JP2003014189A - Method for peeling pipe inside deposit in boiler - Google Patents

Method for peeling pipe inside deposit in boiler

Info

Publication number
JP2003014189A
JP2003014189A JP2001203715A JP2001203715A JP2003014189A JP 2003014189 A JP2003014189 A JP 2003014189A JP 2001203715 A JP2001203715 A JP 2001203715A JP 2001203715 A JP2001203715 A JP 2001203715A JP 2003014189 A JP2003014189 A JP 2003014189A
Authority
JP
Japan
Prior art keywords
pipe
aqueous solution
generated
magnetic field
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001203715A
Other languages
Japanese (ja)
Inventor
Shinichiro Ishibashi
新一郎 石橋
Sumio Miyagawa
澄男 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001203715A priority Critical patent/JP2003014189A/en
Publication of JP2003014189A publication Critical patent/JP2003014189A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Cleaning In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate maintenance and inspection, and to reduce costs, by dispensing with cleaning on the inside of a pipe and also to dispense with cleaning of a water service pipe, if this method is applied thereto. SOLUTION: The front end faces of iron pieces 4 and 4 facing each other are brought into contact with the pipe P, and an electromagnetic coils are installed to the pipes. Therefore, a magnetic field induced from the electromagnetic coil forms N and S magnetic polar pieces on the left and right sides, and minute electric current is let flow through the pipe P from the electromagnetic coil. In this way, the magnetic field is generated inside the pipe by means of the magnetic poles N and S, and by the magnetic field, magnetic lines of force with a magnetic flux density B are generated. When a water solution with a flow speed V passes the magnetic lines of force, an electric current i flows along the pipe wall according to the Faraday's law of induction. Therefore, electrolysis is caused by the current i between the pipe wall and the deposit and induces multiplier effect with a pipe inside deposit decomposing action, and consequently, the deposit is peeled off gradually.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばボイラ及び
その配管、マンション等の暖房装置の配管、クーリング
タワーの冷房用配管内、都市の地域蒸気供給用配管内の
水溶液中に生成されるスケールが配管内壁に付着した生
成物を剥離する配管内付着生成物の剥離方法に関するも
ので、この付着生成物の剥離と配管内壁に生成物が付着
しないようにすることも含まれている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, a boiler and its piping, piping for a heating device such as a condominium, piping for cooling a cooling tower, and scales generated in an aqueous solution in a piping for supplying regional steam in a city. The present invention relates to a method for peeling off a product adhering to a pipe for peeling a product adhering to an inner wall, and also includes peeling off the product adhering to the pipe and preventing the product from adhering to the inner wall of the pipe.

【0002】[0002]

【従来の技術】従来から、例えばボイラ及び配管内、マ
ンションの水道用配管内には、水アカ、あるいはスケー
ルと呼ばれる生成物が堆積し、そのために水溶液の流れ
を阻害している。そのためにこの生成物を定期的に除去
する必要があった。
2. Description of the Related Art Conventionally, for example, water stains or products called scales are accumulated in boilers and pipes, and in water pipes of condominiums, which impedes the flow of aqueous solutions. Therefore, it was necessary to regularly remove this product.

【0003】これらを除去する従来例として、第1は腐
食抑制材等を添加した酸液で洗浄する方法(例えば、特
開昭56−2897号、特開昭52−82639号、特
開昭54−117327号)、第2は、比重が水に近い
材料で作成したペレットを循環水の中に混入して管壁内
面のスケールを除去する方法(例えば、特開昭52−5
3544号)、第3は、薬品やペレットを用いずに循環
水や流速度を変え、管壁とスケールの膨張係数の差を利
用することにより管壁のスケールを剥離除去するもの
(例えば、特開昭52−28253号、特開昭54−5
104号)が知られている。
As a conventional example for removing them, the first is a method of cleaning with an acid solution containing a corrosion inhibitor (for example, JP-A-56-2897, JP-A-52-82639 and JP-A-54). No. 117327), the second is a method of removing the scale on the inner surface of the pipe wall by mixing pellets made of a material having a specific gravity close to that of water into the circulating water (for example, JP-A-52-5).
No. 3544) and thirdly, the scale of the pipe wall is peeled and removed by changing the circulating water and the flow velocity without using chemicals or pellets and utilizing the difference in the expansion coefficient between the pipe wall and the scale (for example, JP-A-52-28253, JP-A-54-5
No. 104) is known.

【0004】さらに、第4の従来例として、ボイラの外
部から電場と磁場を印加して、配管の局部腐食を防止す
るとともに、磁気作用で循環水を軟水化し、管壁に付着
したスケールを剥離させるもの(例えば、特許第121
5830号)があるが、この装置の技術ポイントは、磁
気作用で、循環水中に含まれるCaCOの結晶構造を
アルゴナイトからカルサイトに変化させることにより、
スケールを微細化して剥離することにある。
Further, as a fourth conventional example, an electric field and a magnetic field are applied from the outside of the boiler to prevent local corrosion of the pipe, and the circulating water is softened by a magnetic action to remove the scale adhering to the pipe wall. What causes (for example, Patent No. 121
5830), the technical point of this device is to change the crystal structure of CaCO 3 contained in the circulating water from argonite to calcite by magnetic action.
It is to make the scale smaller and peel it off.

【0005】[0005]

【発明が解決しようとする課題】第1〜第3の従来例で
は、ボイラやクーリングタワーの稼動を停止して、配管
の内壁に付着したスケール及び循環水中の生成物を除去
処理するので、高額の費用を必要とする。さらに前記の
従来例の何れも定期的に内部を洗浄した後に剥離したス
ケールを外に取り出すことを行うために、保守に多大な
費用と時間をかけているのが現状である。また、第4の
従来例では、配管内付着生成物を電磁界の作用で剥離す
るものではない。
In the first to third conventional examples, the operation of the boiler and the cooling tower is stopped and the products adhering to the inner wall of the pipe and the products in the circulating water are removed. It costs money. Further, in any of the above-mentioned conventional examples, in order to take out the scale that has been peeled off after regularly cleaning the inside, a great deal of cost and time are required for maintenance. Further, in the fourth conventional example, the product attached inside the pipe is not separated by the action of the electromagnetic field.

