressed air source 2 through a pressure control valve 14 that makes it possible to adjust the set pressure.
The compressed air from the load channel 5 is guided to the second pressure chamber 13 via the branch channel 16 provided in the valve body 1 as well as being guided to the second pressure chamber 13. Reference numerals 17 and 18 denote springs that are housed in the pressure chambers 12 and 13 and urge the spool valve body 8 to the center position. Then, the spool valve body 8 closes the opening of the load passage 5 to the valve hole 6 by the central land portion 8A due to the acting force based on the pressures of the first pressure chamber 12 and the second pressure chamber 13 that balances out. By the load flow path 5 blocking the supply flow path 3 and the discharge flow path 4, and the acting force based on the pressure of the second pressure chamber 13 is larger than the acting force based on the pressure of the first pressure chamber 12. The central land portion 8A axially slides between the opening of the load passage 5 and the opening of the supply passage 3 of the valve hole 6 so that the load passage 5 and the discharge passage 4 communicate with each other to form the supply passage 3. The second position to shut off and the acting force based on the pressure of the second pressure chamber 13 is smaller than the acting force based on the pressure of the first pressure chamber 12, so that the central land portion 8A becomes the opening of the load passage 5 of the valve hole 6. The discharge flow path 4 slides in the axial direction between the opening and the load flow path 5
And a third position where the supply flow path 4 communicates with and the discharge flow path 4 is blocked. Reference numeral 19 denotes an opening / closing valve mounted on the upper end surface 1B of the valve body 1, and an inflow passage 20 communicating with the load passage 5 of the valve body 1 below, and an outlet passage 22 communicating with the cylinder side of the air balancer described below above. Are provided respectively. Reference numeral 23 denotes an opening / closing valve body slidably inserted in a sliding hole that connects the inflow passage 20 and the outflow passage 22 in the opening / closing valve 19, and the opening / closing valve body 23 slides by the spring force of one urging spring 23B. From the flow passage that connects the supply flow passage 3 to the compressed air source 2 by being seated on the valve seat 23A formed by the continuous stepped portion of different diameter of the hole and urged so as to block between the inflow and outflow passages 20 and 22. The pilot pressure to be introduced is introduced through the other opening / closing path 23C, so that the inflow path 20 and the outflow path 2 are resisted against the bias of the spring 23B.
It is designed to communicate between the two. 21 is a single-acting type cylinder in the air balancer, and the head side chamber 21 of the cylinder 21 is
A is open to the atmosphere, and the rod side chamber 21B communicates with the outlet 22 of the on-off valve 19 to move the rod 21C up and down so as to equilibrate with the balance weight 25 connected via the chain 24.

次にかかる構成の作動を説明する。Next, the operation of this configuration will be described.

第1図ないし第3図は圧縮空気源2より圧縮空気が供給
されておらず、開閉路23Cにパイロット圧力が供給され
ていない状態で、開閉弁19は付勢ばね23Bのばね力で開
閉弁体23が弁座23Aに当接され、流入路20と流出路22間
を遮断していると共に、スプール弁体8がばね17、18の
ばね力で第1位置に保持され、中央ランド部8Aにより負
荷流路5を遮断して、シリンダ21のロッド側室21Bの圧
力とバランス用ウェイト25の作用力とがバランスした位
置に保持されている。
1 to 3 show that the compressed air is not supplied from the compressed air source 2 and the pilot pressure is not supplied to the opening / closing passage 23C, the opening / closing valve 19 is the opening / closing valve by the spring force of the biasing spring 23B. The body 23 is in contact with the valve seat 23A to block between the inflow passage 20 and the outflow passage 22, and the spool valve body 8 is held at the first position by the spring force of the springs 17 and 18, and the central land portion 8A Thus, the load flow path 5 is blocked and the pressure of the rod side chamber 21B of the cylinder 21 and the acting force of the balancing weight 25 are held at a balanced position.

