JPH0638635A - Wave length changing material - Google Patents

Wave length changing material

Info

Publication number
JPH0638635A
JPH0638635A JP4350581A JP35058192A JPH0638635A JP H0638635 A JPH0638635 A JP H0638635A JP 4350581 A JP4350581 A JP 4350581A JP 35058192 A JP35058192 A JP 35058192A JP H0638635 A JPH0638635 A JP H0638635A
Authority
JP
Japan
Prior art keywords
light
emission
fluorescent dye
spectrum
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4350581A
Other languages
Japanese (ja)
Inventor
Hiroshi Takahashi
弘 高橋
Nobuo Matsui
宣夫 松井
Atsushi Yanagisawa
篤 柳沢
Takeshi Naohara
剛士 猶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP4350581A priority Critical patent/JPH0638635A/en
Publication of JPH0638635A publication Critical patent/JPH0638635A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Greenhouses (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Cultivation Of Plants (AREA)
  • Protection Of Plants (AREA)

Abstract

PURPOSE:To obtain a wavelength changing material capable of harvesting in a high yield and in a short period in the case of a vegetable, etc., and of harvesting high- quality fruits in the case of a fruit by using respectively specified two kinds of fluorescent pigments selected so that the emission spectrum of one of the above mentioned pigments and the absorption spectrum of the other pigment may partly overlap each other. CONSTITUTION:The material contains (A) a fluorescent pigment (e.g. PTP or BPA) having the absorption maximum at 350 to 450nm and the emission maximum at 380 to 520nm and (B) another fluorescent pigment (e.g. lumogen F Red 300 or luminol Red Violet 635P) having the absorption maximum at 460 to 580nm and the emission maximum at 540 to 800nm. The above-mentioned two pigments are selected so that the emission spectrum of the component (A) and the absorption spectrum of the component (B) may partly overlap each other. The ratio of the emission strength of the component (A) to the strength of emission generated by a part of the excitation energy of the component (A) at the position of emission of the component (B) is 0.2 to 5. The Stokes' shift of the components (A) and (B) is >=20nm and the absorbance values of the fluorescent pigments at each absorption maximum wavelength of the components (A) and (B) are <=1.3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は太陽光および植物工場等
で用いる人工光源の光スペクトルを植物生育を促進する
ために有効な光に変換する機能を持った農業用波長変換
資材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength conversion material for agriculture having a function of converting the light spectrum of sunlight and artificial light sources used in plant factories into light effective for promoting plant growth.

【0002】[0002]

【従来の技術】近年ハウス又はトンネル内で有用植物を
栽培する施設園芸が広く行なわれるようになり、露地栽
培と比較すると収穫量、品質ともに飛躍的に向上するた
め野菜、果物の安定供給上重要な役割を担いつつある。
施設栽培の意義の最大のものはハウス、トンネル内の保
温であり、更に雨、風、虫等の害から植物を防護するこ
とであるが、このため野菜などは季節栽培から周年栽
培、ナシ、ミカン、ブドウ、カキ、リンゴなどの果樹で
は糖度の高い形の良い実が収穫される様になって来てい
る。一方、施設園芸が広く行なわれる様になってから、
更に増収、又、高品質を指向して、太陽光のスペクトル
を植物の光合成、或いは成長活物質の生産のために有利
な形にして変換する試み、即ち、施設園芸に用いられる
合成樹脂フィルムに波長変換機能を有する蛍光性化合物
を溶解することにより植物にとって或る場合には有害で
ある近紫外線を吸収して光合成に有用に使われる青色系
の光に変換したり、光合成作用効率の低い緑色〜黄色系
の光を、より長波長の橙色〜赤色系の光に変換する試み
が多数為されている。
2. Description of the Related Art In recent years, institutional horticulture for cultivating useful plants in greenhouses or tunnels has become widespread, and compared to open-field cultivation, the yield and quality are dramatically improved, which is important for a stable supply of vegetables and fruits. Is playing a different role.
The greatest significance of institutional cultivation is to keep the heat inside the house and tunnel, and to protect the plants from damages such as rain, wind, insects, etc. Therefore, for vegetables, seasonal cultivation to year-round cultivation, pear, Fruit trees such as mandarin oranges, grapes, oysters, and apples are beginning to be harvested in good shape with high sugar content. On the other hand, after gardening became widely practiced,
Attempts to increase the yield and to improve the quality of sunlight, and to convert the spectrum of sunlight into an advantageous form for photosynthesis of plants or production of growth active materials, that is, to a synthetic resin film used for institutional horticulture. By dissolving a fluorescent compound that has a wavelength conversion function, it absorbs near-ultraviolet light, which is harmful to plants in some cases, and converts it into blue light that is useful for photosynthesis, or green with low photosynthetic efficiency. -Many attempts have been made to convert yellowish light into orange-redish light having a longer wavelength.

【0003】例えば研究法人「農業の光線選択利用技術
研究組合」(昭和39〜57年)の研究成果報告書「施
設農業における光質利用の技術化に関する総合研究」
(1976年2月、農林水産技術会議事務局)において
塩化ビニルに青蛍光物質、赤蛍光物質、およびそれらを
同時に溶解したフィルムの試作を行なったが耐光性が悪
く栽培試験を実施するに到らないまま中断したことが報
告されている。特公昭49−16301 、特開昭52−94345 、
特開平2−102265、特開平2−147651、特開平3−2110
53では、近紫外光を光合成有効光に変換する色素として
フルオレツセントブライトナー、シンチレーターなどが
提案されているが耐光性が十分でなく、施設園芸用に実
用化されるに到っていない。特開昭54−127945ではロー
ダミン6Gを用いて緑色〜黄色光を橙色〜赤色光に変換
するフィルムが開示されているがこの色素も耐光性が悪
く適切な光安定化処理を行なわない限りこのままでは実
用に耐えないものである。
For example, a research result report of the research corporation "Agricultural light ray selective utilization technology research association" (Showa 39-57) "Comprehensive research on technicalization of utilization of light quality in facility agriculture"
(February 1976, Secretariat of the Agriculture, Forestry and Fisheries Technology Council) made a trial film of a blue fluorescent substance, a red fluorescent substance, and a film in which they were simultaneously dissolved in vinyl chloride, but the light resistance was poor and a cultivation test was conducted. It has been reported that it was suspended without it. JP-B-49-16301, JP-A-52-94345,
JP-A-2-102265, JP-A-2-147651, JP-A-3-2110
In 53, fluorescent brighteners, scintillators, etc. are proposed as dyes for converting near-ultraviolet light into photosynthetic effective light, but their light resistance is insufficient and they have not been put to practical use for institutional horticulture. Japanese Unexamined Patent Publication (Kokai) No. 54-127945 discloses a film for converting green to yellow light into orange to red light by using Rhodamine 6G. However, this dye also has poor light resistance and is left as it is unless proper light stabilization treatment is carried out. It cannot be put to practical use.