【0006】そこで本発明の目的は、配管内の洗浄を不
要とすることにより保守、点検が容易になり、費用を低
減することができ、水道配水管やクーリングタワーに適
用すれば洗浄が不要となり、またボイラなどに適用する
とボイラなどの熱効率の低下を防止することなどの配管
内付着生成物剥離方法を提供することにある。
Therefore, an object of the present invention is to facilitate maintenance and inspection by eliminating the need for cleaning the inside of the pipe, and to reduce the cost. When applied to a water pipe or a cooling tower, the cleaning is unnecessary. Another object of the present invention is to provide a method for removing adhered products in a pipe, which is applied to a boiler or the like to prevent reduction in thermal efficiency of the boiler or the like.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の本発明に係るボイラなどの配管内
付着生成物の剥離方法の特徴は、配管水溶液中で生成さ
れ、管壁に付着する生成物を配管の外部に装着した電磁
石により配管内に漏洩磁界が存在し、この漏洩磁界から
発生する磁力線を配管水溶液が切ると、ファラデーの電
磁誘導の法則により、水溶液の流れと直角方向の管壁に
沿ってローレンツ力が発生し、このローレンツ力の作用
により付着生成物の剥離が、配管外部の装着した電磁石
の外部磁界によって配管内付着生成物を剥離できること
にある。
In order to achieve the above-mentioned object, the feature of the method for removing adhered products in a pipe of a boiler or the like according to the present invention according to claim 1 is that the products are produced in an aqueous pipe solution and If a leak magnetic field exists inside the pipe due to an electromagnet attached to the outside of the pipe and the magnetic flux generated from this leak magnetic field is cut off by the aqueous solution of the pipe, the flow of the aqueous solution is perpendicular to the flow of the aqueous solution due to Faraday's law of electromagnetic induction. A Lorentz force is generated along the pipe wall in the direction, and the effect of this Lorentz force is that the adhered products can be separated by the external magnetic field of the electromagnet mounted outside the pipe.

【0008】請求項2、3に記載した本発明の特徴は、
配管の外部に電磁石を装着する装置から配管に沿ってア
ース線を取付け、配管に沿って電流が流れ易くし、この
アース線による電流が管壁に沿って流れ、これと電磁誘
導の法則により発生する電流も管壁に沿って流れるの
で、管壁に沿って流れる電流が増加し、これに伴って電
気分解の量も増加し、管壁に付着している生成物の剥離
を促進させるところにある。
The features of the present invention described in claims 2 and 3 are as follows:
Attach a ground wire along the pipe from a device that mounts an electromagnet on the outside of the pipe to make it easier for current to flow along the pipe, and the current from this ground wire flows along the pipe wall, and this is caused by the law of electromagnetic induction. Since the electric current that flows along the tube wall also increases, the current that flows along the tube wall increases, and the amount of electrolysis also increases, which promotes the separation of the products adhering to the tube wall. is there.

【0009】[0009]

【発明の実施の形態】 先ず、ボイラ及び配管水溶液中
に生成される強磁性超微粒子を含む生成物の科学的に根
拠について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION First, the scientific basis of a product containing ferromagnetic ultrafine particles generated in an aqueous solution of a boiler and piping will be described.

【0010】ボイラの概略を示す図1において、燃焼室
1で水蒸気を発生させ、この発生した水蒸気は配管P1
により循環され、熱交換機2において水蒸気は蒸気と水
に分離され、この蒸気は配管P2により所定の手段によ
り所定の場所に送られ、熱を消費して燃焼室1へ戻る。
また、水と一部の蒸気は、配管P3により燃焼室1へ戻
る。循環過程で消失した水は補給管P4から燃焼室1へ
補給される。この循環過程で配管P1,P2,P3の内
壁に強磁性超微粒子と含む生成物が生成される。
In FIG. 1, which shows an outline of a boiler, steam is generated in a combustion chamber 1, and the steam generated is a pipe P1.
The steam is separated into steam and water in the heat exchanger 2, and the steam is sent to a predetermined place by a predetermined means by the pipe P2, consumes heat and returns to the combustion chamber 1.
Further, the water and part of the steam return to the combustion chamber 1 through the pipe P3. Water lost in the circulation process is supplied to the combustion chamber 1 through the supply pipe P4. In this circulation process, products containing ferromagnetic ultrafine particles are generated on the inner walls of the pipes P1, P2, P3.

