JPH0640825U - Spectrum analyzer - Google Patents

Spectrum analyzer

Info

Publication number
JPH0640825U
JPH0640825U JP7558992U JP7558992U JPH0640825U JP H0640825 U JPH0640825 U JP H0640825U JP 7558992 U JP7558992 U JP 7558992U JP 7558992 U JP7558992 U JP 7558992U JP H0640825 U JPH0640825 U JP H0640825U
Authority
JP
Japan
Prior art keywords
conductor
spectrum
wavelength
photodetector
mim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7558992U
Other languages
Japanese (ja)
Inventor
寧 尾上
秀章 山岸
仁 原
直輝 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP7558992U priority Critical patent/JPH0640825U/en
Publication of JPH0640825U publication Critical patent/JPH0640825U/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

(57)【要約】 【目的】 MIMトンネル接合を用いた電界検出型の光
検出器を検出部に用いることにより、冷却不要の高感
度、高応答速度、小型の赤外〜可視光領域のスペクトル
分析装置を実現する。 【構成】 レーザダイオードや発光ダイオードなどの発
光素子のスペクトルを測定し、その発光波長や波長半値
幅などの波長領域でのスペクトル分析を行うスペクトル
分析装置において、前記装置を構成する光検出器として
MIMトンネル接合を用いた電界検出型の光検出器とし
たことを特徴とする。
(57) [Abstract] [Purpose] By using an electric field detection type photodetector with MIM tunnel junction in the detector, high sensitivity, high response speed and compact infrared to visible light spectrum without cooling Realize an analyzer. [Structure] In a spectrum analyzer for measuring a spectrum of a light emitting element such as a laser diode or a light emitting diode and performing spectrum analysis in a wavelength region such as an emission wavelength or a half width of wavelength, an MIM is used as a photodetector constituting the apparatus. It is characterized by being an electric field detection type photodetector using a tunnel junction.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、MIM(Metal-Insulator-Metal)トンネル接合の光応答を利用し た光検出器を用いた赤外〜可視光領域のスペクトル分析装置に関するものである 。 The present invention relates to an infrared to visible light spectrum analyzer using a photodetector that utilizes the optical response of a MIM (Metal-Insulator-Metal) tunnel junction.

【0002】[0002]

【従来の技術】[Prior art]

通常、スペクトル分析装置は、大別して、光源と分光器と検出器の3つの構成 要素からなる。この内、検出器は赤外・可視光の両領域にて高い一様な感度を持 っているものは少ない。また、赤外領域の光検出器としては、量子型の半導体セ ンサと熱型の焦電素子などが使われているが、前者は光エネルギを半導体内キャ リアのバンドキャップ間の励起に用いるものであるが、波長領域により感度が異 なり、長波長(赤外)領域での使用時は液体窒素、液体ヘリウムなどによる冷却 も必要となる。一方、後者の熱型センサは、光照射によるエネルギを熱に変換し 、これを分極率,抵抗率などの変化として出力するもので、原理的に感度が低い ため、受光面積を大きくすることや、応答速度が遅いため、広範囲のスペクトル 分析には時間がかかるという欠点を持っている。 Generally, a spectrum analyzer is roughly divided into three components, a light source, a spectroscope, and a detector. Of these, few detectors have high uniform sensitivity in both infrared and visible light regions. In addition, quantum-type semiconductor sensors and thermal-type pyroelectric elements are used as photodetectors in the infrared region, but the former uses optical energy for excitation between band caps of carriers in semiconductors. However, the sensitivity varies depending on the wavelength region, and when used in the long wavelength (infrared) region, cooling with liquid nitrogen or liquid helium is also necessary. On the other hand, the latter thermal sensor converts the energy generated by light irradiation into heat and outputs it as changes in polarizability, resistivity, etc. Since it has low sensitivity in principle, it is difficult to increase the light receiving area. However, it has the drawback that it takes time to analyze a wide range of spectra due to its slow response speed.