【0004】特開昭57−189 にはポリエステル、ポリア
ミド、ポリカーボネート、ポリアクリレート、ポリスチ
レン、ポリスルフオンなどの溶解性パラメータが9以上
の重合体にアントラキノン系蛍光体、チオインジゴ系蛍
光体、ペリノン系蛍光体、ペリレン系蛍光体などから選
ばれた複数の有機蛍光体が溶解された波長変換可能な成
形体が開示されている。複数の有機蛍光体は短波長側の
光を吸収して励起された第1の蛍光体から、より励起エ
ネルギーの小さい第2の蛍光体へ無輻射的にエネルギー
移動する様に、即ち第1の蛍光体の発光スペクトルと第
2の蛍光体の吸収スペクトルが部分的に重複する様に組
み合わされているため広範囲の短波長側の光を一層長波
長側の光へ変換することが出来るものであり植物栽培上
の一定の効果が期待できるものである。しかし当発明思
想は赤色光のみを植物栽培上の有効光とみなし、変換さ
れる短波長側の光の波長領域に配慮をしないものであ
り、青色光を利用するクロロフイルa、b、カロチン類
の作用が阻害されるマイナスの効果をも有するものであ
る。
JP-A-57-189 discloses polymers such as polyesters, polyamides, polycarbonates, polyacrylates, polystyrenes and polysulfones having solubility parameters of 9 or more, anthraquinone type phosphors, thioindigo type phosphors, perinone type phosphors, A wavelength-convertable molded body in which a plurality of organic phosphors selected from perylene-based phosphors and the like are dissolved is disclosed. The plurality of organic phosphors absorbs light on the short wavelength side so as to transfer energy from the first phosphor excited to the second phosphor having a smaller excitation energy in a non-radiative manner, that is, the first phosphor. Since the emission spectrum of the fluorescent substance and the absorption spectrum of the second fluorescent substance are combined so as to partially overlap each other, it is possible to convert light in the short wavelength side of a wide range into light in the longer wavelength side. A certain effect on plant cultivation can be expected. However, the idea of the present invention considers only red light as effective light for plant cultivation, and does not consider the wavelength region of light on the short wavelength side to be converted, and the chlorophyll a, b, and carotene of blue light are used. It also has a negative effect of inhibiting the action.

【0005】このほか赤発光フィルムであるラジアント
ピンク(商品名;三井東圧化学(株))、Irradiant 66
0 (商品名;BASF社)が上市され栽培試験が行なわ
れたが単一の波長領域の光を変換するこれらの波長変換
フィルムは一般に作用効果が十分でなく特定の気象条件
では有効であっても別の気象条件では効果が見られない
と言ったケースが多く発生し、実用の施設園芸用資材と
して用いるには信頼性に欠けるものであった。
Radiant pink (trade name; Mitsui Toatsu Chemicals, Inc.), which is a red light emitting film, Irradiant 66
0 (Brand name; BASF) was put on the market and cultivation tests were conducted, but these wavelength conversion films that convert light in a single wavelength region are generally not sufficiently effective and effective under specific weather conditions. However, there were many cases where the effect was not seen under other weather conditions, and it was unreliable to use as a practical material for gardening.

【0006】[0006]

【発明が解決しようとする課題】本発明はこの様な状況
にあって有用作物の施設栽培において太陽光または人工
光源の光のスペクトルを変換し作物の生育を促進する農
業用波長変換資材を提供することを目的とするものであ
る。作物の生育を制御する光受容体には主としてクロロ
フィルa、b、フィトクロムI型、II型、III型お
よびフラビン色素かカロチノイドのどちらかあるいは両
方が働いていると言われる青色光受容色素があることが
知られている。フィトクロムI型、II型、III型、
青色光受容色素の働きは種々研究されているが(例えば
「農業における光応用技術」第44巻,第4号,406 ペ
ージ,応用物理(1975年) 及び「フィトクロムとジベレ
リン」vol.24,No. 2,105 ページ,植物の化学調節
(1989年)等にはフィトクロムが図1に示すように、2
つの吸収型を持ち、光形態形成反応上、植物生育に促進
的に働くPfr型はPr型とr光(670nmを中心とす
る光)とfr光(725nmを中心とする光)によって相
互に光変換することが記載されている。)、未だ完全に
解明されておらず、作物に対してどの様な光スペクトル
を与えるのが好ましいかについては現時点では予測する
ことが出来ない。
SUMMARY OF THE INVENTION The present invention provides an agricultural wavelength conversion material for promoting the growth of crops by converting the spectrum of sunlight or light of an artificial light source in facility cultivation of useful crops under such circumstances. The purpose is to do. Photoreceptors that control the growth of crops mainly include chlorophyll a, b, phytochrome type I, type II, type III, and a blue light-receiving pigment that is said to be acted on by flavin pigments, carotenoids, or both. It has been known. Phytochrome type I, type II, type III,
The function of blue light-receptive dyes has been studied variously (for example, "Light Application Technology in Agriculture" Vol. 44, No. 4, page 406, Applied Physics (1975) and "Phytochrome and Gibberellin" vol.24, No. .2, 105, phytochrome is used for chemical regulation of plants (1989), etc.
Pfr type, which has two absorption types and acts to promote plant growth in the photomorphogenic reaction, mutually emits light by Pr type and r light (light centered at 670 nm) and fr light (light centered at 725 nm). It is described to convert. ), It has not yet been fully elucidated, and it is not possible at present to predict what kind of light spectrum should be given to crops.