【0011】この生成の過程を簡単に述べると、燃焼室
1で発生する水蒸気には、通常、水道水が利用されてい
るが、この水道水には一般にCaO、MgO、及びSi
等の化合物が含まれている。ボイラが稼動している
と、水蒸気の消失と補給を繰り返すので、その結果、C
2+やMg2+の濃度は次第に上昇し、CaOやMg
O等の化合物も増加する。又、配管P1,P2,P3に
は腐食防止のために亜鉛メッキが施されているが、この
亜鉛メッキがはがれてZnOの化合物も存在する。ま
た、燃焼室1や配管P1,P2,P3は鉄製なので、少
しずつ腐食し、第2水酸化鉄[Fe(OH)]や第3水酸
化鉄[Fe(OH)]が生成して沈殿する。この反応の過
程で、水溶液はpHが9.5〜11.0のアルカリ性となる。
このとき、第2水酸化鉄[Fe(OH)]や第3水酸化鉄
[Fe(OH)]はさらに酸化して、イオン化したFe
2+、Fe3+がアルカリ水溶液中で共沈反応し、強磁
性超微粒子のマグネタイト[Fe]が生成される。
To briefly describe the process of this generation, tap water is usually used as the steam generated in the combustion chamber 1. In this tap water, CaO, MgO, and Si are generally used.
It contains compounds such as O 2 . When the boiler is operating, steam disappears and supply is repeated, resulting in C
The concentration of a 2+ and Mg 2+ gradually increases, and CaO and Mg
Compounds such as O also increase. Further, the pipes P1, P2 and P3 are galvanized to prevent corrosion, but the zinc plating is peeled off and a ZnO compound is also present. Further, since the combustion chamber 1 and the pipes P1, P2, P3 are made of iron, they are gradually corroded to form ferric hydroxide [Fe (OH) 2 ] and ferric hydroxide [Fe (OH) 3 ]. Settle. During the course of this reaction, the aqueous solution becomes alkaline with a pH of 9.5-11.0.
At this time, ferric hydroxide [Fe (OH) 2 ] and ferric hydroxide
[Fe (OH) 3 ] is further oxidized and ionized Fe
2+, Fe 3+ is co-precipitation in an alkaline aqueous solution, ferromagnetic ultra-fine particles of magnetite [Fe 2 O 3] is generated.

【0012】次にボイラ等で使用されている使用済み配
管の断面を示す図2に示すように、配管Pの鋼管材質部
(鉄鋼)内の中空部は、この配管の腐食による生成物が
管面に近いところで付着している(実物は黒褐色)の部
分D(以下「下層部」という。)と、生成物(実物は茶
褐色)が付着している表面U(以下「上層部」とい
う。)の部分に大別することができる。下層部Dと上層
部Uの付着生成物に含まれている各成分元素の含有量に
ついて、蛍光エックス線分析装置を用いて測定した結果
を表1に示す。
Next, as shown in FIG. 2 which shows a cross section of a used pipe used in a boiler or the like, the hollow portion in the steel pipe material portion (steel) of the pipe P has a product produced by corrosion of the pipe. A portion D (hereinafter referred to as a "lower layer portion") that is attached near the surface (the actual product is dark brown) and a surface U (hereinafter referred to as the "upper layer portion") to which the product (the actual product is brown) is attached. Can be roughly divided into parts. Table 1 shows the results of measurement of the content of each component element contained in the deposition products of the lower layer portion D and the upper layer portion U using a fluorescent X-ray analyzer.

【0013】[0013]

【表1】 表1から、下層部D、上層部Uの付着生成物の主成分は
Fe化合物が約90%を占め、これにZn、Ca、C
u、Siなどの化合物が認められた。スケールの成分
は、付着生成物全体のものを示している。スケールにZ
nOがやや多いのは、鋼管Pに施してある亜鉛メッキが
腐食によりはがれたもので、これは下層部Dの方が上層
部Uよりも多く含まれている。
[Table 1] From Table 1, Fe compounds account for about 90% of the main components of the deposition products of the lower layer D and the upper layer U, and Zn, Ca, C
Compounds such as u and Si were found. The components of the scale represent the whole of the deposited product. Z on the scale
A large amount of nO is caused by corrosion of the zinc plating applied to the steel pipe P, and the lower layer portion D is contained more than the upper layer portion U.

【0014】図3には配管P内付着生成物のスケール、
下層部D、上層部U各部の生成物相及びそれらの含有量
についてエックス線解析で測定を行った結果を示した。
図3の鋼管P、上層部U、下層部Dにおいて、CはCa
lcite、SはSpinel型の結晶構造と一致する
スペクトルを示す。鋼管Pの試料のスケールの最強のス
ペクトルはSpinel型構造をした強磁性超微粒子の
Feが含まれていることを示す。上層部S、下層
部Uも最強スペクトルはFeである。
FIG. 3 shows the scale of the deposit product in the pipe P,
The result of having measured the product phase of each part of lower layer part D and upper layer part U, and their content by X ray analysis was shown.
In the steel pipe P, the upper layer portion U, and the lower layer portion D of FIG. 3, C is Ca
lcite and S show spectra in agreement with the Spinel type crystal structure. The strongest spectrum on the scale of the sample of the steel pipe P indicates that it contains Fe 2 O 3 which is a ferromagnetic ultrafine particle having a Spinel type structure. The strongest spectrum of the upper layer S and the lower layer U is Fe 2 O 3 .

【0015】図4は配管内付着生成物の上層部U及び下
層部Dの各部の磁化の測定結果を示したもので、この上
層部U、下層部Dともに磁化曲線はヒステリシスを描
き、約10KOe以上の磁界では略飽和する傾向を示し
ている。また、下層部Dの磁化の値は55emu/g
で、上層部Uの48emu/gよりもやや増加してい
る。これは下層部Dに強磁性超微粒子のFeの含
まれている割合が大きいものと考える。
FIG. 4 shows the measurement results of the magnetizations of the upper layer portion U and the lower layer portion D of the deposit product in the pipe. The magnetization curves of both the upper layer portion U and the lower layer portion D show a hysteresis, and the magnetization curve is about 10 KOe. The above magnetic field shows a tendency to be almost saturated. The magnetization value of the lower layer portion D is 55 emu / g.
Thus, it is slightly higher than 48 emu / g of the upper layer portion U. It is considered that this is because the lower layer portion D contains a large amount of ferromagnetic ultrafine particles Fe 2 O 3 .

【0016】以下、前記の結果に基づいて、剥離装置の
具体的な構造と動作について説明する。先ず、図5〜図
7を参照して、配管内付着生成物の強磁性超微粒子を含
む生成物の剥離装置10の構造と剥離動作に付いて説明
する。
The specific structure and operation of the peeling device will be described below based on the above results. First, with reference to FIGS. 5 to 7, a structure and a peeling operation of a peeling device 10 for a product containing ferromagnetic ultrafine particles of a product deposited in a pipe will be described.

