JPH0639395A - Method for preventing scale from adhering - Google Patents

Method for preventing scale from adhering

Info

Publication number
JPH0639395A
JPH0639395A JP14339192A JP14339192A JPH0639395A JP H0639395 A JPH0639395 A JP H0639395A JP 14339192 A JP14339192 A JP 14339192A JP 14339192 A JP14339192 A JP 14339192A JP H0639395 A JPH0639395 A JP H0639395A
Authority
JP
Japan
Prior art keywords
scale
magnetic flux
flux density
water
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14339192A
Other languages
Japanese (ja)
Other versions
JPH0794039B2 (en
Inventor
Miyoji Kawasaki
三代次 川崎
Toshitsugu Suzuki
壽次 鈴木
Masanori Hirose
正徳 広瀬
Tei Matsuura
悌 松浦
Yoshihiro Yokoyama
良洋 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO KUMIAI AQUA TESURA
Original Assignee
KYODO KUMIAI AQUA TESURA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO KUMIAI AQUA TESURA filed Critical KYODO KUMIAI AQUA TESURA
Priority to JP14339192A priority Critical patent/JPH0794039B2/en
Publication of JPH0639395A publication Critical patent/JPH0639395A/en
Priority to US08/273,606 priority patent/US5480557A/en
Publication of JPH0794039B2 publication Critical patent/JPH0794039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To obtain a method for preventing efficiently scale from adhering by investigating the optimum range where the amt. of adhesion of the scale is decreased in a region of high magnetic flux density. CONSTITUTION:In a part of the path in an apparatus using industrial water under circulation condition, passing water stream is accelerated to at least 0.5m/sec and a magnetic field with a magnetic flux of 12,000-15,000 Gs is applied to prevent a hardly soluble substance wherein calcium carbonate and silicic acid are main ingredients from adhering as a scale. As the result, the amt. of adhesion of the scale can be remarkably decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷却システム、ボイラ
−、熱交換器等の工業用水を循環させて用いる装置の循
環水及び給水の処理方法に関し、装置の一部に付着する
スケ−ルを効果的に防止して、保全管理を簡略化し、か
つ循環系に於いては最小のブロ−量で循環水を正常に保
持し、給水に於いては、給水の有効利用を可能にする方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circulating water for an industrial apparatus such as a cooling system, a boiler and a heat exchanger for circulating industrial water and a method for treating feed water, and a scale attached to a part of the apparatus. To effectively prevent water leakage, simplify maintenance management, and keep circulation water normally with a minimum amount of blow in the circulation system, and enable effective use of supply water in water supply. Regarding

【0002】[0002]

【従来の技術】冷却システム等の装置に使用される工業
用水が、磁場の中を通過するとスケ−ルの発生が防止さ
れるので、これらに対する磁気処理装置も報告されてお
り、例えば、特開昭52−112115、実開昭58−
108156、特開昭61−118187などがある。
これらの報告によると、永久磁石や電磁石は、水中の難
溶性不純物をイオン化して水への溶解を促進するため、
磁石のスケ−ル防止効果は、磁場の強さに比例するとし
ている。しかし、磁場の中に水を通す磁気処理装置で
は、磁石を取り付ける配管の径により磁界の強度が制限
され、また、磁場の回りに水を通す装置では、構造が複
雑になり、水の流速を十分にあげられないため、効果的
な磁気処理が困難である。従って、好ましくは、磁束密
度は8000Gs以上としながらも、このような磁束密
度の電磁石は極めて作りにくく工業製品としては、不適
当であるとして、実験デ−タも8000Gsまでであ
る。しかも、この範囲では、スケ−ル防止化の最適磁束
密度が発見されておらず、イオンの種類による磁場依存
性も確認されていない。
2. Description of the Related Art Since industrial water used in devices such as cooling systems is prevented from generating scales when it passes through a magnetic field, magnetic treatment devices have been reported for them. Showa 52-112115, Showa 58-
108156, JP-A-61-118187 and the like.
According to these reports, since permanent magnets and electromagnets ionize sparingly soluble impurities in water to promote dissolution in water,
The anti-scaling effect of the magnet is said to be proportional to the strength of the magnetic field. However, in a magnetic treatment device that passes water through a magnetic field, the strength of the magnetic field is limited by the diameter of the pipe to which the magnet is attached, and in a device that passes water around the magnetic field, the structure becomes complicated and the flow velocity of water is reduced. Effective magnetic treatment is difficult because it cannot be sufficiently raised. Therefore, although the magnetic flux density is preferably 8000 Gs or more, it is extremely difficult to produce an electromagnet having such a magnetic flux density, and the experimental data is up to 8000 Gs because it is unsuitable as an industrial product. Moreover, in this range, the optimum magnetic flux density for preventing scale has not been found, and the magnetic field dependence depending on the type of ions has not been confirmed.