【0007】本発明は太陽光および植物工場等で用いる
人工光源の光のスペクトルのうち、特定の領域の近紫外
光〜青色光の一部を青色光と橙色〜赤色光に、同時に緑
色光を中心とした領域の光の一部を特定の比率で橙色〜
赤色光に波長変換することにより変換された光スペクト
ルがクロロフィルa、b;フィトクロムI型、II型、
III型、青色光受容色素等に有利に作用しそれにより
作物の増収および品質の向上をもたらすことを見出した
ものである。
In the present invention, a part of near-ultraviolet light to blue light in a specific region of the light spectrum of sunlight and artificial light sources used in plant factories is converted into blue light and orange to red light, and at the same time green light is emitted. Part of the light in the center area is orange at a specific ratio
The light spectrum converted by wavelength conversion into red light is chlorophyll a, b; phytochrome I type, II type,
It has been found that it effectively acts on type III, blue light-receptive pigments, etc., thereby increasing the yield and improving the quality of crops.

【0008】[0008]

【課題を解決するための手段】本発明の要旨とするとこ
ろはクロロフィル、フィトクロム、青色光受容色素等に
作用し光合成、光形態形成、光周性等に有利に効果的に
働く様に光スペクトルを変換することであり、具体的に
は吸収極大が350 〜450 nm、好ましくは370 〜430 nmに
あり、発光極大が380 〜520 nm、好ましくは400 〜460
nmにある少くとも1つの蛍光色素(A)と吸収極大が46
0 〜580 nm、好ましくはは480 〜550 nmにあり、発光極
大が540 〜800 nm、好ましくは570 〜700 nmにある少く
とも1つの蛍光色素(B)が含有されており、(A)の
発光スペクトルと、(B)の吸収スペクトルが部分的に
重複する様な組み合わせであり、(A)の発光強度
(I)と、(A)の励起エネルギーの一部が(B)の発
光位置で発光する強度(I’)の比(I)/(I’)が
0.2以上5以下であることを特徴とする農業用波長変
換資材である。本発明の農業用波長変換資材の変換機能
を更に詳しく述べると蛍光色素(A)が主として近紫外
光を一部は青色光に、一部は蛍光色素(B)を介するエ
ネルギー移動によって橙色〜赤色光に変換すると共に蛍
光色素(B)が緑色光領域の光を橙色〜赤色光に変換す
る結果、本発明の波長変換資材に照射された光スペクト
ルは近紫外光領域と緑色光領域が減光され、青色光領域
と橙色〜赤色光領域が増光されたスペクトルを持って透
過する。青色光領域の光は、植物に存在する青色光を利
用するクロロフィルa、b、カロチン類の作用を阻害し
ないためには、(A)の発光強度(I)と、(A)の励
起エネルギーの一部が(B)の発光位置で発光する強度
(I’)の比(I)/(I’)が0.2以上5以下、好
ましくは0.4以上3以下であるのがよい。
The gist of the present invention is that the light spectrum is such that it acts on chlorophyll, phytochrome, blue light-receptive dyes, etc., and effectively acts on photosynthesis, photomorphogenesis, photoperiodicity, etc. Specifically, the absorption maximum is 350 to 450 nm, preferably 370 to 430 nm, and the emission maximum is 380 to 520 nm, preferably 400 to 460 nm.
nm has at least one fluorescent dye (A) and absorption maximum of 46
It contains at least one fluorescent dye (B) having an emission maximum at 540 to 800 nm, preferably 570 to 700 nm, at 0 to 580 nm, preferably 480 to 550 nm, and (A) The combination is such that the emission spectrum and the absorption spectrum of (B) partially overlap, and the emission intensity (I) of (A) and part of the excitation energy of (A) are at the emission position of (B). The wavelength conversion material for agriculture is characterized in that the ratio (I) / (I ′) of emitted light intensity (I ′) is 0.2 or more and 5 or less. The conversion function of the wavelength conversion material for agriculture of the present invention will be described in more detail. The fluorescent dye (A) mainly emits near-ultraviolet light in part to blue light and part in orange to red due to energy transfer through the fluorescent dye (B). As a result of conversion into light and the fluorescent dye (B) converting light in the green light region into orange to red light, the light spectrum applied to the wavelength conversion material of the present invention is dimmed in the near ultraviolet light region and the green light region. The blue light region and the orange to red light region are transmitted with the increased spectrum. The light in the blue light region does not interfere with the actions of chlorophyll a, b, and carotene that utilize blue light existing in plants, in order to prevent the action of the emission intensity (I) of (A) and the excitation energy of (A). It is preferable that the ratio (I) / (I ′) of the intensity (I ′) of which part of the light is emitted at the emission position of (B) is 0.2 or more and 5 or less, preferably 0.4 or more and 3 or less.

【0009】蛍光色素(A)および蛍光色素(B)のス
トークスシフト(吸収極大波長と発光極大波長の差)は
或る程度大きくないと植物生育に対する波長変換の有効
性が減少し、少なくとも20nm以上のストークスシフト
が有効であり、特に蛍光色素(B)のストークスシフト
はもっと大きい方が好ましい。20nm以下の場合は波長
変換が行なわれても植物生育に促進的に作用を及ぼすこ
とが少ない。
If the Stokes shift (difference between the absorption maximum wavelength and the emission maximum wavelength) of the fluorescent dye (A) and the fluorescent dye (B) is not large to some extent, the efficiency of wavelength conversion for plant growth decreases, and at least 20 nm or more. Is more effective, and it is particularly preferable that the Stokes shift of the fluorescent dye (B) is larger. When it is 20 nm or less, even if wavelength conversion is performed, it rarely exerts an accelerating effect on plant growth.