【0017】図5において、コア3の先端には磁気調整
駒である軟鉄駒4,4が対向した状態で取り付けてあ
り、この駒の先端円弧面は配管Pに当接した状態で、こ
の駒には電磁コイル5,5が装着してある。そのため、
電磁コイル5から誘導された磁場が右、左にN、Sの磁
極片を構成している。電磁コイル5から配管にリード線
を接続し、微弱な電流を配管に流す構造になっている。
そこで、前記したように電磁コイル5を配管Pの外側に
装着し軟鉄駒4も装着すると、この配管内の水溶液中に
磁場が発生する。この磁場から発生する磁力線を水溶液
が切ると、ファラデーの電磁誘導に基づき壁に沿って電
流が流れる。
In FIG. 5, soft iron pieces 4 and 4 which are magnetic adjusting pieces are attached to the tip of the core 3 so as to face each other, and the arcuate surface of the tip of this piece is in contact with the pipe P and is attached to this piece. Is equipped with electromagnetic coils 5 and 5. for that reason,
The magnetic field induced from the electromagnetic coil 5 constitutes N and S pole pieces on the right and left sides. A lead wire is connected to the pipe from the electromagnetic coil 5 so that a weak current is passed through the pipe.
Therefore, when the electromagnetic coil 5 is mounted on the outside of the pipe P and the soft iron piece 4 is also mounted as described above, a magnetic field is generated in the aqueous solution in this pipe. When the aqueous solution cuts the lines of magnetic force generated from this magnetic field, a current flows along the wall due to the electromagnetic induction of Faraday.

【0018】また、図6において、配管Pの外側電磁コ
イル5を取り付けると、磁極N、Sによりこの配管内に
磁場が発生し、この磁場により磁束密度Bの磁力線が発
生し、この磁力線を流速Vの水溶液が切ると、ファラデ
ーの電磁誘導の法則から、管壁に沿って電流iが流れ
る。そのため、この電流iにより管壁と付着生成物の間
に電気分解が発生し、配管内の付着生成物の分解作用と
の相乗効果を誘起する。このときローレンツ力F=qV
Bが作用するので、付着生成物は少しずつ剥離される。
Further, in FIG. 6, when the outer electromagnetic coil 5 of the pipe P is attached, a magnetic field is generated in the pipe by the magnetic poles N and S, and the magnetic field generates a magnetic force line having a magnetic flux density B. When the aqueous solution of V is cut off, a current i flows along the tube wall according to Faraday's law of electromagnetic induction. Therefore, this current i causes electrolysis between the tube wall and the deposit product, and induces a synergistic effect with the decomposition action of the deposit product in the pipe. At this time, Lorentz force F = qV
Since B acts, the adhered product is peeled off little by little.

【0019】さらに、配管P内水溶液は循環している
と、配管の腐食などにより配管内水溶液はアルカリ性と
なり、pH値が9.5〜11.0のアルカリ性で、水溶液はH
O→H+OHと電離し、HとFe2+(配管)
のイオン化傾向の大きさは、Fe2+>Hとなる。イ
オン化傾向の差から生じる電流が管壁の方向に流れるこ
とにより起こる電気分解により生じる剥離作用との相乗
効果を誘起して電気分解される付着生成物の量もより増
加するので、剥離される付着生成物の量も増加する。ま
た、配管P内の水溶液は循環していると、配管の腐食な
どにより配管内水溶液はアルカリ性となり、pH値が9.
5〜11.0のアルカリ性で、水溶液はHO→H+OH
と電離している。このHイオンは金属イオンではな
いが、電離して陽イオンとなるイオン化列に入ってお
り、HとFe2+(配管)のイオン化傾向の大きさ
は、Fe2+>Hとなるので、鉄原子が電子を放出し
酸化する。一方、水溶液中の水素原子は電子を受け取っ
て還元され、単体の水素Hが生じる。したがって、鉄は
水素より陽イオンになりやすい。この結果、水溶液が陽
極、鉄は陰極となり、水溶液から配管に向かって電流i
が流れる。イオン化傾向の差から生じるこの電流iは配
管に沿って流れやすく、電磁誘導によって発生した電流
iと同じ方向に流れる。
Further, when the aqueous solution in the pipe P is circulating, the aqueous solution in the pipe becomes alkaline due to corrosion of the pipe and the like, and the pH value is alkaline of 9.5 to 11.0, and the aqueous solution is H.
2 O → H + + OH - and ionized, H + and Fe 2+ (piping)
The magnitude of the ionization tendency of Fe 2+ > H + . Since the amount of the deposit products that are electrolyzed increases by inducing a synergistic effect with the stripping action that occurs due to the electrolysis that occurs when the current that flows from the difference in the ionization tendency flows in the direction of the tube wall, the deposits that are stripped are also increased. The amount of product also increases. Further, when the aqueous solution in the pipe P is circulating, the aqueous solution in the pipe becomes alkaline due to corrosion of the pipe and the like, and the pH value is 9.
Alkaline from 5 to 11.0, the aqueous solution is H 2 O → H + + OH
- it is ionized with. Although this H + ion is not a metal ion, it is in the ionization train where it is ionized to become a cation, and the magnitude of the ionization tendency of H + and Fe 2+ (pipe) is Fe 2+ > H + . Iron atoms release electrons and oxidize. On the other hand, the hydrogen atom in the aqueous solution receives an electron and is reduced, and a simple hydrogen H is produced. Therefore, iron is more likely to become a cation than hydrogen. As a result, the aqueous solution becomes the anode and iron becomes the cathode, and the current i flows from the aqueous solution to the pipe.
Flows. This current i caused by the difference in ionization tendency easily flows along the pipe, and flows in the same direction as the current i generated by electromagnetic induction.