【0003】[0003]

【発明が解決しようとする課題】本発明者は、コンパク
トで強力な電磁石を作ることにより、上記8000Gs
以上の範囲に於けるスケ−ル防止の効果を鋭意研究し、
当該高磁場においてスケ−ルの付着を極めて有効に防止
できる特異的な最適磁束密度が存在すること、及び、そ
れがイオンの種類に依存することを見い出し本発明を完
成させたものである。
SUMMARY OF THE INVENTION The present inventor has made the above-mentioned 8000 Gs by making a compact and strong electromagnet.
Researching the effect of scale prevention in the above range,
The inventors have completed the present invention by discovering that there is a specific optimum magnetic flux density that can very effectively prevent scale adhesion in the high magnetic field, and that it depends on the type of ions.

【0004】[0004]

【課題を解決するための手段】本発明は、8000Gs
望ましくは10000Gs以上の高磁場におけるスケ−
ル防止を狙いとする為、その高磁場を実現するコンパク
トで強力な電磁石を作成した。その概要は、電磁石を利
用し、内部鉄芯と外部鉄芯とで、磁力線を閉鎖し、磁極
間の間隙部に処理水を流動させ、その鉄芯間に励磁コイ
ルを介設して成り、(a)その内部鉄芯の断面積と磁極
先端部の被表面積より1.5倍以上として、内部鉄芯に
発生した磁力線が磁極に向う際に、磁束誘導が歪曲化す
るのを防止し、磁束密度を高密度に保持し、(b)内部
鉄芯と外部鉄芯の磁極先端の絞り角を54±5゜に形成
して、磁極先端で磁力線が飽和状態となることを防止
し、絞り角附近で磁路を主磁場に向って集中させて最高
密度を得るように構成したものである。
The present invention provides 8000 Gs
Desirably, a scale in a high magnetic field of 10,000 Gs or more
In order to prevent this, we have created a compact and powerful electromagnet that realizes the high magnetic field. The outline is that an electromagnet is used, the magnetic lines of force are closed by an inner iron core and an outer iron core, treated water is caused to flow in a gap between magnetic poles, and an exciting coil is provided between the iron cores. (A) The cross-sectional area of the inner iron core and the surface area of the tip of the magnetic pole are 1.5 times or more to prevent the magnetic flux induction from being distorted when the magnetic force lines generated in the inner iron core face the magnetic pole. The magnetic flux density is maintained at a high density, and (b) the squeezing angle between the magnetic pole tips of the inner iron core and the outer iron core is set to 54 ± 5 ° to prevent the magnetic force lines from becoming saturated at the magnetic pole tips. It is configured to concentrate the magnetic path toward the main magnetic field near the corner to obtain the highest density.

【0005】次いで、スケ−ルの主成分である炭酸カル
シウムの水に対する溶解性と磁場依存性を調べるため、
純粋に水酸化カルシウムを溶解し、二酸化炭素と反応さ
せて、炭酸水素カルシウム水溶液を調整し、又、同様に
ケイ酸スケ−ルの溶解性と磁場依存性を調べるため、ケ
イ酸ナトリウムを純水に溶かした。これらの水溶液を、
上記電磁石装置において、10l/min の流速で4時間
循環させながら、磁束密度を変化させながら磁気処理
し、そのスケ−ル付着量を測定した。
Next, in order to investigate the solubility and the magnetic field dependence of calcium carbonate, which is the main component of the scale, in water,
Sodium silicate was purified by dissolving pure calcium hydroxide and reacting it with carbon dioxide to prepare an aqueous solution of calcium hydrogen carbonate. Similarly, in order to investigate the solubility and magnetic field dependence of the silicate scale, sodium silicate was purified. Melted into These aqueous solutions
In the above electromagnet apparatus, magnetic treatment was performed while changing the magnetic flux density while circulating at a flow rate of 10 l / min for 4 hours, and the scale adhesion amount was measured.