【0010】蛍光色素(A)は例えばPTP、アントラ
セン、9,10−ジフェニルアントラセンなどのポリフ
ェニル系、BPA、DPS、スチルベン1、スチルベン
3などのスチルベン系、1,4−ジスチリルベンゼンな
どのスチリルベンゼン系、popop ,Dimethylpopop 、P
BOなどのオキサゾール系、PBDなどのオキサジアゾ
ール系、クマリン4,151,307,311,DMA
Cなどのクマリン系、ミカホワイトATN、4−アミノ
ナフタル酸フェニルイミドなどのナフタルイミド系、CI
Vat Blue 19、20、22などのアントラキノン系、ルミノ
ール Red Violet 440PT 、1,5−ジフェニル−3−ス
チリル−2−ピラゾリンなどのピラゾリン系、2,5−
ジヒドロキシ−テレフタル酸エチル、2,5−ジヒドロ
キシ−4−メトキシカルボニル安息香酸エチルなどのジ
ヒドロキシテレフタレート系、特願平3−242321及び特
願平4−301673に記載されるシアノピラジン誘導体など
が挙げられる。
The fluorescent dye (A) is, for example, polyphenyl type such as PTP, anthracene and 9,10-diphenylanthracene, stilbene type such as BPA, DPS, stilbene 1 and stilbene 3 and styryl such as 1,4-distyrylbenzene. Benzene-based, popop, Dimethylpopop, P
Oxazoles such as BO, Oxadiazoles such as PBD, Coumarin 4,151,307,311, DMA
C, coumarin type, Mica White ATN, 4-aminonaphthalic acid phenylimide, naphthalimide type, CI
Vat Blue 19, 20, 22 and other anthraquinone series, Luminol Red Violet 440PT, 1,5-diphenyl-3-styryl-2-pyrazoline and other pyrazoline series 2,5-
Examples thereof include dihydroxy terephthalate compounds such as ethyl dihydroxy-terephthalate and ethyl 2,5-dihydroxy-4-methoxycarbonylbenzoate, and cyanopyrazine derivatives described in Japanese Patent Application Nos. 3-242321 and 4-301673.

【0011】蛍光色素(B)は例えばルモゲンF Red 30
0 などのペリレン系、ルミノール Red Violet 635Pなど
のアントラキノン系、チオインジゴ Bright Pink G、チ
オインジゴ Scarlet Rなどのチオインジゴ系、ルミノー
ル Bright Orange 575PT、
The fluorescent dye (B) is, for example, Lumogen F Red 30.
Perylene series such as 0, anthraquinone series such as Luminol Red Violet 635P, thioindigo series such as thioindigo Bright Pink G, thioindigo Scarlet R, Luminol Bright Orange 575PT,

【0012】[0012]

【化1】 などのナフタル酸系、ローダミン、アクリジン Redなど
のキサンテン系、
[Chemical 1] Naphthalic acid type such as, xanthene type such as Rhodamine, Acridine Red,

【0013】[0013]

【化2】 などのクマリン系、[Chemical 2] Coumarin type,

【0014】[0014]

【化3】 などのナフトイレン系、[Chemical 3] Such as naphtholine,

【0015】特願平3−242321及び特願平4−301673に
記載されるシアノピラジン誘導体、特願平4−89563 に
記載されるベンゾプテリジン誘導体などが挙げられる。
これらの中で、ルモゲンF Red 300 、特願平3−242321
及び特願平4−301673に記載されるシアノピラジン誘導
体、特願平4−89563 に記載されるベンゾプテリジン誘
導体などは、樹脂中でストークスシフトが40以上と大
きく好ましい例である。尚、特願平3−242321及び特願
平4−301673に記載されるシアノピラジン誘導体、特願
平4−89563 に記載されるベンゾプテリジン誘導体はス
トークスシフトが50以上と大きく特に好ましい。一般
に短波長光を吸収する蛍光色素1と長波長光を吸収する
蛍光色素2が混合、溶解されており、1の発光スペクト
ルと2の吸収スペクトルの一部が重複する本発明の様な
系においては蛍光色素1の光安定性が著しく向上するこ
とが知られており、従って本発明の蛍光色素(A)は単
独では使用出来ない不安定なものも使用可能となる。一
方蛍光色素(B)はそれ自体、光安定なものか、紫外線
吸収剤、酸化防止剤、一重項酸素クエンチヤーなどの添
加剤、その他の光安定化処理によって安定化される程度
の安定性を持つものでなければならない。
Examples include cyanopyrazine derivatives described in Japanese Patent Application No. 3-242321 and Japanese Patent Application No. 4-301673, and benzopteridine derivatives described in Japanese Patent Application No. 4-89563.
Among these, Lumogen F Red 300, Japanese Patent Application No. 3-242321
Also, the cyanopyrazine derivative described in Japanese Patent Application No. 4-301673 and the benzopteridine derivative described in Japanese Patent Application No. 4-89563 are preferable examples because they have a Stokes shift of 40 or more in the resin. The cyanopyrazine derivatives described in Japanese Patent Application Nos. 3-242321 and 4-301673 and the benzopteridine derivatives described in Japanese Patent Application No. 4-89563 have a Stokes shift of 50 or more and are particularly preferable. Generally, in a system like the present invention, a fluorescent dye 1 that absorbs short wavelength light and a fluorescent dye 2 that absorbs long wavelength light are mixed and dissolved, and the emission spectrum of 1 and the absorption spectrum of 2 partially overlap. It is known that the photostability of the fluorescent dye 1 is remarkably improved. Therefore, the fluorescent dye (A) of the present invention can also be used as an unstable dye which cannot be used alone. On the other hand, the fluorescent dye (B) itself is photostable, or has stability such that it is stabilized by an ultraviolet absorber, an antioxidant, an additive such as a singlet oxygen quencher, and other photostabilization treatment. Must be one.

【0016】具体的には400 nm以下の近紫外光を吸収す
るUVカットフィルムの内側に本発明の波長変換フィル
ムを設置し、太陽光を1年間照射したのちの蛍光色素
(A)および蛍光色素(B)の発光強度の保持率は少な
くとも50%あることが好ましく、これより保持率が低
いと、波長変換の効果を再現性良く引き出すことが難し
い。
Specifically, the wavelength conversion film of the present invention is installed inside a UV cut film that absorbs near-ultraviolet light having a wavelength of 400 nm or less, and the fluorescent dye (A) and the fluorescent dye after irradiation with sunlight for 1 year The retention rate of the emission intensity of (B) is preferably at least 50%. If the retention rate is lower than this, it is difficult to bring out the wavelength conversion effect with good reproducibility.