【0020】前記したように、このHイオンは配管の
鉄イオンに比べてイオン化傾向がFe2+>Hと小さ
いために、水溶液は陽極となり、配管は陰極となって水
溶液から配管の管壁に沿って流れる電流とこの配管内を
流れる水溶液が漏洩磁束によって発生する磁力線を切る
と、電磁誘導の法則により発生する電流とが加わって相
乗効果を誘起する。その結果、流れる電流iの量はさら
に増加し、この電流の流れることにより起こる電気分解
により生じる剥離作用との相乗効果を誘起して電気分解
される付着生成物の量もより増加するので、剥離される
付着生成物の量も増加する。
As described above, since the H + ions have a smaller ionization tendency than Fe 2+ > H + as compared with the iron ions in the pipe, the aqueous solution becomes the anode and the pipe becomes the cathode, and the aqueous solution becomes the cathode wall of the pipe. When the current flowing along the line and the aqueous solution flowing in the pipe cut the line of magnetic force generated by the leakage magnetic flux, the current generated according to the law of electromagnetic induction is added to induce a synergistic effect. As a result, the amount of the flowing current i further increases, and the amount of the adhered product that is electrolyzed by inducing a synergistic effect with the peeling action caused by the electrolysis caused by the flow of this current also increases. The amount of deposited product that is removed also increases.

【0021】図7(A)は、ファラデーの電磁誘導の法
則で磁界(磁力線)と電流及び受ける力(ローレンツ
力)の関係を示したものである。図6に示すようにN極
からS極へ向かって磁力密度Bの磁力線が発生するが、
このとき電流iの向きは磁力線に対して直角となる。こ
れにより電流iは配管に沿って流れる。また、このとき
のローレンツ力Fの方向は、電流の方向に対して直角に
なる。この様子を左手で示したのが図7(B)である。
図7(A)と(B)が電磁誘導の法則を示すもので、フ
レミングの左手の法則と呼ばれている。
FIG. 7A shows the relationship between the magnetic field (lines of magnetic force), the electric current, and the force (Lorentz force) to be applied according to Faraday's law of electromagnetic induction. As shown in FIG. 6, magnetic force lines of magnetic force density B are generated from the N pole to the S pole,
At this time, the direction of the current i is perpendicular to the lines of magnetic force. This causes the current i to flow along the pipe. Further, the direction of the Lorentz force F at this time is perpendicular to the direction of the current. FIG. 7B shows this state with the left hand.
FIGS. 7A and 7B show the law of electromagnetic induction, which is called Fleming's left-hand law.

【0022】図7(B)はファラデーの電磁誘導によっ
て生じる磁界(磁力線の方向)とそのときの電流の流れ
る方向、及びその時発生するローレンツ力F(受ける
力)の関係を左手の人差し指、中指、親指を用いて表現
したもの、即ちフレミングの左手の法則であり、この法
則では人差し指が磁力線Bの方向、中指が電流iの方
向、親指がローレンツ力Fの方向を示す。
FIG. 7B shows the relationship between the magnetic field (direction of magnetic force lines) generated by electromagnetic induction of Faraday, the direction of current flow at that time, and the Lorentz force F (force received) at that time, which is represented by the index finger, the middle finger, It is expressed using the thumb, that is, Fleming's left-hand rule, in which the index finger indicates the direction of the magnetic field line B, the middle finger indicates the direction of the current i, and the thumb indicates the direction of the Lorentz force F.

【0023】本発明による剥離装置を用いることによ
り、ボイラ、暖房装置、クーリングタワーなどの配管に
付着する生成物を剥離し、除去できるが、この剥離効果
をより具体的に立証するために実験装置を作成し、この
剥離効果の測定を行った。
By using the peeling device according to the present invention, the products adhering to the pipes of the boiler, the heating device, the cooling tower, etc. can be peeled and removed. In order to prove this peeling effect more concretely, an experimental device was used. It was created and the peeling effect was measured.

【0024】図8は、配管内付着生成物を磁気剥離する
実験装置である。装置には図2に示したものと同じ5年
ほど使用した亜鉛メッキ製の鋼管Paを取付け、また剥
離装置10や流量計11、図1の燃焼室1に対応するも
のをタンク12とし、磁気回収装置13を取り付け、水
溶液は使用しているボイラから採集したものを用い、ま
た水溶液はポンプ14で循環させる構造になっている。
流量は2h/mである。
FIG. 8 shows an experimental apparatus for magnetically peeling the product deposited in the pipe. A galvanized steel pipe Pa, which has been used for about 5 years and is the same as that shown in FIG. 2, is attached to the device, and a peeling device 10, a flow meter 11, and a tank 12 corresponding to the combustion chamber 1 of FIG. The recovery device 13 is attached, the aqueous solution is collected from the boiler being used, and the aqueous solution is circulated by the pump 14.
The flow rate is 2 h / m 2 .

【0025】図9は、図8の実験装置に剥離装置10を
装着したものと、剥離装置10を未装着の場合につい
て、8週間実験した結果を示したものである。最初の1
週目は剥離装置10が装着、未装着ともに付着生成物の
剥離が進行したのは、付着生成物の表面が水流によって
剥離されたものと考える。2週目以降は、未装着の場合
は剥離量が減少しているのに対し、装着した方は剥離量
は2週目から3週日に減少しているが、これは電磁界の
作用により付着生成物がゆるみ剥離するのにやや時間が
かかるが、3週目から4週目になると、剥離が進んでい
ることが判る。この傾向は、8週目にかけて同じ傾向が
見られる。
FIG. 9 shows the results of an experiment conducted for 8 weeks for the experimental apparatus of FIG. 8 with the peeling apparatus 10 attached and the case where the peeling apparatus 10 is not attached. First one
It is considered that the peeling of the adhered product progressed with and without the peeling device 10 in the week, that the surface of the adhered product was peeled by the water flow. From the second week onward, the amount of peeling decreases when not worn, whereas the amount of peeling decreases when wearing the wearer from the second to third weeks. This is due to the action of the electromagnetic field. It takes some time for the product to loosen and peel off, but from the 3rd week to the 4th week, it is understood that the peeling progresses. This tendency is the same as in the 8th week.