【0006】その結果は、表1に示す通りで、炭酸カル
シウムスケ−ルの重量は、5000Gs付近で最大値と
なるが、その後、磁束密度を高くするほど減少し、12
000Gs附近で最大値の1/3以下に減少する。これ
に対し、ケイ酸を添加した系でのスケ−ル付着重量は、
磁束密度を高くする程スケ−ル量が減少し、5000G
s附近で最小値を示すが、その後再び増加の傾向を示
す。この結果から、スケ−ル付着量は、単純に磁束密度
を増せば減少するのでなく、水の中に含まれる成分の種
類によつて、最適磁束密度が存在する事がはじめて証明
された。
The results are shown in Table 1, and the weight of the calcium carbonate scale reaches a maximum value near 5000 Gs, but thereafter decreases as the magnetic flux density increases, and
It decreases to less than 1/3 of the maximum value near 000 Gs. On the other hand, the scale adhesion weight in the system to which silicic acid is added is
The higher the magnetic flux density is, the smaller the scale amount becomes.
It shows a minimum value near s, but thereafter shows a tendency to increase again. From this result, it has been proved for the first time that the scale adhesion amount does not decrease simply by increasing the magnetic flux density, but that the optimum magnetic flux density exists depending on the kind of the component contained in water.

【表1】 [Table 1]

【0007】更に、上記炭酸カルシウム及びケイ酸の単
独の溶解性と磁場依存性でなく、両者の相互作用を検討
するため、炭酸カルシウム及びケイ酸の両成分を含んだ
水道水を用い、それを上記と同様の条件で磁束密度の変
化に伴うスケ−ルの付着量の変化を測定した。その結果
は、表2に示す通りで、5000Gs附近で付着量が最
大となり、その後、磁束密度の増加と共に減少し、12
000Gs附近で最大値の1/3以下に減少し、135
00Gs附近で極小値を示した。そして、その後増加傾
向を示し、15000Gs附近で先の12000Gsの
値と同程度の付着量に増加し、それ以上磁束密度を高め
ても、装置の負担を増すだけで有効な結果は得られなか
った。この結果、炭酸カルシウム及びケイ酸の両成分が
存在する場合には、10000Gs附近までは、理論通
り磁束密度の増加と共にスケ−ル付着量が減少するが、
10000Gsを越え、特に135000Gs附近には
極小点が存在し、12000〜15000Gsの範囲で
臨界的にスケ−ルの付着量が最大値の1/3以下に抑え
ることができることが判明した。
Further, in order to study the interaction between the above-mentioned calcium carbonate and silicic acid alone, and not the dependence on the magnetic field, tap water containing both components of calcium carbonate and silicic acid was used. Under the same conditions as above, the change in the amount of scale attached with the change in magnetic flux density was measured. The results are as shown in Table 2, and the amount of adhesion becomes maximum around 5000 Gs, and then decreases with an increase in magnetic flux density.
Around 000Gs, it decreased to less than 1/3 of the maximum value, 135
The minimum value was shown near 00 Gs. Then, after that, it showed an increasing tendency, and the amount of adherence increased to about the same value as the previous value of 12000 Gs at around 15000 Gs, and even if the magnetic flux density was further increased, the burden on the device was only increased and no effective result was obtained. . As a result, when both the components of calcium carbonate and silicic acid are present, the scale deposition amount decreases with the increase of the magnetic flux density theoretically up to around 10,000 Gs,
It has been found that there is a minimum point over 10000 Gs, especially around 135000 Gs, and the scale adhesion amount can be critically suppressed to 1/3 or less of the maximum value in the range of 12000 to 15000 Gs.

