JPH0638714B2 - High voltage ultra short pulse power supply - Google Patents
High voltage ultra short pulse power supplyInfo
- Publication number
- JPH0638714B2 JPH0638714B2 JP57172797A JP17279782A JPH0638714B2 JP H0638714 B2 JPH0638714 B2 JP H0638714B2 JP 57172797 A JP57172797 A JP 57172797A JP 17279782 A JP17279782 A JP 17279782A JP H0638714 B2 JPH0638714 B2 JP H0638714B2
- Authority
- JP
- Japan
- Prior art keywords
- pulse
- capacitor
- power supply
- transformer
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/53—Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
- H03K3/537—Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a spark gap
Landscapes
- Generation Of Surge Voltage And Current (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は電気集じん装置のパルス荷電、ボクサーチャー
ジャのパルス荷電をはじめ、著しくパルス巾の短いパル
ス高電圧を要求する負荷を対象として1〜1000(ns)のパ
ルス巾の高電圧極短パルスを継続的に発生するための電
源装置に関すものである。TECHNICAL FIELD The present invention is intended for loads requiring a pulse high voltage having a remarkably short pulse width, including pulse charging of an electrostatic precipitator and pulse charging of a boxer charger. The present invention relates to a power supply device for continuously generating a high voltage ultrashort pulse having a pulse width of (ns).
従来の技術 第1図に示す回路は、従来一般に使用されている短い巾
のパルスを発生する回路であり、まずその動作について
以下に説明する。2. Description of the Related Art The circuit shown in FIG. 1 is a circuit for generating a pulse having a short width, which is generally used in the past, and its operation will be described below.
交流電源1から供給される交流電圧は、昇圧変圧器2で
高電圧に昇圧した後、整流器3〜6で単相全波整流さ
れ、限流抵抗器7を通じてコンデンサ8を充電して行
く。コンデンサ8の電圧は充電されるに従って上昇して
行き、火花スイッチを構成する火花ギャップ9の火花発
生電圧Vsに到達すると、ここで火花が発生し、負荷を
接続せる出力端子10、11間を通じてコンデンサが放電
し、端子10、11間に高電圧パルスを発生する。火花ギャ
ップで火花が発生した場合の最大の問題は、火花の続発
または放電電流の続流発生で、これらをなくすためには
コンデンサ8に充電する時定数を大きくする必要があ
り、このため限流抵抗器7は相当大きな抵抗値を必要と
する。火花放電の続流をなくすためにはこの時定数を約
2mSecぐらいにする必要があり、その結果交流電源の
半サイクル内のパルス発生回数は実用上は3回ぐらいに
制限される。火花ギャップは自爆型が安価であるが、気
温、気圧、ギャップ表面の状態等によってその火花電圧
Vsが変化し、パルスの発生回路と間隔が一定でなくな
るという欠点がある。火花ギャップとしてはトリガー用
電極を備えたいわゆる三点式火花ギャップやレーザービ
ームで火花をトリガーするようにしたレーザートリガー
式火花ギャップや、加圧SF6ガス中にギャップを封入
してスイッチ速度を上げたもの、あるいは水素ガスを入
れた容器中に火花スイッチを封入せるもの等を用いるこ
とができる。トリガー式火花ギャップを使用すると、火
花発生電圧とか、火花発生間隔は一定になるが、高価に
なる欠点がある。The AC voltage supplied from the AC power supply 1 is boosted to a high voltage by the step-up transformer 2 and then single-phase full-wave rectified by the rectifiers 3 to 6, and the capacitor 8 is charged through the current limiting resistor 7. The voltage of the capacitor 8 rises as it is charged, and when it reaches the spark generation voltage Vs of the spark gap 9 that constitutes the spark switch, a spark is generated here, and the capacitor is passed between the output terminals 10 and 11 to which the load can be connected. Is discharged and a high voltage pulse is generated between terminals 10 and 11. The biggest problem when sparks occur in the spark gap is the continuous sparks or the continuous current of the discharge current. To eliminate these, the time constant for charging the capacitor 8 must be increased. The resistor 7 requires a considerably large resistance value. This time constant needs to be about 2 mSec in order to eliminate the follow-up of the spark discharge, and as a result, the number of pulses generated in a half cycle of the AC power supply is practically limited to about 3 times. Although the self-destruction type spark gap is inexpensive, there is a drawback in that the spark voltage Vs varies depending on the temperature, atmospheric pressure, the state of the gap surface, etc., and the pulse generation circuit and the interval are not constant. As the spark gap, a so-called three-point spark gap with a trigger electrode, a laser trigger spark gap in which sparks are triggered by a laser beam, or a gap enclosed in pressurized SF 6 gas to increase the switch speed Alternatively, a container in which a spark switch is enclosed in a container containing hydrogen gas can be used. When the trigger type spark gap is used, the spark generation voltage and the spark generation interval become constant, but there is a drawback that it becomes expensive.
