JPH0639326B2 - Method for producing ultrafine metal boride powder - Google Patents

Method for producing ultrafine metal boride powder

Info

Publication number
JPH0639326B2
JPH0639326B2 JP110287A JP110287A JPH0639326B2 JP H0639326 B2 JPH0639326 B2 JP H0639326B2 JP 110287 A JP110287 A JP 110287A JP 110287 A JP110287 A JP 110287A JP H0639326 B2 JPH0639326 B2 JP H0639326B2
Authority
JP
Japan
Prior art keywords
metal boride
ultrafine
boride
powder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP110287A
Other languages
Japanese (ja)
Other versions
JPS63170212A (en
Inventor
悟 大野
雅広 宇田
Original Assignee
科学技術庁金属材料技術研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁金属材料技術研究所長 filed Critical 科学技術庁金属材料技術研究所長
Priority to JP110287A priority Critical patent/JPH0639326B2/en
Publication of JPS63170212A publication Critical patent/JPS63170212A/en
Publication of JPH0639326B2 publication Critical patent/JPH0639326B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は粒径1μm以下の金属硼化物の超微粉の製造法
に関する。
TECHNICAL FIELD The present invention relates to a method for producing an ultrafine powder of a metal boride having a particle size of 1 μm or less.

金属硼化物は、極めて融点および硬度が高く、しかも化
学的にも安定であることなどから、超耐熱材料、耐摩耗
材料、複合材料などに利用されるとともに、その優れた
物性から新機能を有する電子材料、触媒材料、超電導材
料などとして注目されている。
Metal borides have extremely high melting points and hardness, and are chemically stable, so they are used for super heat resistant materials, wear resistant materials, composite materials, etc., and have new functions due to their excellent physical properties. It has attracted attention as an electronic material, a catalyst material, a superconducting material, and the like.

金属硼化物をこのような用途に適用する場合の加工方法
としては、主として粉末冶金的手段、すなわち焼結法が
用いられるが、高性能な焼結体を得るためには、高純度
でかつ焼結性の優れた微細な金属硼化物粉であることが
要求される。
A powder metallurgical means, that is, a sintering method is mainly used as a processing method when the metal boride is applied to such an application. It is required that the fine metal boride powder has excellent binding property.

従来技術 従来、粒径1μm以下の金属硼化物超微粉を製造する方
法としては、(1)金属硼化物塊の機械的粉砕、(2)金属塩
化物と塩化硼素との混合気体の水素還元合成などがあ
る。ここで、前者の機械的粉砕法では、粒径1μm以下
の金属硼化物超微粉を得ることが極めて困難である。ま
た、後者の水素還元合成法では反応効率を向上させるこ
とが困難であるとともに、反応副生成物による超微粉の
汚染、すなわち高純度の超微粉が得難いことや、公害の
予想される排ガス(主としてHClガス)の処理等、そ
の製造工程・装置は極めて複雑なものとなっている。
Conventional technology Conventionally, as a method for producing an ultrafine metal boride powder having a particle size of 1 μm or less, (1) mechanical grinding of a metal boride lump, (2) hydrogen reduction synthesis of a mixed gas of metal chloride and boron chloride and so on. Here, with the former mechanical pulverization method, it is extremely difficult to obtain an ultrafine metal boride powder having a particle size of 1 μm or less. Further, in the latter hydrogen reduction synthesis method, it is difficult to improve the reaction efficiency, and contamination of the ultrafine powder by the reaction by-product, that is, it is difficult to obtain ultrapure ultrapure powder, and exhaust gas expected to be polluted (mainly For example, the treatment of HCl gas), its manufacturing process and equipment are extremely complicated.

発明の目的 本発明は、これらの欠点を解決すべくなされたものであ
り、その目的は簡易な装置・製造工程で、かつ無公害的
に粒径1μm以下の金属硼化物超微粉を製造する方法を
提供するにある。
OBJECT OF THE INVENTION The present invention has been made to solve these drawbacks, and an object thereof is a method for producing ultrafine metal boride powder having a particle size of 1 μm or less with a simple apparatus and a production process and without pollution. To provide.