【表2】 [Table 2]

【0008】従って、本発明のスケ−ル防止方法は、炭
酸カルシウム及びケイ酸を主成分とする難溶性物質を含
む液を対象とし、その磁束密度を12000〜1500
0Gsの範囲として磁場を作用させて、一定範囲の電場
の影響の下にスケ−ルの発生を防止するものである。
又、電場の発生は、当該磁場の強さと通過する水の速度
に関係するので、あまりにゆっくりした速度では効果が
なく、0.5m/sec以上に加速して行なった場合に
有効である。
Therefore, the scale prevention method of the present invention is intended for a liquid containing a sparingly soluble substance containing calcium carbonate and silicic acid as main components, and its magnetic flux density is from 12000 to 1500.
A magnetic field is applied in the range of 0 Gs to prevent the occurrence of scale under the influence of an electric field in a certain range.
Further, since the generation of the electric field is related to the strength of the magnetic field and the velocity of the passing water, it is not effective at an excessively slow velocity, and is effective when accelerated to 0.5 m / sec or more.

【0009】上記、臨界的最適範囲の存在理由を検討す
るに、炭酸カルシウムは、溶液中で、カルシウムイオン
Ca2+と炭酸イオンCO3 2-とに分れ、これは上記磁場
の磁束密度を高めると、高い磁束密度の中をイオンを含
む水が通過するので、より強い電場が発生し、比例的に
スケ−ルの付着量は減少する。一方、ケイ酸は、ケイ酸
イオンSiO3 2-を有するが、磁束密度を高めた場合、
一定の極小点までは付着量が減少するが、それを過ぎる
と逆に増加傾向を示し、電場の強さが必ずしも付着量に
比例しない。これは、電場の影響が、通過するイオンの
種類によって異なることを示し、臨界的範囲が存在する
一つの要因と考えられる。
To examine the reason why the critical optimum range exists, calcium carbonate is divided into calcium ion Ca 2+ and carbonate ion CO 3 2− in a solution, which is the magnetic flux density of the magnetic field. When it is increased, water containing ions passes through the high magnetic flux density, so that a stronger electric field is generated and the scale adhesion amount is proportionally reduced. On the other hand, silicic acid has silicate ions SiO 3 2- , but when the magnetic flux density is increased,
The adhered amount decreases up to a certain minimum point, but after that, the tendency tends to increase, and the strength of the electric field is not necessarily proportional to the adhered amount. This indicates that the influence of the electric field differs depending on the type of ions passing through, and is considered to be one factor for the existence of the critical range.

【0010】上記臨界的範囲が現われる原因を探る為、
炭酸カルシウムとケイ酸とが共存する場合の、スケ−ル
中のSi/Caのモル比と磁束密度との関係を求めた。
その結果は、表3に示す通りで、8000Gsから徐々
に磁束密度を高めていくと、それに比例してSi/Ca
のモル比が上昇するが、12000Gs附近で変曲点を
示し、それ以上磁束密度を高めても、モル比の上昇は殆
ど見られない。この理由は、ケイ酸イオンが磁場により
活性化されると、スケ−ル中にあるケイ酸同志で結合で
きるようになり、結合したケイ酸が他の物質と結合する
ための触手を失うだけでなく、かさ高い形態へと変化す
るのでスケ−ル化イオンとの接近を妨害する立体障害の
大きな形態となるからである。この為、ケイ酸イオンの
比が大きくなることでスケ−ル防止効果が発揮され、ま
た、スケ−ル化しても非常に剥離しやすいスケ−ル状態
となる。表3から12000Gsまでは、ケイ酸の結合
の触手が残っていることがわかり、これ以上では磁束密
度による効果が少ないので、15000Gs以上に磁束
密度を高くしても、上げただけの効果は期待できない。
この傾向は、表1のケイ酸スケ−ル重量の関係からも支
持される。
In order to find out the reason why the above critical range appears,
The relationship between the Si / Ca molar ratio in the scale and the magnetic flux density in the case where calcium carbonate and silicic acid coexist was determined.
The results are shown in Table 3, and when the magnetic flux density is gradually increased from 8000 Gs, Si / Ca is proportionally increased.
However, even if the magnetic flux density is further increased, there is almost no increase in the molar ratio. The reason for this is that when the silicate ions are activated by the magnetic field, they can be bound by the silicic acids in the scale, and the bound silicic acid simply loses the tentacles for binding to other substances. This is because it changes to a bulky form without causing steric hindrance that hinders access to scaled ions. For this reason, an increase in the ratio of silicate ions exerts the effect of preventing scale, and even in the case of scaling, a scale state in which peeling is very easy occurs. From Table 3 to 12000 Gs, it can be seen that the tentacles of the bond of silicic acid remain, and if it is more than this, the effect due to the magnetic flux density is small, so even if the magnetic flux density is increased to 15000 Gs or more, the effect just increased is expected. Can not.
This tendency is also supported by the relationship between the silicate scale weights in Table 1.