次に、圧力源2からの圧力流体が供給されて開閉弁19は
流入路20と流出路22間を連通し、スプール弁体8はバラ
ンス用ウェイト25の重量による負荷流路5より第2圧力
室13に導入する圧縮空気の圧力に基づく作用力と圧力調
整弁14により調整されて第1圧力室12に導入する圧縮空
気の圧力に基づく作用力およびばね17、18力とが平衡作
用して図示状態の第1位置にあり各流路間3、4、5間
を遮断している。この状態より作業者がバランス用ウェ
イト25を持ち上げると、負荷流路5の圧力が下降して第
2圧力室13の圧力に基づく作用力が第1圧力室12の圧力
に基づく作用力より小さくなり、スプール弁体8はばね
18力に抗して第3位置に軸方向摺動し供給流路3より負
荷流路5へ圧縮空気が供給される。そして、作業者がバ
ランス用ウェイト25を持ち上げた位置で離すことで負荷
流路5より第2圧力室13に導入する圧力に基づく作用力
が第1圧力室12の圧力に基づく作用力と略等しくなりス
プール弁体8はばね18力により図示状態の第1位置に復
帰する。また、図示状態より作業者がバランス用ウェイ
ト25を押し下げると、負荷流路5の圧力が上昇して第2
圧力室13の圧力に基づく作用力が第1圧力室12の圧力に
基づく作用力より大きくなり、スプール弁体8はばね17
力に抗して第2位置に軸方向摺動し排出流路4へ負荷流
路5の圧縮空気が排出される。そして、作業者がバラン
ス用ウェイト25を押し下げた位置で離すことで負荷流路
5より第2圧力室13に導入する圧力に基づく作用力が第
1圧力室12の圧力に基づく作用力と略等しくなりスプー
ル弁体8はばね17力により図示状態の第1位置に復帰摺
動する。また、バランス用ウェイト25の重量を変更させ
た際には、これに応じた圧力の圧縮空気を第1圧力室12
に導入するよう圧力調整弁14の設定圧力を調整するので
ある。
Next, the pressure fluid from the pressure source 2 is supplied, the on-off valve 19 communicates between the inflow passage 20 and the outflow passage 22, and the spool valve body 8 is pressurized by the weight of the balancing weight 25 to the second pressure from the load flow passage 5. The working force based on the pressure of the compressed air introduced into the chamber 13 and the working force based on the pressure of the compressed air introduced into the first pressure chamber 12 which is adjusted by the pressure adjusting valve 14 and the springs 17 and 18 act in balance. It is in the first position shown in the figure, and the flow paths 3, 4 and 5 are cut off. When the operator lifts the balancing weight 25 from this state, the pressure in the load flow path 5 decreases and the acting force based on the pressure in the second pressure chamber 13 becomes smaller than the acting force based on the pressure in the first pressure chamber 12. , The spool valve body 8 is a spring
The compressed air is supplied from the supply passage 3 to the load passage 5 by axially sliding to the third position against the 18 force. When the operator lifts the balance weight 25 at the lifted position, the acting force based on the pressure introduced from the load passage 5 into the second pressure chamber 13 is substantially equal to the acting force based on the pressure in the first pressure chamber 12. The elastic spool valve body 8 returns to the first position shown in the figure by the force of the spring 18. Further, when the operator pushes down the balancing weight 25 from the state shown in the figure, the pressure in the load flow path 5 rises and the second
The acting force based on the pressure of the pressure chamber 13 becomes larger than the acting force based on the pressure of the first pressure chamber 12, so that the spool valve body 8 causes the spring 17 to move.
The compressed air in the load passage 5 is discharged to the discharge passage 4 by axially sliding to the second position against the force. When the operator releases the balance weight 25 at the depressed position, the acting force based on the pressure introduced from the load flow path 5 into the second pressure chamber 13 is substantially equal to the acting force based on the pressure in the first pressure chamber 12. The elastic spool valve body 8 slides back to the first position shown in the figure by the force of the spring 17. Further, when the weight of the balance weight 25 is changed, compressed air having a pressure corresponding to the weight is changed to the first pressure chamber 12
The set pressure of the pressure adjusting valve 14 is adjusted so as to be introduced into the.