発明の構成 本発明者らは、前記目的を達成すべく研究の結果、水素
または水素と不活性ガスとの混合ガス中で発生した熱プ
ラズマにより、金属硼化物塊あるいは所定の化学量論的
混合比を有する該金属と硼素との混合物を加熱・溶融す
ることにより、該金属の硼化物が効率良く蒸発するとと
もに、この蒸発した金属硼化物蒸気が該雰囲気中で凝縮
して金属硼化物超微粒子となることを見出した。この知
見に基づいて本発明を完成したものである。
As a result of research to achieve the above object, the inventors of the present invention have found that a metal boride lump or a predetermined stoichiometric mixture is generated by thermal plasma generated in hydrogen or a mixed gas of hydrogen and an inert gas. By heating and melting a mixture of the metal and boron having a ratio, the boride of the metal is efficiently evaporated, and the evaporated metal boride vapor is condensed in the atmosphere to form ultrafine metal boride particles. I found that. The present invention has been completed based on this finding.

本発明は、水素あるいは水素とアルゴン、ヘリウム等の
不活性ガスとの混合ガス中で発生した熱プラズマ(アー
ク、プラズマジェットあるいは高周波プラズマ等)によ
り、金属硼化物あるいは該金属と硼素とを所定の化学量
論比に混合した混合物を加熱・溶融し、この際に発生す
る金属硼化物蒸気を該雰囲気中で凝縮させて金属硼化物
超微粉を製造する方法である。
The present invention uses a thermal plasma (arc, plasma jet, high-frequency plasma, etc.) generated in hydrogen or a mixed gas of hydrogen and an inert gas such as argon, helium, etc. This is a method for producing ultrafine metal boride powder by heating and melting a mixture mixed in a stoichiometric ratio and condensing the metal boride vapor generated at this time in the atmosphere.

本発明における金属硼化物超微粒子の生成機構の詳細は
明らかではないが、本発明者らが先に見出した水素プラ
ズマによる金属超微粒子の生成現象と同様に(特許第11
46170号)、アークプラズマ内で活性化された水素(原
子状あるいはイオン状水素)と溶融金属硼化物との反応
過程において、該溶融金属硼化物が強制的に蒸発し、そ
の蒸気が凝縮することにより金属硼化物超微粒子を形成
したものと考えられる。
Although the details of the mechanism of generation of the ultrafine metal boride particles in the present invention are not clear, similar to the phenomenon of generation of ultrafine metal particles by hydrogen plasma previously found by the present inventors (Patent No. 11
46170), in the course of the reaction of hydrogen (atomic or ionic hydrogen) activated in an arc plasma with a molten metal boride, the molten metal boride is forcibly evaporated and the vapor is condensed. It is considered that the ultrafine metal boride particles are formed by the above.

本発明における出発原料としては、塊状の金属硼化物を
そのまま用いてもよいが、金属と硼素との化学量論的混
合物(一般に、粉末を混合して調整する)を熱プラズマ
で直接加熱・溶融してもよい(この加熱・溶融により該
金属硼化物が合成される)。
As the starting material in the present invention, a lumpy metal boride may be used as it is, but a stoichiometric mixture of metal and boron (generally prepared by mixing powders) is directly heated and melted by thermal plasma. Alternatively, the metal boride may be synthesized by this heating and melting.

熱プラズマを発生する雰囲気としては、水素あるいは水
素と不活性ガスとの混合ガスが使用されるが、超微粒子
の発生速度の観点より、純水素あるいは少なくとも20
%(体積比)以上の水素を含む水素と不活性ガスとの混
合ガス雰囲気とすることが望ましい。また、この雰囲気
の圧力は、熱プラズマを安定に発生・維持しうる範囲
(通常、約50Torr〜5atm)であれば任意であるが、
超微粒子の発生効率や操業性、超微粒子の搬送・捕集性
などの点から大気圧近傍の圧力が望ましい。
As the atmosphere for generating the thermal plasma, hydrogen or a mixed gas of hydrogen and an inert gas is used. From the viewpoint of the generation rate of ultrafine particles, pure hydrogen or at least 20% is used.
It is desirable to use a mixed gas atmosphere of hydrogen containing at least (% by volume) hydrogen and an inert gas. The pressure of this atmosphere is arbitrary as long as it can stably generate and maintain thermal plasma (usually about 50 Torr to 5 atm),
A pressure near atmospheric pressure is desirable from the viewpoints of generation efficiency and operability of ultrafine particles, transportability and collection property of ultrafine particles.