【0003】 また、従来の点接触ダイオードおよびMIMトンネル接合は、赤外光線に反応 することは判っており、現状では構造上、不安定で数時間の使用が限界であるが 、量子型と同様、或いはそれ以下の面積(体積)で高応答速度、高感度、冷却不 要の検出器を作製することができる。Further, it has been known that conventional point contact diodes and MIM tunnel junctions respond to infrared rays. At present, the structure is unstable and its use is limited to several hours, but similar to the quantum type. Alternatively, a detector with high response speed, high sensitivity, and no cooling can be manufactured with an area (volume) smaller than that.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

本考案は、上記従来技術の課題を踏まえてなされたものであり、MIMトンネ ル接合を用いた電界検出型の光検出器を検出部に用いることにより、冷却不要の 高感度、高応答速度、小型の赤外〜可視光領域のスペクトル分析装置を提供する ことを目的とするものである。 The present invention has been made in view of the above-mentioned problems of the conventional technology, and by using an electric field detection type photodetector using an MIM tunnel junction in the detection unit, high sensitivity, high response speed without cooling, It is an object of the present invention to provide a compact infrared to visible light spectrum analyzer.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

上記課題を解決するための本考案の構成は、 レーザダイオードや発光ダイオードなどの発光素子のスペクトルを測定し、そ の発光波長や波長半値幅などの波長領域でのスペクトル分析を行うスペクトル分 析装置において、 前記装置を構成する光検出器としてMIMトンネル接合を用いた電界検出型の 光検出器としたことを特徴とする。 The configuration of the present invention for solving the above problems is a spectrum analyzer that measures the spectrum of a light emitting element such as a laser diode or a light emitting diode and performs spectrum analysis in the wavelength region such as the emission wavelength or the half-width of the wavelength. In the above, the electric field detection type photodetector using the MIM tunnel junction is used as the photodetector constituting the device.

【0006】[0006]

【作用】[Action]

本考案によれば、微小で寸法安定性の高い、機械的に安定なMIMトンネル接 合を用いた赤外〜可視光領域の光検出器を用い、光源と分光光学系と合わせてス ペクトル分析装置を実現している。 According to the present invention, a spectroscopic analysis is performed by combining a light source and a spectroscopic optical system with a photodetector in the infrared to visible light region using a mechanically stable MIM tunnel junction that is minute and has high dimensional stability. The device is realized.

【0007】[0007]

【実施例】【Example】

以下、本考案を図面に基づいて説明する。 まず、MIMトンネル接合は最終的に<10nm□以下の接合面積で、電極間 は極薄い(1〜10nm)絶縁層(自然酸化膜など)で隔てられた構造であり、 機械的に安定な構造で作られ、必要に応じて、この上下に集光レンズや集光鏡を 組み合わせ、光検出器を形成する。この光検出器に、光源、試料への入射光学系 、分光光学系(波長選択系)、光検出器への出射光学系を組み合わせることによ りスペクトル分析装置が構成される。 Hereinafter, the present invention will be described with reference to the drawings. First, the MIM tunnel junction has a junction area of finally less than 10 nm □, and the electrodes are separated by an extremely thin (1-10 nm) insulating layer (natural oxide film, etc.), which is a mechanically stable structure. It is made by, and if necessary, combine a condenser lens and a condenser mirror above and below to form a photodetector. A spectrum analyzer is constructed by combining this photodetector with a light source, an incident optical system for the sample, a spectroscopic optical system (wavelength selection system), and an output optical system for the photodetector.

【0008】 図1は本発明のスペクトル分析装置の光検出器に用いる光検出素子の一実施例 を示す構成図である。 図1(イ)において、光検出素子は、誘電体膜2と、誘電体膜2の一方の面に 形成される第1導電体1と、誘電体膜2の他方の面より誘電体膜2を貫通し、第 1導電体1に達する導電体穴3と、この導電体穴3の底面に形成されるトンネル 障壁絶縁膜4と、導電体穴3にトンネル障壁絶縁膜4を介して金属が埋め込まれ て形成される第2導電体5とで構成されている。FIG. 1 is a block diagram showing an embodiment of a photodetector used in the photodetector of the spectrum analyzer of the present invention. In FIG. 1A, the photodetector is composed of a dielectric film 2, a first conductor 1 formed on one surface of the dielectric film 2, and a dielectric film 2 from the other surface of the dielectric film 2. A conductor hole 3 penetrating through the first conductor 1 and reaching the first conductor 1, a tunnel barrier insulating film 4 formed on the bottom surface of the conductor hole 3, and a metal is inserted into the conductor hole 3 through the tunnel barrier insulating film 4. The second conductor 5 is formed by being embedded.