【0017】本発明において資材としては、例えば、
板、ネット、織布、不織布などであり、それらの材料は
例えば、(軟質、半硬質、硬質)PVC;ポリエチレ
ン;ポリプロピレン;ポリビニルアルコール;ポリビニ
ルアクリレート;ポリビニルメタクリレート;ポリ塩化
ビニリデン;ポリアクリルニトリル;ポリブタジエン;
ポリスチレン;エチレン−酢酸ビニル共重合体;塩化ビ
ニル−酢酸ビニル共重合体;ポリビニルブチラール;ポ
リビニルホルマール;PET,PBTなどのポリエステ
ル;ポリアリレート;ポリカーボネート;ポリエステル
カーボネート;フェノキシ樹脂;ナイロン6,ナイロン
6/6,ナイロン11,ナイロン12,MXD6ナイロ
ンなどのポリアミド;ポリジメチルシロキサン;ポリト
リメチルシリルプロピン;ポリウレタン;アイオノマー
類;セロファン;ポリエチレンセロファン;セルロース
アセテート;セルロースプロピオネート;エチルセルロ
ース;ニトロセルロースなどの軟質、硬質樹脂等が挙げ
られる。波長変換資材の製造法は特に制約はなく、樹脂
の溶融特性、溶剤溶解性、蛍光色素の熱特性などに応じ
て押出し成形、インフレーション成形、カレンダー成形
などによって製造するか前記樹脂を溶解したワニスをガ
ラス、プラスチック板、反射板、フィルムなどにコーテ
ィングまたは織布、不織布、紙などに含浸することによ
り製造することができる。蛍光色素(A)、(B)を含
む樹脂層の厚さは成形フィルム、コーティング層ともに
10〜300μm、好ましくは30〜150μmにする
のが良い。
Materials used in the present invention include, for example,
It is a board, a net, a woven cloth, a non-woven cloth, etc., and those materials are, for example, (soft, semi-rigid, hard) PVC; polyethylene; polypropylene; polyvinyl alcohol; polyvinyl acrylate; polyvinyl methacrylate; polyvinylidene chloride; polyacrylonitrile; polybutadiene. ;
Polystyrene; ethylene-vinyl acetate copolymer; vinyl chloride-vinyl acetate copolymer; polyvinyl butyral; polyvinyl formal; polyesters such as PET and PBT; polyarylate; polycarbonate; polyester carbonate; phenoxy resin; nylon 6, nylon 6/6 Polyamide, nylon 11, nylon 12, MXD6 nylon, etc .; polydimethylsiloxane; polytrimethylsilylpropyne; polyurethane; ionomers; cellophane; polyethylene cellophane; cellulose acetate; cellulose propionate; ethyl cellulose; nitrocellulose and other soft and hard resins Etc. The method for producing the wavelength conversion material is not particularly limited, and it is produced by extrusion molding, inflation molding, calender molding, or the like depending on the melting characteristics of the resin, solvent solubility, thermal characteristics of the fluorescent dye, or a resin-dissolved varnish. It can be produced by coating glass, a plastic plate, a reflector, a film or the like or impregnating woven cloth, non-woven cloth, paper or the like. The thickness of the resin layer containing the fluorescent dyes (A) and (B) is 10 to 300 μm, preferably 30 to 150 μm for both the molding film and the coating layer.

【0018】樹脂に含有する蛍光色素(A)、(B)の
濃度は夫々0.01〜2.0 %、好ましくは0.05〜0.5 %であ
る。0.01%より濃度が低いと波長変換機能が十分でな
く、また2.0 %より濃度が高いと光の吸収割合が大きく
蛍光性化合物の特徴である濃度消光の効果が表われて波
長変換効率が低下する。また、蛍光色素(A) および蛍
光色素(B)の吸収極大波長における蛍光色素の吸光度
は1.3 以下が好ましく、これ以上大きい場合は光の吸収
割合、および吸収波長領域が大き過ぎる結果、遮光の効
果が強く表われるため好ましくない。施設園芸用資材と
しての他の諸条件を満たすため本発明の目的を損なわな
い種類および量の紫外線吸収剤、酸化防止剤、一重項酸
素クエンチャー、ヒンダードアミン系光安定剤、その他
の安定化剤、滑剤、防曇剤、流滴剤などの添加剤を配合
しても良い。
The concentration of the fluorescent dyes (A) and (B) contained in the resin is 0.01 to 2.0%, preferably 0.05 to 0.5%. If the concentration is lower than 0.01%, the wavelength conversion function is not sufficient, and if the concentration is higher than 2.0%, the absorption rate of light is large and the effect of concentration quenching, which is a characteristic of fluorescent compounds, is exhibited and the wavelength conversion efficiency decreases. . Further, the absorbance of the fluorescent dye at the absorption maximum wavelength of the fluorescent dye (A) and the fluorescent dye (B) is preferably 1.3 or less, and when it is larger than this, the light absorption ratio and the absorption wavelength region are too large, resulting in a light shielding effect. Is strongly displayed, which is not preferable. A type and amount of an ultraviolet absorber, an antioxidant, a singlet oxygen quencher, a hindered amine-based light stabilizer, and other stabilizers that do not impair the object of the present invention for satisfying other various conditions as a facility gardening material, You may mix | blend additives, such as a lubricant, an antifogging agent, and a drip agent.

【0019】蛍光色素(A)、(B)を含有した波長変
換資材は樹脂の屈折率によって異なるが、発光光のうち
60〜80%が空気との界面で全反射され、フィルム内
を伝わって行く。閉じ込められた光は多くの場合吸収ス
ペクトルが発光スペクトルと重なっているため一部の光
は再び吸収、発光をくり返す。この時、発光は一定の変
換効率を乗じた量で行なわれるのでエネルギーロスは無
視出来ない大きさになる。この様なエネルギーロスを回
避し発光光を有効にフィルム内面から放射することが出
来る様にシリカ、アルミナなどの無機微粉末、あるいは
プラスチック微粉末を配合するか、フィルムの内面に規
則的な、又は不規則な凹凸を設ける粗面化加工をするの
が好ましい。粗面化はワイヤーブラシ、サンドブラス
ト、エンボシングなど通常実施されている方法で行なう
ことが出来る。本発明の波長変換機能を持つ資材はビニ
ールハウスの被覆資材のほかマルチフィルム、反射(マ
ルチ)フイルム、太陽光がハウス内に平均して照射され
る様に設置する反射板、プラスチックネット、織布、不
織布、果実の袋掛け用の袋などにも同様に使用される。
The wavelength conversion material containing the fluorescent dyes (A) and (B) depends on the refractive index of the resin, but 60 to 80% of the emitted light is totally reflected at the interface with the air and propagates through the film. go. In many cases, the trapped light has an absorption spectrum that overlaps with an emission spectrum, so that part of the light is repeatedly absorbed and emitted again. At this time, since the light emission is performed by the amount obtained by multiplying a certain conversion efficiency, the energy loss becomes a size that cannot be ignored. Inorganic fine powder such as silica, alumina, or plastic fine powder is blended so that the emitted light can be effectively emitted from the inner surface of the film while avoiding such energy loss, or the inner surface of the film is regularly or It is preferable to perform a roughening process for providing irregular irregularities. The roughening can be performed by a commonly used method such as wire brush, sand blasting or embossing. The material having the wavelength conversion function of the present invention is not only a covering material for a vinyl house but also a multi-film, a reflective (multi) film, a reflector plate installed so that sunlight is evenly irradiated in the house, a plastic net, a woven cloth. It is also used for non-woven fabrics and bags for hanging fruits.