該金属硼化物を加熱・溶融、金属硼化物超微粒子を発生
させるための熱プラズマとしては、直流または交流アー
ク、移行式または非移行式プラズマジェットあるいは高
周波誘導プラズマが利用できるが、熱効率の点より直流
アークあるいは移行式プラズマジェットを使用すること
が望ましい。
As the thermal plasma for heating / melting the metal boride and generating the ultrafine particles of the metal boride, a direct current or an alternating current arc, a transfer type or non-transfer type plasma jet or a high frequency induction plasma can be used, but from the viewpoint of thermal efficiency. It is desirable to use a DC arc or a transfer plasma jet.

本発明において作成しうる金属硼化物超微粉は、該熱プ
ラズマの加熱・溶融に際して容易に分解しない程度に高
融点(大略2000℃以上)の金属硼化物であり、周期
表のIa、IIa、IIIa、IVa、VaおよびVIa族に属
する金属、例えば、アルカリ金属、アルカリ土類金属、
希土類金属、Ti,Zr、Hf、V、Nb、Ta、C
r、Mo、Wなどの硼化物が挙げられる。
The metal boride ultrafine powder that can be produced in the present invention is a metal boride having a high melting point (approximately 2000 ° C. or higher) so that it is not easily decomposed during heating / melting of the thermal plasma, and is Ia, IIa, IIIa in the periodic table. , Metals of the group IVa, Va and VIa, such as alkali metals, alkaline earth metals,
Rare earth metal, Ti, Zr, Hf, V, Nb, Ta, C
Examples thereof include borides such as r, Mo and W.

本発明の方法における金属硼化物超微粉を製造するため
の装置としては、第1図に示したような、本発明者らが
先に考案した金属超微粒子の製造装置(特許第1226806
号)が挙げられる。図中、1は密閉容器、2は熱プラズ
マ、3は溶融金属硼化物、4は雰囲気ガスの導入口、5
は溶解台、6は冷却器、7は超微粉捕集器である。
As an apparatus for producing ultrafine metal boride powder in the method of the present invention, an apparatus for producing ultrafine metal particles previously devised by the present inventors as shown in FIG. 1 (Patent No. 1226806).
No.). In the figure, 1 is a closed container, 2 is thermal plasma, 3 is a molten metal boride, 4 is an inlet port for atmospheric gas, 5
Is a melting table, 6 is a cooler, and 7 is an ultrafine powder collector.

溶融金属硼化物から発生した金属硼化物蒸気は、雰囲気
ガスによって直ちに冷却・凝縮されて超微粒子となり、
該金属硼化物超微粒子は雰囲気ガス導入口4から冷却器
6を経て超微粒子捕集器7へ向かう雰囲気ガス流によっ
て捕集器7に搬送され、捕集される。
The metal boride vapor generated from the molten metal boride is immediately cooled and condensed by the atmospheric gas to become ultrafine particles,
The ultrafine metal boride particles are transported to the collector 7 by the atmosphere gas flow from the atmosphere gas inlet 4 to the ultrafine particle collector 7 through the cooler 6 and collected.

実施例1 第1図に示す装置を使用し、プラズマ発生方法としては
直流アーク(正極性、電流:150A)を、雰囲気は5
0%H−Arをそれぞれ用いて硼化チタン(Ti
)塊を加熱・溶融し、チタン硼化物の超微粉を作成
した。
Example 1 Using the apparatus shown in FIG. 1, a direct current arc (positive polarity, current: 150 A) was used as the plasma generation method, and the atmosphere was 5
The 0% H 2 -Ar with each boride titanium (Ti
B 2 ) The lump was heated and melted to prepare ultrafine titanium boride powder.

得られた超微粉の電子顕微鏡写真を第2図、粉末X線回
折図形を第3図に示す。チタン硼化物の超微粒子は六角
板状、球形等の晶癖を有するが、いずれもその粒径は0.
3μm以下の超微粒子となっている。また、第3図のX
線回折図形より、この超微粒子は六方晶形のTiB
あることが判明した。
An electron micrograph of the obtained ultrafine powder is shown in FIG. 2, and a powder X-ray diffraction pattern is shown in FIG. Ultrafine particles of titanium boride have crystal habits such as hexagonal plate shape and spherical shape, but the particle size is 0.
Ultra fine particles of 3 μm or less. Also, X in FIG.
From the line diffraction pattern, it was found that the ultrafine particles were hexagonal TiB 2 .