発明が解決しようとする課題 従来方式の火花ギャップにおいては火花放電の続発を防
止するため、コンデンサ充電電圧の上昇速度を抑える必
要がある。このために直列に入れた限流抵抗器7での電
圧損失は極めて大きく、これが最大の欠点となる。また
コンデンサの充電時定数が決定されているため、現場で
簡単に高電圧パルスの頻度を変更することが困難であ
る。一方、限流抵抗値を下げると充電時定数が小さくな
って、火花放電が続発し易くなり、所定のパルス、パル
ス巾、ならびにパルス周波数を有する必要なパルスが得
られなくなる欠点がある。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the conventional spark gap, it is necessary to suppress the rising speed of the capacitor charging voltage in order to prevent the continuous spark discharge. For this reason, the voltage loss in the current limiting resistor 7 inserted in series is extremely large, which is the greatest drawback. Moreover, since the charging time constant of the capacitor is determined, it is difficult to easily change the frequency of the high voltage pulse on site. On the other hand, when the current limiting resistance value is lowered, the charging time constant becomes small, spark discharge is likely to occur successively, and necessary pulses having a predetermined pulse, pulse width and pulse frequency cannot be obtained.
本発明は安価な手段で上記欠点をなくした回路構成を得
ることをその目的とするものである。An object of the present invention is to obtain a circuit configuration which eliminates the above-mentioned drawbacks by an inexpensive means.
課題を解決するための手段 この発明の高電圧極短パルス電源装置は低圧交流電源に
昇圧変圧器の一次側を接続し、その昇圧変圧器の二次側
に整流器を介してパルス発生用の高電圧コンデンサを接
続し、該高電圧発生用コンデンサの一方の端子に自爆型
火花スイッチを介してパルス出力端子を接続し、又該コ
ンデンサの他方の端子に今一つのパルス出力端子を接続
する高電圧極短パルス発生電源において該交流電源と昇
圧変圧器の一次側の間にオン・オフ用の制御機能を有す
る制御素子を接続し、また該コンデンサと前記今一つの
パルス出力端子との間にパルス電流検出素子を設け、そ
のパルス電流検出素子の出力側を前記制御素子の制御側
に接続して、該自爆型火花スイッチの動作毎にその火花
を検出することによって、該オン・オフ用の制御素子を
オフさせ、これによって該自爆型スイッチの火花の続発
ないし続流を防止するものである。Means for Solving the Problems A high-voltage ultrashort pulse power supply device of the present invention connects a primary side of a step-up transformer to a low-voltage AC power supply, and a high-side pulse generator through a rectifier on the secondary side of the step-up transformer. A high-voltage electrode having a voltage capacitor connected thereto, a pulse output terminal connected to one terminal of the high-voltage generating capacitor through a self-destructive spark switch, and another pulse output terminal connected to the other terminal of the capacitor. In the short pulse generating power supply, a control element having an on / off control function is connected between the AC power supply and the primary side of the step-up transformer, and a pulse current is detected between the capacitor and the other pulse output terminal. An element is provided, the output side of the pulse current detection element is connected to the control side of the control element, and the spark for each operation of the self-destruction type spark switch is detected to detect the on / off control. The control element is turned off to prevent the spark of the self-destruct switch from continuing.
作用 高電圧コンデンサに充電された充電電圧が火花電圧Vs
に到達すると、火花ギャップに火花が発生し、負荷を接
続せるパルス出力端子間を通じて、該高電圧コンデンサ
が放電し、そのパルス出力端子間に高電圧パルスを発生
する。この際における高電圧コンデンサの放電をそのコ
ンデンサと今一つのパルス出力端子との間に介入せるパ
ルス電流検出素子によって検出し、このパルス電流検出
素子の検出電流に基いて、前記変圧器の一次側に挿入せ
る制御素子をオフさせて、該火花ギャップ間における火
花放電直後の続発及び続流現象を防止する。Action The charging voltage charged in the high voltage capacitor is the spark voltage Vs
When the voltage reaches, a spark is generated in the spark gap, the high voltage capacitor is discharged through the pulse output terminals to which the load is connected, and a high voltage pulse is generated between the pulse output terminals. The discharge of the high-voltage capacitor at this time is detected by a pulse current detection element that intervenes between the capacitor and another pulse output terminal, and based on the detection current of this pulse current detection element, the primary side of the transformer is detected. The control element to be inserted is turned off to prevent the continuous and continuous flow phenomenon immediately after the spark discharge in the spark gap.