【表3】 [Table 3]

【0011】更に、上記炭酸カルシウムとケイ酸とが共
存する場合には、それらがイオンとして解離するとイオ
ン相互が影響しあい、炭酸カルシウムのCa2+イオンと
CO 32- イオンへの解離が進んだ後、ケイ酸イオンSi
3 2-と出会うと、ケイ酸カルシウムの塩となり、それ
が水に溶けないスケ−ルになる確率が高く、それが表2
に示す如く、12000〜15000Gsの範囲で最適
値を示す要因の一つと考えられる。
Further, the above-mentioned calcium carbonate and silicic acid are
If they exist, they will dissociate as ions,
Interaction with each other, Ca of calcium carbonate2+With ion
CO 32- After dissociation into ions progresses, silicate ions Si
O3 2-When I met him, he became a salt of calcium silicate, which
Has a high probability of becoming a water-insoluble scale, which is shown in Table 2.
Optimal in the range of 12000 to 15000 Gs as shown in
It is considered to be one of the factors showing the value.

【発明の効果】以上の構成に基づく本発明は、冷却シス
テム等の工業用水を循環的に使用する装置において、従
来にない高磁束密度の領域でスケ−ル付着量が極小的に
減少する最適範囲を臨界的に見い出すことができ、スケ
−ル付着を従来より大幅に減少させることができるとい
う極めて顕著な効果を奏する。
According to the present invention based on the above-mentioned structure, in an apparatus such as a cooling system that circulates industrial water, the scale adhesion amount is minimized in a region of high magnetic flux density which has never been seen before. The range can be found critically, and the scale adhesion can be greatly reduced as compared with the conventional case, which is a very remarkable effect.

【0012】[0012]

【実施例1】ク−リングタワ−のピット内の水を流速1
1l/minで約100時間循環させる条件の下に磁束密
度を3000〜16000Gsの範囲で変化させて処理
した後、熱交換器に付いたスケ−ルの付着量を調べた。
その結果は、下表4に示す通りで、13500Gsでス
ケ−ル付着が無処理に対して3%の極小値を示し、12
000〜15000Gsの範囲で付着率は6%以下に抑
えられた。
[Example 1] The flow velocity of water in the pit of the cooling tower was 1
After the magnetic flux density was changed in the range of 3000 to 16000 Gs under the condition of circulating at 1 l / min for about 100 hours, the amount of scale attached to the heat exchanger was examined.
The results are shown in Table 4 below. At 13500 Gs, the scale adhesion showed a minimum value of 3% with respect to the non-treatment.
The adhesion rate was suppressed to 6% or less in the range of 000 to 15,000 Gs.

【表4】 [Table 4]

【0013】[0013]

【実施例2】13000Gsの磁束密度で処理した地下
水としてボイラ−使用圧力7Kgf/cm2で50時間
運転した結果、無処理の地下水では、全面に非常に固い
スケ−ルが付着したが、磁気処理水を使用したときは、
わずかのスケ−ル付着がみられたものの、スケ−ルの性
質は柔らかく容易に除去できた。次に、原水、無処理ボ
イラ−水、磁気処理ボイラ−水の分析結果の一部を表5
に示す。表5から明かなように、無処理のボイラ−水中
の硬度成分は、ケイ酸を基準とした濃縮倍数から計算す
ると、約250(mg/l)になるが、実測値の硬度分は測
定限界以下である。これはほとんどの硬度分がボイラ−
にスケ−ルとして付着したことを意味するが、磁気処理
をしたボイラ−水は、硬度分が観測され、磁気処理のス
ケ−ル防止効果が明かに証明された。
Example 2 As a groundwater treated with a magnetic flux density of 13000 Gs, the boiler was operated for 50 hours at a working pressure of 7 Kgf / cm 2. As a result, untreated groundwater had a very hard scale attached to its entire surface, but magnetic treatment. When using water,
Although the scale was slightly attached, the scale was soft in nature and could be easily removed. Next, Table 5 shows a part of the analysis results of raw water, untreated boiler water and magnetically treated boiler water.
Shown in. As is clear from Table 5, the hardness component in the untreated boiler-water is about 250 (mg / l) when calculated from the concentration multiple based on silicic acid, but the measured hardness value is the measurement limit. It is the following. Most of the hardness is boiler
It means that the water was attached to the boiler as a scale, but the hardness of the magnetically treated boiler water was observed, and the scale preventive effect of the magnetic treatment was clearly proved.