実施例2 実施例1と同一の装置を使用し、50%H−Ar雰囲
気中において硼化ジルコニウム(ZrB)を直流アー
ク(電流:150A)により加熱・溶融し、ジルコニウ
ム硼化物の超微粉を得た。
Example 2 Using the same apparatus as in Example 1, zirconium boride (ZrB 2 ) was heated and melted by a DC arc (current: 150 A) in an atmosphere of 50% H 2 —Ar to obtain ultrafine zirconium boride powder. Got

得られた超微粉の電子顕微鏡写真を第4図に、粉末X線
回折図形を第5図に示す。ジルコニウム硼化物の超微粒
子は、主として球形の粒子であり、その粒径はいずれも
0.2μm以下の超微粒子であった。また、第5図の粉末
X線回折図形より、このジルコニウム硼化物は六方晶形
に属する硼化ジルコニウム(ZrB)であることが判
明した。
An electron micrograph of the obtained ultrafine powder is shown in FIG. 4, and a powder X-ray diffraction pattern is shown in FIG. Zirconium boride ultrafine particles are mainly spherical particles, and their particle sizes are all
The particles were ultrafine particles of 0.2 μm or less. Further, from the powder X-ray diffraction pattern of FIG. 5, it was found that this zirconium boride was zirconium boride (ZrB 2 ) belonging to the hexagonal crystal form.

発明の効果 このように、本発明の方法によれば、簡易な装置によ
り、容易かつ無公害的に高純度な金属硼化物の超微粉を
製造することができる。また、このようにして得られた
金属硼化物超微粉は、金属硼化物の焼結温度・圧力等の
条件を著しく緩和できるという効果を有するばかりでは
なく、触媒や電子材料、超電導材料として新しい機能を
開発することができるという優れた効果も発現し得られ
という特徴を有する。
EFFECTS OF THE INVENTION As described above, according to the method of the present invention, it is possible to easily and nonpollutingly produce high-purity ultrafine metal boride powder with a simple apparatus. Further, the ultrafine metal boride powder thus obtained not only has the effect of remarkably relaxing the conditions such as the sintering temperature and pressure of the metal boride, but also has a new function as a catalyst, an electronic material, and a superconducting material. It has a characteristic that an excellent effect that it can be developed can be expressed.

【図面の簡単な説明】[Brief description of drawings]

第1図は金属硼化物超微粉を製造する装置の実施態様
図、第2図および第4図は金属硼化物超微粒子の電子顕
微鏡写真、第3図および第5図は金属硼化物超微粉のX
線回折図形を示す。 1:密閉容器、2:熱プラズマ 3:溶融金属硼化物、4:雰囲気ガス導入口 5:溶解台、6:冷却器 7:超微粉捕集器
FIG. 1 is an embodiment of a device for producing ultrafine metal boride powder, FIGS. 2 and 4 are electron micrographs of ultrafine metal boride particles, and FIGS. 3 and 5 are ultrafine metal boride powders. X
A line diffraction pattern is shown. 1: Closed container, 2: Thermal plasma 3: Molten metal boride, 4: Atmosphere gas inlet port 5: Melting stand, 6: Cooler 7: Ultrafine powder collector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水素または水素と不活性ガスとの混合ガス
雰囲気中で発生した熱プラズマにより、周期表Ia、II
a、IIIa、IVa、VaおよびVIa族金属の硼化物ある
いは該金属と硼素との混合物を加熱・溶融することによ
り該金属硼化物を蒸発・凝縮させることを特徴とする該
金属の硼化物超微粉の製造法。
1. Periodic tables Ia and II are produced by thermal plasma generated in hydrogen or a mixed gas atmosphere of hydrogen and an inert gas.
A boride ultrafine powder of a metal, characterized in that a boride of a metal of group a, IIIa, IVa, Va and VIa or a mixture of the metal and boron is heated and melted to evaporate and condense the metal boride. Manufacturing method.
JP110287A 1987-01-08 1987-01-08 Method for producing ultrafine metal boride powder Expired - Lifetime JPH0639326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP110287A JPH0639326B2 (en) 1987-01-08 1987-01-08 Method for producing ultrafine metal boride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP110287A JPH0639326B2 (en) 1987-01-08 1987-01-08 Method for producing ultrafine metal boride powder

Publications (2)

Publication Number Publication Date
JPS63170212A JPS63170212A (en) 1988-07-14
JPH0639326B2 true JPH0639326B2 (en) 1994-05-25

Family

ID=11492120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP110287A Expired - Lifetime JPH0639326B2 (en) 1987-01-08 1987-01-08 Method for producing ultrafine metal boride powder