【0009】 第1導電体1は例えばニッケル製であり、第1導電体1と第2導電体5の少な くとも一方は、被測定光を受けるアンテナとして機能し、所望の波長帯域に対し て検出感度を持つように適当な形状寸法に、例えば図1(ロ)に示すような螺旋 状にパターニングされる。誘電体膜2は例えば二酸化シリコンや窒化シリコンの 膜であり、その厚さは500〜1000オングストロームで、トンネル障壁絶縁 膜4の厚さは数十オングストロームである。The first conductor 1 is made of nickel, for example, and at least one of the first conductor 1 and the second conductor 5 functions as an antenna for receiving the light to be measured, and the first conductor 1 and the second conductor 5 have a desired wavelength band. It is patterned into an appropriate shape so as to have detection sensitivity, for example, in a spiral shape as shown in FIG. The dielectric film 2 is, for example, a film of silicon dioxide or silicon nitride, and its thickness is 500 to 1000 angstroms, and the thickness of the tunnel barrier insulating film 4 is several tens angstroms.

【0010】 導電体穴3は真空中で例えばガリウムの集束イオンビームを誘電体膜2に照射 することによって形成されるので、導電体穴3の曲率半径は集束イオンビームの 径によって決定される。そして第1導電体1とトンネル障壁絶縁膜4と第2導電 体5とでMIM接合を形成し、トンネル障壁絶縁膜4と第2導電体5との接触面 積は導電体穴3の径で決まり、10-11 cm2 程度となる。なお、このトンネル 障壁絶縁膜4と第2導電体5との接触面積が小さいほど、検出感度は高く、応答 速度も速くなる。Since the conductor hole 3 is formed in vacuum by irradiating the dielectric film 2 with a focused ion beam of gallium, the radius of curvature of the conductor hole 3 is determined by the diameter of the focused ion beam. The first conductor 1, the tunnel barrier insulating film 4 and the second conductor 5 form an MIM junction, and the contact surface area between the tunnel barrier insulating film 4 and the second conductor 5 is the diameter of the conductor hole 3. It is decided to be about 10 -11 cm 2 . The smaller the contact area between the tunnel barrier insulating film 4 and the second conductor 5, the higher the detection sensitivity and the faster the response speed.

【0011】 この図1に示す光検出素子を用いた光検出の動作を図2,図3を用いて説明す る。図2において、第1導電体1と第2導電体5との間に電圧源11と電流計1 2が直列に接続されている。光検出素子はMIM接合を持っているので、図3に 示すような非直線性を持ったトンネルダイオードの電流−電圧特性を示すことと なる。したがって、予め第一導電体1と第二導電体5の間に必要に応じ、バイア ス電圧を印加し、MIM接合部または受波(アンテナ)部に赤外〜可視領域の光 を照射すると、光電場の振幅振動がトンネルダイオードの非線形I−V特性によ り出力電流の変化として検出される。つまり、第一導電体1と第二導電体5の少 なくとも一方に入射した被測定光による光電場を検波して、光電場の振幅に対応 する検出電流を出力することができる。この整流信号を光量に換算する。そして 、波長選択系(分光器)の波長情報(あるいは光源の波長情報)と組み合わせ、 各波長ごとの透過率・反射率・吸光度などを知ることからスペクトル分析を行う ことができる。The photodetection operation using the photodetector shown in FIG. 1 will be described with reference to FIGS. 2 and 3. In FIG. 2, a voltage source 11 and an ammeter 12 are connected in series between the first conductor 1 and the second conductor 5. Since the photodetector element has an MIM junction, it exhibits the current-voltage characteristic of a tunnel diode having non-linearity as shown in FIG. Therefore, if a bias voltage is applied between the first conductor 1 and the second conductor 5 in advance and the MIM junction portion or the receiving (antenna) portion is irradiated with light in the infrared to visible region, The amplitude oscillation of the optical field is detected as a change in output current due to the nonlinear IV characteristic of the tunnel diode. In other words, it is possible to detect the photoelectric field due to the light to be measured incident on at least one of the first conductor 1 and the second conductor 5 and output a detection current corresponding to the amplitude of the photoelectric field. This rectified signal is converted into the amount of light. Then, the spectrum analysis can be performed by combining the wavelength information of the wavelength selection system (spectrometer) (or the wavelength information of the light source) and knowing the transmittance, reflectance, absorbance, etc. for each wavelength.

【0012】 なお、スペクトル分析の手法には、単光路/複光路、FT法、時間分解法など いろいろな手法があるが、本MIM検出器を用いる場合、通常の赤外/紫外・可 視スペクトル分光法の全ての手法を応用することができる。また、マイクロマシ ニング技術を用いて各要素の一部または全部をワンチップ化することも可能であ る。There are various methods of spectrum analysis, such as single-path / double-path, FT method, and time-resolved method. When the present MIM detector is used, normal infrared / ultraviolet / visible spectrum is used. All spectroscopic techniques can be applied. It is also possible to use a micromachining technology to integrate all or part of each element into a single chip.