さらにのべれば、該パルス電流検出素子によって検出さ
れた火花発生信号を増巾器で増巾し、その出力の一部を
制御信号発生回路に送り、その制御信号発生回路からの
信号を制御素子に送って、変圧器の一次電流をブロック
して上記火花放電直後の続発及び続流を防止するもので
ある。If further stated, the spark generation signal detected by the pulse current detection element is amplified by the amplifier and a part of the output is sent to the control signal generation circuit to control the signal from the control signal generation circuit. It is sent to the element to block the primary current of the transformer and prevent the continuous current and the continuous current immediately after the spark discharge.
またこの際、増巾器からの出力信号の他の一部は誤差信
号回路に送られ、ここで、予じめ設定回路で設定された
パルス発生位相とパルス数の目標値と比較し、その誤差
信号を増巾された後制御信号発生回路に送出し、更に前
記変圧器の一次側の制御素子に送ることによって、前記
半サイクル内の初回パルス発生位相とパルス数を一定に
するものである。At this time, another part of the output signal from the amplifier is sent to the error signal circuit, where the pulse generation phase set by the advance setting circuit and the target value of the pulse number are compared and The error signal is sent to the control signal generating circuit after being amplified and then sent to the control element on the primary side of the transformer to make the initial pulse generation phase and the number of pulses within the half cycle constant. .
実施例 本発明の実施例を添付図面によって説明すると第2図は
本発明の基本的な回路構成を示すもので、そのまま電気
集じん装置のパルス荷電用電源として用いることができ
る。交流電源1と変圧器2の間の主回路に逆並列に接続
された制御用素子18、19が挿入されている。本図の例で
は該制御素子18、19は電力用トランジスタを用いている
が、それを用いる代りにサイリスタ、トライアックまた
は真空管を使用してもよい。13は火花ギャップ9で火花
放電が発生したことを検出するためのパルス電流検出素
子である。なお、火花が発生したことを検出とする手段
としては、コンデンサ8電圧変化の検出を用いてもよい
ことはいうまでもない。EXAMPLE An example of the present invention will be described with reference to the accompanying drawings. FIG. 2 shows a basic circuit configuration of the present invention, which can be directly used as a power source for pulse charging of an electrostatic precipitator. Control elements 18 and 19 connected in antiparallel are inserted in the main circuit between the AC power source 1 and the transformer 2. In the example shown in the figure, the control elements 18 and 19 use power transistors, but instead of using them, thyristors, triacs or vacuum tubes may be used. Reference numeral 13 is a pulse current detection element for detecting the occurrence of spark discharge in the spark gap 9. Needless to say, the detection of the change in the voltage of the capacitor 8 may be used as the means for detecting the occurrence of the spark.
検出素子13によって検知された火花発生信号は増巾器14
で増幅され、その出力の一部は制御信号発生回路17に供
給される。この制御信号発生回路17はその増巾器14から
の信号によって直ちに該交流電源の主回路の制御素子1
8、19のインピーダンスが最大になるような制御信号を
送出して変圧器2の一次電流をブロックし、これにより
火花放電の続発及び続流の発生を防止する。The spark generation signal detected by the detecting element 13 is an amplifier 14
Is amplified by, and a part of the output is supplied to the control signal generation circuit 17. The control signal generating circuit 17 immediately controls the control element 1 of the main circuit of the AC power supply by the signal from the amplifier 14.
A control signal for maximizing the impedance of 8 and 19 is sent to block the primary current of the transformer 2, thereby preventing the occurrence of spark discharge and the follow current.