かかる作動において、スプール弁体8が負荷流路5が供
給流路3および排出流路4と遮断する第1位置から負荷
流路5と排出流路4間を連通し供給流路3を遮断する第
2位置および負荷流路5と供給流路3間を連通し排出流
路4を遮断する第3位置へ軸方向摺動する際、中央ラン
ド部8Aの軸部8B、8Eとの連設端面に外周面9Aを端面から
窪ませ側に向けて順次縮径する形状に形成して設けた環
状の窪み部9により摺動に対向する流体力を低減するこ
とができるため、従来弁に比し、小さな作用力でスプー
ル弁体8を軸方向摺動させることができてスプール弁体
8の操作性が向上され、バランスウェイト25の押し上
げ、押し下げを軽やかに行うことができる。
In this operation, the spool valve body 8 connects the load flow passage 5 and the discharge flow passage 4 from the first position where the load flow passage 5 cuts off the supply flow passage 3 and the discharge flow passage 4, and cuts off the supply flow passage 3. When sliding axially to the second position and the third position that connects the load flow path 5 and the supply flow path 3 to each other and blocks the discharge flow path 4, the end surface of the central land 8A that is continuous with the shaft parts 8B and 8E. Since the outer peripheral surface 9A is formed in a shape in which the diameter is successively reduced from the end surface toward the recessed side, the annular recessed portion 9 can reduce the fluid force that opposes sliding, so The spool valve body 8 can be slid in the axial direction with a small acting force, the operability of the spool valve body 8 is improved, and the balance weight 25 can be pushed up and down easily.

また、スプール弁体に作用する流体力を低減させるの
に、スプール弁体8の中央ランド部8Aの端面に窪み部9
を設けるだけの簡単な加工作業で従来のスプール弁体を
そのまま使用することができ、互換性をよくすることが
できる。
Further, in order to reduce the fluid force acting on the spool valve body, the recessed portion 9 is formed on the end surface of the central land portion 8A of the spool valve body 8.
The conventional spool valve body can be used as it is by a simple processing operation only by providing the above, and the compatibility can be improved.

いま、窪み部9の外周面9Aの角度θを従来弁に相当する
90°、135°、150°の3種類の角度で実験したところ、
流体力の原因となる流体力係数が90°のものでは0.40、
135°のものでは0.18、150°のものでは0.16となり、角
度θの増加に伴ない流体力が減少されることが認められ
た。しかし、150°のものでは、中央ランド部8Aの窪み
部9外方が薄肉になり強度の低下が認められた。よって
一実施例の弁はθ=135°にしている。
Now, the angle θ of the outer peripheral surface 9A of the recess 9 corresponds to that of a conventional valve.
When I experimented with three angles of 90 °, 135 °, and 150 °,
0.40 if the fluid force coefficient that causes the fluid force is 90 °,
It was 0.18 at 135 ° and 0.16 at 150 °, and it was confirmed that the fluid force decreased as the angle θ increased. However, in the case of 150 °, the outside of the recess 9 of the central land portion 8A became thin, and the strength was reduced. Therefore, the valve of one embodiment is set to θ = 135 °.

そして、供給流路3の上流側で配管がはずれる等して不
慮に圧力が大きく低下すると、第1圧力室7の圧力も同
様に低下して開閉弁19が無いときにはスプール弁体8が
排出側へ移動してバランスウェイト25が落下してしまう
が、本実施例では、開閉弁19が、そのパイロット圧力も
大きく低下することで開閉弁体23をばね23Bの付勢によ
り着座させるので、このような場合の、不慮のバランス
ウェイト25の落下を防止できて安全性を確保できる。
Then, if the pressure suddenly drops significantly due to disconnection of the pipe on the upstream side of the supply flow path 3, the pressure in the first pressure chamber 7 also drops, and when the on-off valve 19 is not present, the spool valve element 8 has the discharge side. However, in this embodiment, the on-off valve 19 causes the on-off valve body 23 to be seated by the urging force of the spring 23B because the pilot pressure also greatly decreases. In this case, the balance weight 25 can be prevented from accidentally falling and safety can be secured.

〔考案の効果〕[Effect of device]

このように本考案によると、スプール弁体への流体力が
低減したことにより、従来弁に比し、小さな作用力でス
プール弁体を軸方向摺動することができ、スプール弁体
の操作性が向上して、エアバランサを軽やかに作動でき
る。
As described above, according to the present invention, since the fluid force on the spool valve element is reduced, the spool valve element can be slid in the axial direction with a smaller acting force than the conventional valve, and the operability of the spool valve element is reduced. Is improved, and the air balancer can be operated lightly.

また、この操作性の向上はスプール弁体のランド部の端
面に窪み部を設けるだけの簡単な加工作業で実現でき、
従来のものとの互換性をよくすることができる。
In addition, this improvement in operability can be realized by a simple machining operation that simply provides a recess on the end face of the land portion of the spool valve body,
The compatibility with the conventional one can be improved.