【0020】本発明の付加的効果として赤色光による害
虫の防除効果が挙げられる。光による害虫防除の方法と
しては、特開昭52−61581 に開示されている様に高反射
フィルムで土壌を被覆する方法と、特公平2−58898 に
開示されている様な緑色光を吸収し、赤色光を反射する
赤色系顔料を配合したマルチフィルムが代表的なもので
あるが、これらは光線透過率が低いためハウス、トンネ
ル等の展張用フィルムとして用いることが出来ない。本
発明の波長変換資材は樹脂中に蛍光色素(A)、(B)
が含有されているので入射光は散乱されず、効率良く透
過されるか青色光と橙色〜赤色光に変換されて放射され
るが、橙色〜赤色系の光にはハナムグリ類、アブラムシ
類、コナジラミ類などの害虫がこれを忌避する作用があ
り、従って、ハウス、トンネル内での農薬の使用を大幅
に削減することが出来る。
An additional effect of the present invention is the control effect of harmful insects by red light. As a method for controlling insect pests by light, a method of covering the soil with a highly reflective film as disclosed in JP-A-52-61581 and a method for absorbing green light as disclosed in JP-B-2-58898. A typical example is a mulch film containing a red pigment that reflects red light, but these cannot be used as a film for spreading in houses, tunnels, etc. due to their low light transmittance. The wavelength conversion material of the present invention has fluorescent dyes (A) and (B) in the resin.
Since the incident light is not scattered, it is efficiently transmitted or is converted into blue light and orange to red light and emitted, but orange to red light emits beetles, aphids and whiteflies. Pests such as species have the action of repelling them, and therefore the use of pesticides in houses and tunnels can be greatly reduced.

【0021】[0021]

【実施例】以下、実施例を挙げて本発明を詳述する。実
施例中「部」は重量部を表わす。蛍光スペクトルは
(株)日立製作所製 フルオレツセンス スペクトロフ
オトメーター 850 を使用して測定した。透過率は
(株)島津製作所製 スペクトロフオトメーター UV-2
40を使用して測定した。
The present invention will be described in detail below with reference to examples. In the examples, "part" represents part by weight. The fluorescence spectrum was measured using a Fluorescence Spectrophotometer 850 manufactured by Hitachi, Ltd. Transmittance is spectrophotometer UV-2 made by Shimadzu Corporation
It was measured using 40.

【0022】実施例1(フィルムの製造) ポリカーボネート樹脂(CALIBRE 300-6 :住友ノーガタ
ック(株))100 部を塩化メチレン667 部に溶解したワ
ニス(ワニスa)、CALIBRE 300-6 ;100 部、紫外線吸
収剤(バイオソーブ910 :共同薬品(株))2.0 部を塩
化メチレン667部に溶解したワニス(ワニスb)、CALIB
RE 300-6 ;100 部、バイオソーブ910;2.0 部、特願平
3−242321に記載される次式のシアノピラジン誘導体
〔I〕、〔II〕
Example 1 (Production of film) Varnish (varnish a) obtained by dissolving 100 parts of polycarbonate resin (CALIBRE 300-6: Sumitomo Nogatac Co., Ltd.) in 667 parts of methylene chloride, CALIBRE 300-6; 100 parts, CALIB, a varnish prepared by dissolving 2.0 parts of UV absorber (Biosorb 910: Kyodo Pharmaceutical Co., Ltd.) in 667 parts of methylene chloride
RE 300-6; 100 parts, Biosorb 910; 2.0 parts, cyanopyrazine derivatives of the following formulas [I] and [II] described in Japanese Patent Application No. 3-242321

【0023】[0023]

【化4】 [Chemical 4]

【0024】[0024]

【化5】 [Chemical 5]

【0025】それぞれ0.2 部を塩化メチレン667 部に溶
解したワニス(ワニスC)を夫々調製し、プライマー処
理したポリエチレンテレフタレートフィルム(SG-2、フ
ィルム厚 75 μm、帝人(株))にリバースロールコー
ターを用いて夫々塗布、乾燥を行ない、乾燥塗膜厚約4
0μm(ベースフィルム厚も合わせて約115 μm)の3
種類のフィルムa、b、C(蛍光色素(A)、(B)が
溶解されている)を製造した。フィルムの透過率を図2
に、蛍光の励起および発光スペクトルを図3に示した。
図3よりこのフィルムCの発光強度の比(I)/
(I’)は約0.5であることが分かる。
A varnish (Varnish C) prepared by dissolving 0.2 parts of each in 667 parts of methylene chloride was prepared, and a polyethylene terephthalate film (SG-2, film thickness 75 μm, Teijin Ltd.) subjected to a primer treatment was reverse roll coated. Coating and drying using each, dry film thickness of about 4
0 μm (including the base film thickness of about 115 μm) 3
Various types of films a, b, and C (in which the fluorescent dyes (A) and (B) were dissolved) were manufactured. Figure 2 shows the transmittance of the film
The fluorescence excitation and emission spectra are shown in FIG.
From FIG. 3, the ratio of the emission intensity of this film C (I) /
It can be seen that (I ') is about 0.5.