15は半サイクル内の最初の火花放電を発生する位相と半
サイクル内のパルス数とを設定する設定回路である。増
巾器14からの他の出力信号は誤差増幅回路16に送付さ
れ、ここで予じめ設定回路15で設定されたパルス発生位
相とパルス数の目標値と比較され、その誤差信号が増幅
された後前記変圧器2の一次回路の制御素子18,19用の
制御信号を出す回路17に送出されて、フィードバック回
路を形成している。Reference numeral 15 is a setting circuit for setting the phase for generating the first spark discharge in the half cycle and the number of pulses in the half cycle. The other output signal from the amplifier 14 is sent to the error amplification circuit 16, where the pulse generation phase set in the advance setting circuit 15 is compared with the target value of the pulse number, and the error signal is amplified. After that, it is sent to a circuit 17 for issuing control signals for the control elements 18, 19 of the primary circuit of the transformer 2 to form a feedback circuit.
第2図のコンデンサ8には直列抵抗器は入れていない
が、充電時定数を上げるための大きな抵抗ではなく、保
護用としての小さな値の抵抗器は入れてもさしつかえな
い。A series resistor is not inserted in the capacitor 8 in FIG. 2, but a resistor having a small value for protection may be inserted instead of a large resistor for increasing the charging time constant.
本回路構成で入力電圧のピーク値付近でコンデンサ8へ
充電を生ぜしめる時は、急速な充電が行われ大きな電流
を通じ、ダイオード等に悪影響が生じる。かかる場合
は、制御素子18、19を数100μsぐらいでくり返しオン
・オフさせ、これにより充電するとよく、このように誤
差増巾回路16の回路構成を作ることもできる。また、オ
ン・オフ動作でなく、該主回路の制御素子18、19をドロ
ッパとして使用してもかまわない。When the capacitor 8 is charged in the vicinity of the peak value of the input voltage in this circuit configuration, rapid charging is performed and a large current is passed, which adversely affects the diode and the like. In such a case, the control elements 18 and 19 may be repeatedly turned on and off in a few hundreds of microseconds to charge them, and the circuit configuration of the error amplification circuit 16 can be made in this way. Further, the control elements 18 and 19 of the main circuit may be used as a dropper instead of the on / off operation.
上記の実施例のようにすることによって、コンデンサ8
に充電する時の前記従来のような限流抵抗による損失が
殆んどなくなり、且つ自爆型火花スイッチを用いる場合
でも前記半サイクル内の初回パルス発生位相をほぼ一定
にでき、かつ火花放電の続発と続流とを防止したパルス
電源を安価に実現することが可能となるのである。By doing as in the above embodiment, the capacitor 8
The loss due to the conventional current limiting resistance when charging the battery is almost eliminated, and even when a self-destruction type spark switch is used, the initial pulse generation phase in the half cycle can be made almost constant, and the spark discharge continues. Therefore, it becomes possible to realize a pulse power supply that prevents the following current and the current flow at low cost.
第3図は半波整流を行う場合における本発明の一実施例
を示すもので、20がその整流器である。その実施例の動
作は前述の第2図のものと同様で、自明であるので説明
を省略する。なお本発明はその応用例の一つとして、本
願発明者が別発明「粒子荷電装置」(特願昭55−13211
2)(特開昭57−56055号公報参照)で提案せるボクサー
チャージャ用電源にも適用可能である。第4図はその一
例で、図において前述の各実施例と同一図面符号の部分
及び同一図符号にダッシュ符号を付した部分はその部分
名称と機能も同一であり、前記変圧器2の二次側は前記
実施例における二組のパルス出力端子10、11及び10′,
11′が図示の通り接続されており、これらの各組の一方
のパルス出力端子11及び11′に交流電源1′と、前述の
ボクサーチャージャの主電界形成用の中間タップ付昇圧
変圧器21の二次側端子が夫々限流抵抗22、22′を介して
接続され、その変圧器21の出力は端子11、11′より相対
向するボクサーチャージャの電極間に印加され、その間
の荷電空間に荷電用交番電界を形成する。そして端子11
が負のピーク値付近となった時、予め整流器3を介して
充電されていたコンデンサ8が自爆型スパークギャップ
9を通じて放電し、パルス出力端子10、11間にパルス高
電圧を発生し、これが端子11に一方の電極要素を接続せ
るボクサーチャージャ電極の対向電極要素間に印加さ
れ、ストリーマー放電によるプラズマを形成、ここから
負イオンを上記荷電空間に放出する。FIG. 3 shows an embodiment of the present invention in the case of performing half-wave rectification, and 20 is the rectifier. The operation of this embodiment is the same as that of FIG. 2 described above, and since it is self-explanatory, description thereof will be omitted. As one of the application examples of the present invention, the inventor of the present invention has another invention "Particle charging device" (Japanese Patent Application No. 55-13211).