さらに、供給流路の上流で、配管がはずれる等により不
慮に圧力が大きく低下しても、開閉弁が閉じることによ
りエアバランサの単動シリンダが負荷により落下作動す
ることが防止できて安全性を確保できる。
Furthermore, even if the pressure drops suddenly upstream of the supply flow path due to pipe disconnection, etc., the single-acting cylinder of the air balancer can be prevented from dropping due to the load by closing the on-off valve, which improves safety. Can be secured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を示す圧力制御弁の縦断面
図、第2図はスプール弁体のランド部に形成された窪み
部の拡大断面図、第3図は本考案の圧力制御弁を用いた
流体アクチュエータ装置の回路図、第4図は従来の圧力
制御弁の縦断面図である。 1…弁本体、3…供給流路、4…排出流路、5…負荷流
路、6…弁孔、8…スプール弁体、8A…ランド部、8B、
8E…軸部、9…窪み部、9A…外周面、12…第1圧力室、
13…第2圧力室、14…圧力調整弁、19…開閉弁、21…単
動シリンダ。
FIG. 1 is a vertical sectional view of a pressure control valve showing an embodiment of the present invention, FIG. 2 is an enlarged sectional view of a recess formed in a land portion of a spool valve body, and FIG. 3 is a pressure control of the present invention. FIG. 4 is a circuit diagram of a fluid actuator device using a valve, and FIG. 4 is a vertical sectional view of a conventional pressure control valve. DESCRIPTION OF SYMBOLS 1 ... Valve main body, 3 ... Supply flow path, 4 ... Exhaust flow path, 5 ... Load flow path, 6 ... Valve hole, 8 ... Spool valve body, 8A ... Land part, 8B,
8E ... Shaft part, 9 ... Recessed part, 9A ... Outer peripheral surface, 12 ... First pressure chamber,
13 ... Second pressure chamber, 14 ... Pressure adjusting valve, 19 ... Open / close valve, 21 ... Single acting cylinder.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】エアバランサの単動シリンダへ負荷に抗す
る圧縮空気を供給する圧力制御弁であって、弁本体内に
スプール弁体を摺動自在に嵌挿する弁孔を設け、弁孔に
は単動シリンダ側へ連通する負荷流路と、負荷流路の一
側へ軸方向に間隔を有して圧縮空気が供給される供給流
路と、負荷流路の他端へ軸方向に間隔を有して大気開放
する排出流路とを開口して設け、弁孔へスプール弁体を
摺動自在に嵌挿することで弁孔の負荷流路開口個所より
供給流路開口個所側のスプール弁体一端に設定圧力を調
整自在にした圧力調整弁をへて供給流路側から圧縮空気
を導入する第1圧力室を区画形成すると共に、弁孔の負
荷流路開口個所より排出流路開口個所側のスプール弁体
他端に負荷流路に連通する第2圧力室を区画形成し、ス
プール弁体は弁孔と摺動するランド部と、ランド部両側
に連設してランド部より小径の軸部を備え、第1圧力室
と第2圧力室の圧力に基づく作用力が平衡作用すること
で負荷流路の弁孔への開口をランド部により閉塞して各
流路間を遮断する第1位置と、第2圧力室の圧力に基づ
く作用力が第1圧力室の圧力に基づく作用力より大きい
ことでランド部が弁孔の負荷流路開口個所と供給流路開
口個所との間に軸方向摺動して負荷流路と排出流路間が
連通し供給流路を遮断する第2位置と、第2圧力室の圧
力に基づく作用力が第1圧力室の圧力に基づく作用力よ
り小さいことでランド部が弁孔の負荷流路開口個所と排
出流路開口個所との間に軸方向摺動して負荷流路と供給
流路間が連通し排出流路を遮断する第3位置とを有し、
スプール弁体のランド部には両軸部との連設端面にこの
端面から漸次縮径状に窪ませた環境の窪み部を設け、弁
本体には、ばねにより負荷流路を遮断するよう付勢され
ると共に、パイロット圧力の付与によりばねの付勢に抗
して負荷流路を開く開閉弁を設置し、この開閉弁へのパ
イロット圧力を、供給流路側から導いて成る圧力制御
弁。
1. A pressure control valve for supplying compressed air against a load to a single-acting cylinder of an air balancer, wherein a valve hole for slidably inserting a spool valve body is provided in a valve body, and the valve hole is provided. Includes a load flow path communicating with the single-acting cylinder side, a supply flow path to which compressed air is supplied to one side of the load flow path with an axial gap, and an axial direction to the other end of the load flow path. A discharge flow path that opens to the atmosphere with a gap is provided by opening, and a spool valve element is slidably fitted into the valve hole to allow the load flow path opening portion of the valve hole to be closer to the supply flow path opening portion. A first pressure chamber that introduces compressed air from the supply flow path side is defined by a pressure control valve that allows the set pressure to be adjusted at one end of the spool valve body, and a discharge flow path opening from the load flow path opening portion of the valve hole. A second pressure chamber communicating with the load flow path is defined at the other end of the spool valve body at the location side, and the spool valve body has a valve hole. A land portion that slides and a shaft portion that is continuously provided on both sides of the land portion and has a diameter smaller than that of the land portion are provided, and the action force based on the pressures of the first pressure chamber and the second pressure chamber equilibrate to each other so that the load passage The first position where the opening to the valve hole is blocked by the land portion to block the flow paths from each other and the acting force based on the pressure in the second pressure chamber is larger than the acting force based on the pressure in the first pressure chamber. A second position in which the portion axially slides between the load flow passage opening portion and the supply flow passage opening portion of the valve hole to connect the load flow passage and the discharge flow passage to cut off the supply flow passage; Since the acting force based on the pressure in the pressure chamber is smaller than the acting force based on the pressure in the first pressure chamber, the land portion slides in the axial direction between the load passage opening portion and the discharge passage opening portion of the valve hole. A third position for connecting the load flow path and the supply flow path and blocking the discharge flow path,
The land portion of the spool valve body is provided with a recessed part on the end face connected to both shaft parts of the environment that is gradually recessed in a reduced diameter from this end face, and the valve body is equipped with a spring to block the load flow path. A pressure control valve that is energized and installs an on-off valve that opens the load flow path against the bias of the spring by applying pilot pressure and guides pilot pressure to this on-off valve from the supply flow path side.
JP1988162854U 1988-12-15 1988-12-15 Pressure control valve Expired - Lifetime JPH0641024Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988162854U JPH0641024Y2 (en) 1988-12-15 1988-12-15 Pressure control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988162854U JPH0641024Y2 (en) 1988-12-15 1988-12-15 Pressure control valve