【0026】図10は、図9の8週間で剥離された量を
まとめたもので、剥離装置10を装着した方が未装着に
比べ約4倍も剥離量が増加した。この結果、剥離装置1
0を装着した有効性が判明した。
FIG. 10 is a summary of the peeled amount in 8 weeks of FIG. 9, and the peeled amount increased by about 4 times when the peeling device 10 was attached compared to when it was not attached. As a result, the peeling device 1
The effectiveness of wearing 0 was found.

【0027】[0027]

【発明の効果】図9、図10の結果から、本発明より、
ボイラなどの付着生成物を剥離し除去できるので、ボイ
ラなどの清掃等が運転しながら行えることから、定期保
守の簡易化が図れ、ボイラなどの保守の費用の低減化が
可能となる。また、生成物の付着が少なくなるため、ボ
イラなどの熱効率の低下が防止でき、洗浄が容易にな
る。この結果、生成物の剥離及び除去に要する費用の低
減を図ることができる。殊に、本発明では、生成物の剥
離及び除去が外部磁界により磁場を制御でき、また剥離
作業を自動的に行うことができる。勿論、この剥離装置
を配管に当初から装着していれば、配管に生成物の付着
を防止できる。
From the results shown in FIGS. 9 and 10, according to the present invention,
Since the adhered products of the boiler and the like can be peeled off and removed, cleaning and the like of the boiler and the like can be performed while operating, so that regular maintenance can be simplified and the maintenance cost of the boiler and the like can be reduced. Further, since the adhesion of the product is reduced, it is possible to prevent a decrease in the thermal efficiency of the boiler and the like and facilitate cleaning. As a result, the cost required for peeling and removing the product can be reduced. In particular, in the present invention, the peeling and removal of the product can be controlled by an external magnetic field, and the peeling operation can be performed automatically. Of course, if this stripping device is mounted on the pipe from the beginning, the product can be prevented from adhering to the pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】ボイラの概略図である。FIG. 1 is a schematic diagram of a boiler.

【図2】配管の断面図である。FIG. 2 is a sectional view of piping.

【図3】付着生成物のX線回析図である。FIG. 3 is an X-ray diffraction diagram of a deposited product.

【図4】付着生成物の下層部、上層部の磁化曲線を示す
グラフである。
FIG. 4 is a graph showing the magnetization curves of the lower layer portion and the upper layer portion of the attached product.

【図5】剥離装置の断面図である。FIG. 5 is a cross-sectional view of a peeling device.

【図6】電磁石の作用を示す断面図である。FIG. 6 is a cross-sectional view showing the action of an electromagnet.

【図7】ファラデーの電磁誘導の法則を示す斜視図であ
る。
FIG. 7 is a perspective view showing Faraday's law of electromagnetic induction.

【図8】実験用の装置を示す斜視図である。FIG. 8 is a perspective view showing an experimental device.

【図9】スケールの剥離量の推移を示すグラフである。FIG. 9 is a graph showing changes in the amount of scale peeling.

【図10】スケールの全体量と剥離量の割合を示すグラ
フである。
FIG. 10 is a graph showing the ratio of the total amount of scale and the amount of peeling.

【符号の説明】[Explanation of symbols]

1 燃焼室 2 熱交換機 3 コア 4 磁気調整駒(軟鉄駒) 5 電磁コイル 10 剥離装置 12 タンク 13 磁気回収装置 P 配管 P1 配管 P2 配管 P3 配管 P4 配管 Pa 配管 D 生成物の下層部 U 生成物の上層部 1 combustion chamber 2 heat exchanger 3 core 4 Magnetic adjustment piece (soft iron piece) 5 electromagnetic coil 10 Peeling device 12 tanks 13 Magnetic recovery device P piping P1 piping P2 piping P3 piping P4 piping Pa piping Lower part of D product Upper part of U product

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/48 C02F 5/00 610A 5/00 610 610B 620B 620 620D F22B 37/52 Z F22B 37/52 F28G 13/00 Z F28G 13/00 B08B 9/02 Z Fターム(参考) 3B116 AA12 BB89 BC00 3B201 AA12 BB89 BB92 BC00 3H024 DA10 4D061 DA05 DB05 EA02 EB02 EC02 EC05 EC19 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 1/48 C02F 5/00 610A 5/00 610 610B 620B 620 620D F22B 37/52 Z F22B 37/52 F28G 13/00 Z F28G 13/00 B08B 9/02 Z F term (reference) 3B116 AA12 BB89 BC00 3B201 AA12 BB89 BB92 BC00 3H024 DA10 4D061 DA05 DB05 EA02 EB02 EC02 EC05 EC19