【0013】[0013]

【考案の効果】[Effect of device]

以上、実施例と共に具体的に説明したように、本考案によれば、MIMトンネ ル接合を電界検出型の光検出器として用いることにより、冷却不要、高応答速度 、高感度、小型の赤外〜可視光領域のスペクトル分析装置を実現できる。 As described above in detail with reference to the embodiments, according to the present invention, by using the MIM tunnel junction as an electric field detection type photodetector, cooling is unnecessary, high response speed, high sensitivity, and a small infrared ray. It is possible to realize a spectrum analyzer in the visible light region.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案のスペクトル分析装置の検出器に用いる
光検出素子の一実施例を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a photodetector used in a detector of a spectrum analyzer of the present invention.

【図2】MIMトンネル接合による光検出の動作を示す
図である。
FIG. 2 is a diagram showing an operation of light detection by an MIM tunnel junction.

【図3】MIMダイオードの電流−電圧特性を示す図で
ある。
FIG. 3 is a diagram showing a current-voltage characteristic of an MIM diode.

【符号の説明】[Explanation of symbols]

1 第1導電体 2 誘電体膜 3 導電体穴 4 トンネル障壁絶縁膜 5 第2導電体 1 1st conductor 2 Dielectric film 3 Conductor hole 4 Tunnel barrier insulating film 5 2nd conductor

───────────────────────────────────────────────────── フロントページの続き (72)考案者 岸 直輝 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Creator Naoki Kishi 2-932 Nakamachi 2-chome, Musashino City, Tokyo Yokogawa Electric Co., Ltd.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 レーザダイオードや発光ダイオードなど
の発光素子のスペクトルを測定し、その発光波長や波長
半値幅などの波長領域でのスペクトル分析を行うスペク
トル分析装置において、 前記装置を構成する光検出器としてMIMトンネル接合
を用いた電界検出型の光検出器としたことを特徴とする
スペクトル分析装置。
1. A spectrum analyzer for measuring a spectrum of a light emitting element such as a laser diode or a light emitting diode and performing spectrum analysis in a wavelength region such as an emission wavelength or a half width of wavelength of the light emitting element. An electric field detection type photodetector using a MIM tunnel junction as the above.
JP7558992U 1992-10-30 1992-10-30 Spectrum analyzer Withdrawn JPH0640825U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7558992U JPH0640825U (en) 1992-10-30 1992-10-30 Spectrum analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7558992U JPH0640825U (en) 1992-10-30 1992-10-30 Spectrum analyzer

Publications (1)

Publication Number Publication Date
JPH0640825U true JPH0640825U (en) 1994-05-31

Family

ID=13580544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7558992U Withdrawn JPH0640825U (en) 1992-10-30 1992-10-30 Spectrum analyzer

Country Status (1)

Country Link
JP (1) JPH0640825U (en)

Similar Documents

Publication Publication Date Title
Keyes Optical and infrared detectors
EP0057568A2 (en) A laser radiometer
US6469358B1 (en) Three color quantum well focal plane arrays
JP4006727B2 (en) Photodetector and manufacturing method thereof
EP0299841B1 (en) Electromagnetic wave detector and image analyser using such a detector
Rogalski et al. Detection of optical signals
Crowder et al. Infrared methods for gas detection
JP6721431B2 (en) Quantum cascade detector
JPH0640825U (en) Spectrum analyzer
CA2498802C (en) Spectrophotometer
US3657549A (en) Two-color horizon sensor
US4562356A (en) Apparatus and method for photoluminescence analysis
JP7210067B2 (en) Optical sensor, sensor unit, and object detection device using optical sensor
JPS62283684A (en) Optical probe unit
US6561693B1 (en) Remote temperature sensing long wave length modulated focal plane array
JP2003083889A (en) Infrared analyzer
Tsang Multichannel detection and Raman spectroscopy of surface layers and interfaces
CN114414214B (en) Optical detector for directly detecting optical orbital angular momentum and detection method thereof
Osterman et al. Superconducting infrared detector arrays with integrated processing circuitry
USRE32821E (en) Apparatus and method for photoluminescence analysis
Sychugov Micro-photoluminescence (µ-PL)
US20160334329A1 (en) Method for Producing an Integrated Micromechanical Fluid Sensor Component, Integrated Micromechanical Fluid Sensor Component and Method for Detecting a Fluid by Means of an Integrated Micromechanical Fluid Sensor Component
Bhalotra et al. Integrated standing-wave transform spectrometer for near infrared optical analysis
JP3147341B2 (en) Photodetector and method of manufacturing the same
Razeghi Photodetectors

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19970306