【0026】実施例2(フィルムの製造) ポリプロピレン(三井ノーブレンBJ4H−G:三井東
圧化学(株))100 部、実施例1で使用したシアノピラ
ジン誘導体〔I〕0.2 部、シアノピラジン誘導体〔I
I〕0.2 部、UV吸収剤バイオソーブ 910;2.0 部を 2
10°Cに設定したヒートロールで3分間混練したのち、
210 °Cの70tホットプレスでプレス成形して厚さ0.15
mm のフィルムを作製した。フィルムの励起および発光
スペクトルを測定したところ 390 nm 光で励起すると 4
66 nm および 592 nm に極大値を持つ発光を示し、 472
nm 光で励起すると 592 nm に極大値を持つ発光を示し
た。
Example 2 (Production of film) 100 parts of polypropylene (Mitsui Noblene BJ4H-G: Mitsui Toatsu Chemical Co., Ltd.), 0.2 part of the cyanopyrazine derivative [I] used in Example 1 and cyanopyrazine derivative [I]
I] 0.2 parts, UV absorber Biosorb 910; 2.0 parts 2
After kneading with a heat roll set at 10 ° C for 3 minutes,
Thickness is 0.15 after press molding with a 70t hot press at 210 ° C.
mm film was made. The excitation and emission spectra of the film were measured and found to be 4
It has emission peaks at 66 nm and 592 nm, 472
When excited with nm light, it showed emission with a maximum at 592 nm.

【0027】実施例3(フィルムの耐光性) 実施例1で製造したフィルムCを1989年10月18日から19
90年10月19日まで1年間天然暴露した結果、397 nmの光
によって励起された色素〔Ι〕の452 nmにおける発光強
度の保持率は66%であり、492 nmの光によって励起さ
れた色素〔ΙΙ〕の590 nmにおける発光強度の保持率は
68%であった。
Example 3 (Lightfastness of Film) The film C produced in Example 1 was used from October 18, 1989 to 19
As a result of natural exposure for 1 year until October 19, 1990, the retention rate of the emission intensity at 452 nm of the dye [I] excited by 397 nm light was 66%, and the dye excited by 492 nm light was The retention rate of the emission intensity of [ΙΙ] at 590 nm was 68%.

【0028】実施例4 実施例1で製造したフィルムのワニスの塗布側をNo.
80のサンドペーパーで粗面化したのち、この面を内側
にして夫々約10m2 の小型ハウスを組立てた。平成3
年5月13日に播種(培地:WEDGE OASIS 5631;日本曹達
(株))したキュウリ(天馬)およびレタス(サクラメ
ント)の苗をポット(猪苗代葉山土壌5l、完熟堆肥5
l、ジシアン(昭和電工(株))7g、過石51gを混
合した土を用いた。)に移植(6月7日)し、これを6
月11日にキュウリ、レタスそれぞれ10ポットづつ各
ハウスに移動して実験を開始した。潅水は自動潅水装置
をセットし、1日1回9:00頃500 〜600 ml/ポット
(7月23日以降1000ml/ポット)潅水した。なお、施肥
は適当な間隔を置いて、OASIS 液肥(日本曹達
(株))、フチンゴールド(日本曹達(株))などを用
いて行なった。なお、農薬は一切使用しなかった。試験
は8月21日まで行ない、キュウリおよびレタスの収穫
重量等を記録した。その結果を表−1および表−2に示
す。
Example 4 The varnish-coated side of the film produced in Example 1 was coated with No.
After roughening with 80 sandpaper, small houses of about 10 m 2 each were assembled with this surface inside. Heisei 3
Seedlings of cucumber (Tenma) and lettuce (Sacramento) seeded on May 13, 2013 (medium: WEDGE OASIS 5631; Nippon Soda Co., Ltd.) in a pot (5 l of Inawashiro Hayama soil, 5 ripe compost)
Soil mixed with 1 g, 7 g of dicyan (Showa Denko KK) and 51 g of gemstone was used. )) (June 7th)
On October 11, 10 pots each of cucumber and lettuce were moved to each house to start the experiment. For irrigation, an automatic irrigation device was set, and irrigation was performed once a day at about 9:00 at 500 to 600 ml / pot (1000 ml / pot since July 23). Fertilization was performed at appropriate intervals using OASIS liquid fertilizer (Nippon Soda Co., Ltd.), Fuchin Gold (Nippon Soda Co., Ltd.), or the like. No pesticides were used. The test was conducted until August 21, and the harvest weight of cucumber and lettuce was recorded. The results are shown in Table-1 and Table-2.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】実施例5(反射フィルムの製造) ポリエチレンテレフタレートの替わりに反射フィルム
(ポリエチレンフィルム:シルバーポリトウN、0.10m
m、東缶興業(株))を用い実施例1と同様にして反射
フィルムa′、b′、C′を製造した。
Example 5 (Production of Reflective Film) Instead of polyethylene terephthalate, a reflective film (polyethylene film: silver polytow N, 0.10 m)
The reflective films a ′, b ′, and C ′ were manufactured in the same manner as in Example 1 by using m. Tokan Kogyo Co., Ltd.

【0032】実施例6 実施例5で製造した反射フィルムの塗布面をNo.80
のサンドペーパーで粗面化したのち、この面を上側にし
て南北に反射マルチフィルムを展張した。平成3年6月
13日に播種(培地:WEDGE OASIS 5631;日本曹逹
(株))したトマトの苗(品種:サターン)を7月4日
に上記反射マルチフィルムに30cm間隔で15株づつ1
列に移植し試験を開始した。収穫は第4果房まで行なっ
た。試験結果を表−3に示す。
Example 6 The coated surface of the reflective film produced in Example 5 was No. 80
After roughening with sandpaper, the reflective mulch film was spread in the north and south with this side facing up. Tomato seedlings (cultivar: Saturn) sown (medium: WEDGE OASIS 5631; Nippon Soda Co., Ltd.) on June 13, 1991 were placed on the reflective mulch film on July 4 at 15 cm intervals at 30 cm intervals.
It was transplanted to a row and the test was started. Harvesting was performed up to the fourth fruit cluster. The test results are shown in Table-3.