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水や蒸気などによる水溶液が流れる配管
の外周部に当該配管内に漏洩磁界を発生させる電磁石を
装備することにより、 当該配管内を流れる水溶液が上記配管内に発生する漏洩
磁界から発生する磁力線を切ると、フアラデーの電磁誘
導により発生するローレンツ力とこれに伴って電流が流
れ、 上記ローレンツ力の作用による配管内付着生成物に対す
る剥離作用、及び上記電流が配管の管壁に沿って流れる
ことによりこの管壁と付着生成物との間に電気分解を起
こして配管内の付着生成物の分解作用との相乗効果を誘
起して、上記配管内付着生成物を剥離させることを特徴
とするボイラなどの配管内付着生成物の剥離方法。
1. An electromagnet for generating a leakage magnetic field in the pipe is provided on the outer peripheral portion of the pipe in which the aqueous solution such as water or steam flows, so that the aqueous solution flowing in the pipe is protected from the leakage magnetic field generated in the pipe. When the generated lines of magnetic force are cut, the Lorentz force generated by the electromagnetic induction of Faraday and a current accompanying it flow, the peeling action on the deposit products in the pipe due to the action of the Lorentz force, and the current flows along the pipe wall of the pipe. The flow of electricity causes electrolysis between the pipe wall and the deposition product to induce a synergistic effect with the decomposition action of the deposition product in the pipe, and the deposition product in the pipe is peeled off. A method for removing adhered products in piping such as boilers.
【請求項2】 水や蒸気などによる水溶液が流れる配管
の外周部に当該配管内に漏洩磁界を発生させる電磁石を
装備することにより、 当該配管内を流れる上記配管内水溶液が上記配管内に発
生する漏洩磁界から発生する磁力線を切ると、ファラデ
ーの電磁誘導の法則から電流が管壁に沿って流れ、 この電流により電気分解を起こして配管内付着生成物の
分解作用と配管の腐食等により上記水溶液がアルカリ性
の電解質となり、この水溶液はHO→H+OH
電離し、HとFe2+のイオン化傾向がFe2+>H
となり、イオン化傾向の差から生じる電流がH→F
2+の方向となるので管壁の方向へ流れることにより
起こる電気分解により生じる剥離作用との相乗効果を誘
起して、上記管壁の付着生成物の剥離をより進行させる
ことを特徴とするボイラなどの配管内付着生成物の剥離
方法。
2. An aqueous solution in the pipe flowing in the pipe is generated in the pipe by equipping an outer periphery of the pipe in which the aqueous solution such as water or steam flows with an electromagnet for generating a leakage magnetic field in the pipe. When the line of magnetic force generated from the leakage magnetic field is cut, an electric current flows along the pipe wall according to Faraday's law of electromagnetic induction, and this current causes electrolysis to decompose the products adhering to the pipe and corrode the pipe, resulting in the above aqueous solution. Becomes an alkaline electrolyte, and this aqueous solution is ionized as H 2 O → H + + OH −, and the ionization tendency of H + and Fe 2+ is Fe 2+ > H.
+ , And the current caused by the difference in ionization tendency is H + → F
Since it is in the direction of e 2+ , a boiler is characterized in that it induces a synergistic effect with a peeling action caused by electrolysis caused by flowing in the direction of the pipe wall, and further promotes the peeling of the adhered product on the pipe wall. How to remove products attached to piping such as.
【請求項3】 水や蒸気などによる水溶液が流れる配管
の外周部に当該配管内に漏洩磁界を発生させる電磁石を
装備することにより、 当該配管内を流れる上記配管内水溶液が上記配管内に発
生する漏洩磁界から発生する磁力線を切ると、ファラデ
ー電磁誘導の法則から発生する電流が管壁に沿って流
れ、 この電流により電気分解を起こして配管内付着生成物の
分解作用と配管の腐食等により上記水溶液がアルカリ性
の電解質となり、この水溶液はHO→H+OH
電離し、Hイオンは配管の鉄イオンに比べてイオン化
傾向がFe2+>Hとなるので、水溶液は陽極とな
り、上記配管は陰極となって上記水溶液から配管の管壁
に沿って流れる電流と上記配管内を流れる水溶液が漏洩
磁界によって発生する磁力線を切ると、電磁誘導の法則
により発生する電流とが加わって相乗効果を誘起し、こ
れらの電流により上記配管内付着生成物の剥離をさらに
促進させることを特徴とするボイラなどの配管内付着生
成物の剥離方法。
3. An aqueous solution in the pipe flowing in the pipe is generated in the pipe by equipping an outer periphery of the pipe in which the aqueous solution such as water or steam flows with an electromagnet for generating a leakage magnetic field in the pipe. When the line of magnetic force generated from the leakage magnetic field is cut, a current generated from the law of Faraday electromagnetic induction flows along the pipe wall, and this current causes electrolysis to cause the decomposition action of the adhered products in the pipe and the corrosion of the pipe. The aqueous solution becomes an alkaline electrolyte, and this aqueous solution is ionized as H 2 O → H + + OH −, and H + ions have an ionization tendency of Fe 2+ > H + compared to iron ions in the pipe, so the aqueous solution serves as an anode. The pipe becomes a cathode, and when the current flowing from the aqueous solution along the pipe wall of the pipe and the magnetic flux generated by the leakage magnetic field in the aqueous solution flowing in the pipe are cut off, electromagnetic waves are generated. Subjected to any current generated by the law of electrically inducing a synergistic effect, method of removing piping deposition products, such as boilers, characterized by further promoting the separation of the pipe attachment product by these currents.
JP2001203715A 2001-07-04 2001-07-04 Method for peeling pipe inside deposit in boiler Pending JP2003014189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001203715A JP2003014189A (en) 2001-07-04 2001-07-04 Method for peeling pipe inside deposit in boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001203715A JP2003014189A (en) 2001-07-04 2001-07-04 Method for peeling pipe inside deposit in boiler

Publications (1)

Publication Number Publication Date
JP2003014189A true JP2003014189A (en) 2003-01-15

Family

ID=19040300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001203715A Pending JP2003014189A (en) 2001-07-04 2001-07-04 Method for peeling pipe inside deposit in boiler

Country Status (1)