2) It can also be applied to the boxer charger power supply proposed in JP-A-57-56055. FIG. 4 shows an example thereof. In the figure, the parts having the same reference numerals and parts having the same reference numerals as those in the above-mentioned respective embodiments have the same part names and functions. The side has two sets of pulse output terminals 10, 11 and 10 ',
11 'are connected as shown in the figure, and one of the pulse output terminals 11 and 11' of each of these sets has an AC power supply 1'and a step-up transformer 21 with an intermediate tap for forming the main electric field of the boxer charger. The secondary side terminals are connected via current limiting resistors 22 and 22 ', respectively, and the output of the transformer 21 is applied between the electrodes of the boxer chargers facing each other from terminals 11 and 11', and the charging space between them is charged. Forming an alternating electric field for use. And terminal 11
When is near the negative peak value, the capacitor 8 which has been charged in advance through the rectifier 3 is discharged through the self-explosion spark gap 9 and a pulse high voltage is generated between the pulse output terminals 10 and 11, which is the terminal. 11 is applied between the opposing electrode elements of the boxer charger electrode to which one of the electrode elements can be connected to form plasma by streamer discharge, from which negative ions are emitted to the above-mentioned charged space.
この時整流器3′はブロックしているので、コンデンサ
8′は休止している。次に変圧器21の極性が反転すると
コンデンサ8′が充放電して端子10′11′間にパルス高
電圧を発生し、11′に一方の電極要素を接続せるいま一
つのボクサーチャージャ電極の対向電極要素間にこれが
印加され、ここから同じく負イオンを該荷電空間に放出
し、かくてその中に進入せるダスト粒子に両方向から負
イオンが射突してこれを迅速に荷電する。At this time, since the rectifier 3'is blocked, the capacitor 8'is inactive. Next, when the polarity of the transformer 21 is reversed, the capacitor 8'is charged and discharged to generate a pulsed high voltage between the terminals 10 'and 11', and one electrode element is connected to 11 '. This is applied between the electrode elements, from which also negative ions are emitted into the charging space and thus dust particles impinging into the dust particles from both directions are rapidly charged.
発明の効果 本発明は上述の通りであるので、自爆型火花スイッチの
動作毎にその火花をパルス電流検出素子によって検出す
ることができ、続いてその検出素子によって交流電源と
変圧器の一次側との間に挿入した制御素子をオフさせる
ことができるため、前記課題における火花放電の続発と
続流を防止した極短パルス高圧電源を安価に実現するこ
とができる。EFFECTS OF THE INVENTION Since the present invention is as described above, the spark can be detected by the pulse current detection element for each operation of the self-destruction type spark switch, and then the detection element can detect the AC power supply and the primary side of the transformer. Since the control element inserted between the two can be turned off, it is possible to inexpensively realize the ultrashort pulse high-voltage power supply that prevents the continuous spark discharge and the continuous current in the above problems.
また、高電圧コンデンサに充電する際、従来の装置のよ
うに限流抵抗を設ける場合と比較して、その限流抵抗に
よる損失がなくなる。Further, when charging the high voltage capacitor, the loss due to the current limiting resistance is eliminated as compared with the case where the current limiting resistance is provided as in the conventional device.
また更に自爆型火花スイッチでも、前記の半サイクル内
の初回パルス発生位相をほぼ一定にすることができると
共に、火花放電の続発と続流を防止した極短パルス高圧
電源を安価に実現することができる。Furthermore, even with a self-destruction type spark switch, the initial pulse generation phase in the half cycle can be made almost constant, and an ultrashort pulse high-voltage power supply that prevents continuous spark discharge and continuous current can be realized at low cost. it can.