Country Status (1)

Country Link
JP (1) JPH0639326B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543710A (en) * 2005-06-17 2008-12-04 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing a solid mixture containing nanoparticulate lanthanoid / boron-compound or nanoparticulate lanthanoid / boron-compound
JP2012506834A (en) * 2008-10-27 2012-03-22 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing suspensions of nanoparticulate metal borides
JP2013527111A (en) * 2010-05-18 2013-06-27 オー.ティー.エヌ.ディー.−オネット テクノロジーズ ニュークリア デコミッショニング Method for preparing boron nanoparticles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643248B2 (en) * 1987-09-18 1994-06-08 科学技術庁金属材料技術研究所長 Method for producing transition metal boride fiber
JP4356313B2 (en) * 2001-12-19 2009-11-04 住友金属鉱山株式会社 Method for producing metal compound fine powder
US7635458B1 (en) 2006-08-30 2009-12-22 Ppg Industries Ohio, Inc. Production of ultrafine boron carbide particles utilizing liquid feed materials
US7776303B2 (en) 2006-08-30 2010-08-17 Ppg Industries Ohio, Inc. Production of ultrafine metal carbide particles utilizing polymeric feed materials
US7438880B2 (en) 2006-12-20 2008-10-21 Ppg Industries Ohio, Inc. Production of high purity ultrafine metal carbide particles
CN112891967A (en) * 2021-01-25 2021-06-04 钟笔 Ultrafine powder particle aggregation cooling pipe type structure and ultrafine powder particle forming method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543710A (en) * 2005-06-17 2008-12-04 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing a solid mixture containing nanoparticulate lanthanoid / boron-compound or nanoparticulate lanthanoid / boron-compound
JP2012506834A (en) * 2008-10-27 2012-03-22 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing suspensions of nanoparticulate metal borides
JP2013527111A (en) * 2010-05-18 2013-06-27 オー.ティー.エヌ.ディー.−オネット テクノロジーズ ニュークリア デコミッショニング Method for preparing boron nanoparticles

Also Published As

Publication number Publication date
JPS63170212A (en) 1988-07-14

Similar Documents

Publication Publication Date Title
US4642207A (en) Process for producing ultrafine particles of ceramics
Bardakhanov et al. Nanopowder production based on technology of solid raw substances evaporation by electron beam accelerator
Fahrenholtz et al. Synthesis of ultra-refractory transition metal diboride compounds
Liu et al. Chrysanthemum-like high-entropy diboride nanoflowers: A new class of high-entropy nanomaterials
Zhang et al. Single-step pathway for the synthesis of tungsten nanosized powders by RF induction thermal plasma
Chen et al. Preparation and some properties of nanocrystalline ZrB2 powders
Chen et al. Synthesis and oxidation of nanocrystalline HfB2
JP4356313B2 (en) Method for producing metal compound fine powder
JPH0639326B2 (en) Method for producing ultrafine metal boride powder
JPH0327601B2 (en)
Wu et al. Preparation and purification of titanium carbide via vacuum carbothermic reduction of ilmenite
CN107473237A (en) A kind of preparation method of binary tungsten boride superhard material
Watanabe et al. Formation mechanism of electrically conductive nanoparticles by induction thermal plasmas
Shen et al. A simple route to prepare nanocrystalline titanium carbonitride
CN105316501A (en) Rare earth-magnesium-based hydrogen storage alloy and preparation method thereof
Liu et al. Synthesis and characteristics of Ti–Fe nanoparticles by hydrogen plasma–metal reaction
Wang et al. Effect of NaCl on synthesis of ZrB 2 by a borothermal reduction reaction of ZrO 2
Yang et al. The mechanism of formation of TiB 2 particulates prepared by In Situ reaction in molten aluminum
CN1037073C (en) Preparation method of high melting point nm metal catalyzer
CN101220516B (en) Low-temperature method for manufacturing nano-MgO crystal whisker
Ronsheim et al. Thermal plasma synthesis of transition metal nitrides and alloys
Li et al. Evolution of metal nitriding and hydriding reactions during ammonia plasma-assisted ball milling
Wu et al. Low temperature synthesis of titanium diboride nanosheets by molten salt–assisted borothermal reduction of TiO 2
WO2015014034A1 (en) Preparation method for nano-rod of metal-coordinated hydride
TW201609536A (en) Novel process and product

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term