Country Link
JP (1) JP2003014189A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115752A (en) * 2010-11-30 2012-06-21 Kobe Steel Ltd Magnetic field generator, water treatment system using the same, and water treatment method
CN102538202A (en) * 2011-12-23 2012-07-04 河南省四达仙龙实业有限公司 Water heater for heating
CN103011354A (en) * 2012-12-19 2013-04-03 刘冲 Seawater desalination device
WO2014132377A1 (en) * 2013-02-28 2014-09-04 三菱電機株式会社 Air conditioning device
CN104355371A (en) * 2014-10-11 2015-02-18 罗国平 Electromagnetic separation assembly of sea water desalting equipment
WO2015132870A1 (en) * 2014-03-04 2015-09-11 新一郎 石橋 Electromagnetic induction electric peeling apparatus for pipe inner surface adhesion products
CN109237989A (en) * 2018-08-17 2019-01-18 西安热工研究院有限公司 Boiler of power plant heating surface austenic stainless steel inside pipe wall oxide skin accelerates the method peeled off
KR20190097404A (en) * 2018-02-12 2019-08-21 주식회사 케이디파워 Geothermal Power Generation System
CN111084217A (en) * 2020-01-07 2020-05-01 湖北金鲤鱼农业科技股份有限公司 Fish and shrimp aquatic product processing cleaning and sterilizing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034918A (en) * 1989-05-30 1991-01-10 Hitachi Zosen Corp Dioxin generation suppressing method
JPH08243381A (en) * 1995-03-06 1996-09-24 Showa Netsugaku Kogyo Kk Device for treating product in boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034918A (en) * 1989-05-30 1991-01-10 Hitachi Zosen Corp Dioxin generation suppressing method
JPH08243381A (en) * 1995-03-06 1996-09-24 Showa Netsugaku Kogyo Kk Device for treating product in boiler

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115752A (en) * 2010-11-30 2012-06-21 Kobe Steel Ltd Magnetic field generator, water treatment system using the same, and water treatment method
CN102538202A (en) * 2011-12-23 2012-07-04 河南省四达仙龙实业有限公司 Water heater for heating
CN103011354A (en) * 2012-12-19 2013-04-03 刘冲 Seawater desalination device
WO2014132377A1 (en) * 2013-02-28 2014-09-04 三菱電機株式会社 Air conditioning device
JPWO2014132377A1 (en) * 2013-02-28 2017-02-02 三菱電機株式会社 Air conditioner
CN106170656A (en) * 2014-03-04 2016-11-30 石桥新郎 The em induced current stripping off device of pipe arrangement inner face attachment product
WO2015132870A1 (en) * 2014-03-04 2015-09-11 新一郎 石橋 Electromagnetic induction electric peeling apparatus for pipe inner surface adhesion products
CN104355371B (en) * 2014-10-11 2016-03-02 罗国平 Electromagnetic separation parts in sea water desalting equipment
CN104355371A (en) * 2014-10-11 2015-02-18 罗国平 Electromagnetic separation assembly of sea water desalting equipment
KR20190097404A (en) * 2018-02-12 2019-08-21 주식회사 케이디파워 Geothermal Power Generation System
KR102066558B1 (en) * 2018-02-12 2020-02-11 주식회사 케이디파워 Geothermal Power Generation System
CN109237989A (en) * 2018-08-17 2019-01-18 西安热工研究院有限公司 Boiler of power plant heating surface austenic stainless steel inside pipe wall oxide skin accelerates the method peeled off
CN111084217A (en) * 2020-01-07 2020-05-01 湖北金鲤鱼农业科技股份有限公司 Fish and shrimp aquatic product processing cleaning and sterilizing device
CN111084217B (en) * 2020-01-07 2021-04-27 湖北金鲤鱼农业科技股份有限公司 Fish and shrimp aquatic product processing cleaning and sterilizing device

Similar Documents

Publication Publication Date Title
JP2003014189A (en) Method for peeling pipe inside deposit in boiler
JP5583789B2 (en) Method and composition for removing deposits
JP2001038362A (en) Device for electromagnetic field treatment
CN101570857A (en) Method of preventing nickel leaching from copper alloy made liquid-contact equipment item, protective film forming agent for nickel leaching prevention and cleaner for nickel leaching prevention
JP2005288436A (en) Modulated electromagnetic field treatment apparatus and method for fluid to be treated
Othman et al. A Review: Methodologies Review of Magnetic Water Treatment As Green Approach of Water Pipeline System.
CN103525599A (en) Boiler scale remover
Cho et al. Nonchemical methods to control scale and deposit formation
US9738551B2 (en) Additives for heat exchanger deposit removal in a wet layup condition
JP3004918B2 (en) Apparatus for removing boiler and other pipe adhesion products
JP6357226B2 (en) Removal of target deposits from heat exchangers combining melting and mechanical methods
Lamb et al. Mechanism of corrosion inhibition by sodium metaphosphate glass
JP3946287B2 (en) Pickling method for austenitic stainless steel
EP3063771B1 (en) Ambient temperature decontamination of nuclear power plant component surfaces containing radionuclides in a metal oxide
KR102407883B1 (en) A portable water purifier equipped with a filter and a sponge-type dissimilar metal corrosion inhibitor
JP2002001390A (en) Water treatment process
KR200287069Y1 (en) scale exfoliation apparatus attached at pipe inner wall
CN201525769U (en) Strong magnetic multifunctional water treatment device
CN202175593U (en) Novel electromagnetic scale removing device
KR101533416B1 (en) Apparatus for generating zinc ion and pipe comprising the same
JP4456387B2 (en) Anticorrosion method for copper water piping.
de Souza et al. Influence of electrochemical water treatment on carbon steel corrosion
De la Fuente et al. Sustainable water and facility management in the steel industry: influence of saline streams on pipeline corrosion
Kozic et al. Magnetic field analysis on electromagnetic water treatment device
JPS61118187A (en) Magnetic field treating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110112