第1図は従来の電気集じん装置用パルス荷電用電源の基
本回路構成を示す図、第2図および第3図は本発明の実
施例を示す回路図、第4図は本発明をボクサーチャージ
ャ用電源に実施した場合の回路図である。 図における主要な要素を説明すると次のようになる。 1、1′……交流電源(電圧可変要素の付属したもので
もよい) 2……高電圧用変圧器 3〜6……整流器 7、7′……限流抵抗器 8、8′……コンデンサ 9、9′……火花ギャップ 10、11及び10′、11′……パルス出力端子 13、13′……火花放電検出用素子 14……火花放電検出信号用増巾回路 15……半サイクル内の初回火花放電位相設定および火花
放電発生回数(パルス発生回数)設定回路 16……回路15で設定された目標値に対する誤差信号増幅
回路 17……主回路制御素子の制御信号発生回路 18、19……主回路制御素子(トランジスタ、サイリスタ
等) 20……ダイオード 21……中間タップ付昇圧変圧器 22、22′……限流抵抗器FIG. 1 is a diagram showing a basic circuit configuration of a conventional pulse charging power source for an electrostatic precipitator, FIGS. 2 and 3 are circuit diagrams showing an embodiment of the present invention, and FIG. 4 is a boxer charger of the present invention. It is a circuit diagram at the time of implementing into a power supply for use. The main elements in the figure are as follows. 1, 1 '... AC power supply (may be equipped with variable voltage element) 2 ... High-voltage transformer 3-6 ... Rectifier 7, 7' ... Current limiting resistor 8, 8 '... Capacitor 9, 9 '... Spark gap 10, 11 and 10', 11 '... Pulse output terminals 13, 13' ... Spark discharge detection element 14 ... Spark discharge detection signal amplification circuit 15 ... Within half cycle Initial spark discharge phase setting circuit and spark discharge generation frequency (pulse generation frequency) setting circuit 16 …… Error signal amplification circuit for target value set by circuit 15 ………… Main circuit control element control signal generation circuit 18, 19… … Main circuit control elements (transistors, thyristors, etc.) 20 …… Diode 21 …… Step-up transformer with intermediate tap 22,22 ′ …… Current limiting resistor
Claims (3)
変圧器の二次側に整流器を介してパルス発生用の高電圧
コンデンサを接続し、該高電圧発生用コンデンサの一方
の端子に極短パルスを継続的に発生するための自爆型火
花スイッチを介してパルス出力端子を、又該コンデンサ
の他方の端子に今一つのパルス出力端子を接続する高電
圧極短パルス発生電源において、該交流電源と変圧器の
一次側の間にオン・オフ用の制御機能を有する制御素子
を接続し、また該コンデンサと前記今一つのパルス出力
端子との間にパルス電流検出素子を設け、そのパルス電
流検出素子の出力側を前記オン・オフ用の制御素子の制
御側に制御信号発生回路を介して接続することを特徴と
する高電圧極短パルス電源装置。1. A primary side of a transformer is connected to an AC power source, a high voltage capacitor for pulse generation is connected to a secondary side of the transformer via a rectifier, and one terminal of the high voltage generating capacitor is connected. In a high-voltage ultrashort pulse generation power supply in which a pulse output terminal is connected via a self-destruction type spark switch for continuously generating an ultrashort pulse, and another pulse output terminal is connected to the other terminal of the capacitor, A control element having an ON / OFF control function is connected between the AC power supply and the primary side of the transformer, and a pulse current detection element is provided between the capacitor and the other pulse output terminal, and the pulse current thereof is provided. A high-voltage ultrashort pulse power supply device characterized in that the output side of the detection element is connected to the control side of the on / off control element via a control signal generation circuit.
を順次制御信号発生回路と増巾器を直列接続すると共
に、該制御信号発生回路と増巾器の間に誤差増巾回路を
並列接続し、さらにその誤差増巾回路に半サイクル内の
最初の火花放電を発生する位相と半サイクル内のパルス
数との設定回路を接続して該整流器により生ずると整流
波形における半サイクル内の初発のパルス位相を該制御
素子により制御できるようにし、パルス発生頻度を該制
御素子のオン・オフによって可変出来るようにしたこと
を特徴とする所の特許請求の範囲1.に記載の高電圧極
短パルス電源装置。2. A control signal generating circuit and an amplifier are serially connected in series between the control element and the pulse current detecting element, and an error amplifier circuit is connected in parallel between the control signal generating circuit and the amplifier. Connected to the error amplification circuit is a circuit for setting the phase for generating the first spark discharge in the half cycle and the number of pulses in the half cycle. The pulse phase of 1. can be controlled by the control element, and the pulse generation frequency can be changed by turning on and off the control element. The high-voltage ultra-short pulse power supply device described in.