Publications (2)

Publication Number Publication Date
JPH0281976U JPH0281976U (en) 1990-06-25
JPH0641024Y2 true JPH0641024Y2 (en) 1994-10-26

Family

ID=31447061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988162854U Expired - Lifetime JPH0641024Y2 (en) 1988-12-15 1988-12-15 Pressure control valve

Country Status (1)

Country Link
JP (1) JPH0641024Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6913659B2 (en) * 2018-08-03 2021-08-04 日立建機株式会社 Spool valve device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214846A (en) * 1975-07-25 1977-02-04 Hitachi Ltd Unbalance detection relaying system

Also Published As

Publication number Publication date
JPH0281976U (en) 1990-06-25

Similar Documents

Publication Publication Date Title
JP3710836B2 (en) Feedback poppet valve
US5645263A (en) Pilot valve for a flow amplyifying poppet valve
US5878647A (en) Pilot solenoid control valve and hydraulic control system using same
US5097746A (en) Metering valve
JPH0233910B2 (en)
GB2161586A (en) Pressure responsive, pilot actuated, modulating valve
US5535663A (en) Operating valve assembly with pressure compensation valve
JP4776366B2 (en) Actuator control device
EP0869418B1 (en) Pressure regulating valve mounted in base-mounted transfer valve
JP3561593B2 (en) Pressure control valve for switching valve
EP0822361B1 (en) Pressure-control valve mounted on a base-mount selector valve
KR920006521B1 (en) Hydraulic control apparatus
EP1255044B1 (en) Variable pressure control device
JPH0641024Y2 (en) Pressure control valve
US5540258A (en) Holding check control valve
JPH03521B2 (en)
JPS6114721Y2 (en)
JPS6128525Y2 (en)
JP3627995B2 (en) Cylinder lowering prevention valve device
JPS6237028Y2 (en)
JPH0424221Y2 (en)
JPH0249361Y2 (en)
JPH064081Y2 (en) Fluid control device
JP2552868B2 (en) Meter-out control valve
JP3653160B2 (en) Pressure control valve for switching valve