【0014】[0014]

【表5】 [Table 5]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 工業用水を循環させて用いる装置の経路
の一部に、通過水流を0.5m/sec以上に加速する
と共に、当該水流に磁束密度を12000〜15000
Gsとした磁場を作用させて、炭酸カルシウム及びケイ
酸を主成分とした難溶性物質がスケ−ルとして付着する
のを防止する方法。
1. A part of a path of an apparatus for circulating industrial water is used to accelerate a passing water flow to 0.5 m / sec or more and to have a magnetic flux density of 12,000 to 15,000 in the water flow.
A method of preventing a hardly soluble substance containing calcium carbonate and silicic acid as main components from adhering as a scale by applying a magnetic field of Gs.
【請求項2】 磁束密度を13500Gsとした請求項
1記載のスケ−ル付着防止方法。
2. The scale adhesion preventing method according to claim 1, wherein the magnetic flux density is 13500 Gs.
JP14339192A 1992-05-08 1992-05-08 Scale adhesion prevention method Expired - Lifetime JPH0794039B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14339192A JPH0794039B2 (en) 1992-05-08 1992-05-08 Scale adhesion prevention method
US08/273,606 US5480557A (en) 1992-05-08 1994-07-12 Method for preventing adhesion of scales in service water or circulating industrial water by applying the magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14339192A JPH0794039B2 (en) 1992-05-08 1992-05-08 Scale adhesion prevention method

Publications (2)

Publication Number Publication Date
JPH0639395A true JPH0639395A (en) 1994-02-15
JPH0794039B2 JPH0794039B2 (en) 1995-10-11

Family

ID=15337680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14339192A Expired - Lifetime JPH0794039B2 (en) 1992-05-08 1992-05-08 Scale adhesion prevention method

Country Status (1)

Country Link
JP (1) JPH0794039B2 (en)

Also Published As

Publication number Publication date
JPH0794039B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
AU635102B2 (en) Methods of controlling scale formation in aqueous systems
US5248438A (en) Methods of controlling scale formation in aqueous systems
KR19990087727A (en) Marine ballast water decontamination system
JP2005288436A (en) Modulated electromagnetic field treatment apparatus and method for fluid to be treated
US5137657A (en) Synergistic combination of sodium silicate and orthophosphate for controlling carbon steel corrosion
US5480557A (en) Method for preventing adhesion of scales in service water or circulating industrial water by applying the magnetic field
EP0577422A1 (en) Zinc, iron and manganese stabilization using polyeter polyamino methylene phosphonates
JP3162099B2 (en) Water treatment method for soft water boiler
US6077440A (en) Inhibition of silica and silicate deposition
JP2000154996A (en) Method for removing scale of boiler
JPH0639395A (en) Method for preventing scale from adhering
US4416785A (en) Scale-inhibiting compositions of matter
JP2003014189A (en) Method for peeling pipe inside deposit in boiler
CA2063952A1 (en) Monofluorophosphate for calcium carbonate scale control and iron and manganese stabilization
JP2001314893A (en) Agent of removing hardness/silica scale
US5232629A (en) Synergistic combination of sodium silicate and ortho-phosphate for controlling carbon steel corrosion
JPH0199695A (en) Method for controlling calcium carbonate scale in water system for high ph with use of carbonic acid/sulfonic acid polymer
JP2002177988A (en) Water treatment method for circulation type cooling water system
JP3119318B2 (en) Water quality management method and water quality management table for circulation waterway system
JP3512108B2 (en) Cooling water treatment method and treatment device
JP2002361288A (en) Scale preventing method for cooling water system
JP4508690B2 (en) Scale suppression method, piping structure, and cooling water circulation device
JP2000176488A (en) Scale preventive for cooling water system
JPH0892888A (en) Scale preventing agent and prevention of scale in deinking process of wastepaper
JP2003170193A (en) Water treating method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 17