変圧器における二組の二次側出力側端子に夫々整流器を
介してパルス発生用の高圧コンデンサを接続し、該各高
電圧発生用コンデンサの一方の端子に極短パルスを継続
的に発生するための自爆型火花スイッチを介してパルス
出力端子を、又該コンデンサの他方の端子に今一つのパ
ルス出力端子を接続し、該交流電源と変圧器の一次側の
間にオン・オフ用の制御機能を有する制御素子を接続
し、また該各コンデンサと各前記今一つのパルス出力端
子との間に夫々パルス電流検出素子を設け、そのパルス
電流検出素子の出力側を前記オン・オフ用制御素子の制
御側に接続し、前記各今一つのパルス出力端子に別に設
けられたボクサーチャージャの主電界形成用の中間タッ
プ付昇圧変圧器の各二次側端子を接続することを特徴と
する高電圧極短パルスの電源装置。3. A primary side of a transformer is connected to an AC power source, and high voltage capacitors for pulse generation are connected to two sets of secondary side output side terminals of the transformer through rectifiers, respectively, and each high voltage A pulse output terminal is connected to one terminal of the generating capacitor through a self-destruction type spark switch for continuously generating an ultrashort pulse, and another pulse output terminal is connected to the other terminal of the capacitor, and the AC A control element having a control function for on / off is connected between the power source and the primary side of the transformer, and a pulse current detection element is provided between each capacitor and each of the other pulse output terminals. The output side of the pulse current detection element is connected to the control side of the on / off control element, and each of the step-up transformers with intermediate taps for forming the main electric field of the boxer charger is separately provided for each of the other pulse output terminals. Power supply high-voltage ultrashort pulses, characterized by connecting the following side terminals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57172797A JPH0638714B2 (en) | 1982-10-01 | 1982-10-01 | High voltage ultra short pulse power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57172797A JPH0638714B2 (en) | 1982-10-01 | 1982-10-01 | High voltage ultra short pulse power supply |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5963986A JPS5963986A (en) | 1984-04-11 |
JPH0638714B2 true JPH0638714B2 (en) | 1994-05-18 |
Family
ID=15948536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57172797A Expired - Lifetime JPH0638714B2 (en) | 1982-10-01 | 1982-10-01 | High voltage ultra short pulse power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0638714B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61191274A (en) * | 1985-01-22 | 1986-08-25 | Mitsubishi Heavy Ind Ltd | Impact high voltage generator |
EP0230850B1 (en) * | 1986-01-30 | 1993-12-29 | Mitsubishi Jukogyo Kabushiki Kaisha | Impulse high voltage generator |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58119779A (en) * | 1982-01-12 | 1983-07-16 | Toshiba Corp | Charger for impact voltage generator |
-
1982
- 1982-10-01 JP JP57172797A patent/JPH0638714B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
静電気学会編「静電気ハンドブック」(昭56−5−30)オーム社P.481−484 |
Also Published As
Publication number | Publication date |
---|---|
JPS5963986A (en) | 1984-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6221280B2 (en) | ||
EP0661100B1 (en) | Electric dust collector | |
US4382171A (en) | Arc welding current supply | |
IE781295L (en) | Generation of pulses | |
JPS5999976A (en) | Power source circuit for electrostatic dust separator | |
US3987354A (en) | Regulating circuit | |
JPH0638714B2 (en) | High voltage ultra short pulse power supply | |
GB1130532A (en) | Ignition circuit with voltage regulator | |
US3944780A (en) | Power supply source for arc welding | |
US4103258A (en) | Pulse generator including a capacitor which is discharged through a thyristor | |
JP4245761B2 (en) | Pulse superposition type high voltage generator for electrostatic application equipment and electrostatic application equipment | |
US4099072A (en) | Variable pulse width circuit | |
US2402608A (en) | Circuit for electrical space discharge devices and method of operating same | |
SU967710A1 (en) | Welding burner power source | |
JPS6344685Y2 (en) | ||
JP2569043B2 (en) | Drive circuit for discharge tube | |
SU1763025A1 (en) | Device for electric filter power feeding by alternating sign voltage | |
JPH0234468Y2 (en) | ||
JPH06328005A (en) | Electric power controlling method of electric dust collector | |
SU1393557A1 (en) | Apparatus for electric discharge alloying | |
JP2507507B2 (en) | Power supply for accelerating charged particles | |
JPH0119473Y2 (en) | ||
JPS589512Y2 (en) | Thyristor gate signal generator | |
JPH08300148A (en) | Arc working equipment | |
JPS5835617A (en) | Power supply device |