【0033】[0033]

【表3】 [Table 3]

【0034】実施例7(フィルムの製造) シアノピラジン誘導体〔II〕(蛍光色素(B))0.
2部の替わりにルモゲンF Red 300 (BASF Japan Ltd.
)(蛍光色素(B))0.1部を用いる他は実施例1
のワニスCと同様にしてワニスDを調整し、さらに実施
例1と同様にしてフィルムD(蛍光色素(A)、(B)
が溶解されている)を製造した。フィルムの透過率を図
4に、蛍光の励起および発光スペクトルを図5に示し
た。図5よりこのフィルムDの発光強度の比(I)/
(I’)は約1.6であることが分かる。
Example 7 (Production of film) Cyanopyrazine derivative [II] (fluorescent dye (B))
Lumogen F Red 300 (BASF Japan Ltd.
) (Fluorescent dye (B)) 0.1 part except that Example 1 is used.
The varnish D was prepared in the same manner as the varnish C in Example 1, and the film D (fluorescent dyes (A) and (B) was prepared in the same manner as in Example 1.
Are dissolved). The transmittance of the film is shown in FIG. 4, and the fluorescence excitation and emission spectra are shown in FIG. From FIG. 5, the ratio of the emission intensity of this film D (I) /
It can be seen that (I ') is about 1.6.

【0035】実施例8 実施例1で製造したフィルムb、Cのワニスの塗布側を
No.80のサンドペーパーで粗面化したのち、この面
を内側にして夫々約10m2 の小型ハウスを組み立て
た。また0.1mm厚の紫外線カット農ビ(商品名:カ
ットエース:三菱化成ビニル)を用いて同様の小型ハウ
スを組み立てた。平成4年4月1日に播種(培地:WE
DGE OASIS 5631;日本曹達(株))した
トマト(桃太郎)の苗をポット(猪苗代葉山土壌5l、
完熟堆肥5l、ジシアン(昭和電工(株))7g、過石
51gを混合した土を用いた。)に移植(5月1日)
し、これに5月23日に10ポットづつ各ハウスに移動
して実験を開始した。灌水は自動灌水装置をセットし、
1日1回9:00頃500〜600ml/ポット灌水し
た。なお、施肥は適当な間隔を置いて、OASIS液肥
(日本曹達(株))、フチンゴールド(日本曹達
(株))などを用いて行なった。なお、農薬は一切使用
しなかった。試験は9月26日まで行い、収穫重量等を
記録した。その結果を表−4に示す。
Example 8 The side of the films b and C produced in Example 1 on which the varnish was applied was No. After roughening with 80 sandpaper, small houses of about 10 m 2 each were assembled with this surface inside. A similar small house was assembled using a 0.1 mm thick ultraviolet ray-cutting agricultural product (trade name: Cut Ace: Mitsubishi Kasei Vinyl). Seeding on April 1, 1992 (medium: WE
DGE OASIS 5631; Nippon Soda Co., Ltd. tomato (Momotaro) seedlings in pots (Inawashiro Hayama soil 5 liters,
Soil mixed with 5 l of fully-ripened compost, 7 g of dicyan (Showa Denko KK), and 51 g of gemstone was used. ) Transplant (May 1)
Then, on May 23, 10 pots were moved to each house to start the experiment. For irrigation, set an automatic irrigation device,
Irrigation was performed once a day at about 9:00 at 500 to 600 ml / pot. The fertilization was performed at appropriate intervals using OASIS liquid fertilizer (Nippon Soda Co., Ltd.), Fuchin Gold (Nippon Soda Co., Ltd.) or the like. No pesticides were used. The test was conducted until September 26, and the harvest weight and the like were recorded. The results are shown in Table-4.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【発明の効果】本発明は次の様な効果がありその実用的
有用性は極めて大きい。 (1)本発明の農業用波長変換資材は太陽光および植物
工場等で用いる人工光源の光スペクトルの近紫外光領域
と緑色光領域の光を植物生育に有効な光である青色光領
域と橙色〜赤色光領域の光に変換することができる。 (2)本発明の波長変換資材を用いたハウスで野菜、花
卉、ナシ、ミカン、ブドウ、カキ、リンゴなどの果樹類
を栽培することにより野菜、花卉の場合は短期間、多
収、果樹類の場合は例えば果色を調節したり、糖度を高
めたり、果実を大きくするといったように高品質の果物
を収穫することができる。 (3)本発明の波長変換資材が発光する橙色〜赤色光に
より害虫を防除することができる。
The present invention has the following effects and its practical utility is extremely large. (1) The wavelength conversion material for agriculture of the present invention uses sunlight and light in the near-ultraviolet light region and green light region of the artificial light source used in plant factories, etc., which are effective for plant growth in the blue light region and orange light. ~ It can be converted into light in the red light region. (2) By growing fruit trees such as vegetables, flowers, pears, mandarins, grapes, oysters, apples, etc. in a house using the wavelength conversion material of the present invention, in the case of vegetables and flowers, high yield, fruit trees In this case, high quality fruits can be harvested, for example, by controlling the fruit color, increasing the sugar content, and increasing the fruit size. (3) Pests can be controlled by the orange to red light emitted by the wavelength conversion material of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】r光とfr光の相互光変換を示す。FIG. 1 shows mutual light conversion of r light and fr light.

【図2】実施例1で得たフィルムa、b、Cの分光透過
率。
2 is a spectral transmittance of the films a, b, and C obtained in Example 1. FIG.

【図3】実施例1で得たフィルムCの励起および発光ス
ペクトル。 (p)は蛍光色素(A)の452 nm発光に対する励起スペ
クトル。 (q)は蛍光色素(A)の397 nmの励起による発光スペ
クトル。 (I)は蛍光色素(A)自体の発光ピーク。 (I’)は蛍光色素(A)の励起エネルギーが蛍光色素
(B)にエネルギー移動した結果発光するピーク。 (r)は蛍光色素(B)の590 nm発光に対する励起スペ
クトル。 (s)は蛍光色素(B)の492 nmの励起による発光スペ
クトル。
FIG. 3 is an excitation and emission spectrum of the film C obtained in Example 1. (P) is the excitation spectrum for the 452 nm emission of the fluorescent dye (A). (Q) is the emission spectrum of the fluorescent dye (A) upon excitation at 397 nm. (I) is the emission peak of the fluorescent dye (A) itself. (I ′) is a peak that emits light as a result of energy transfer of the excitation energy of the fluorescent dye (A) to the fluorescent dye (B). (R) is the excitation spectrum for the 590 nm emission of the fluorescent dye (B). (S) is the emission spectrum of the fluorescent dye (B) upon excitation at 492 nm.

【図4】実施例7で得たフィルムD及び実施例1で得た
フィルムa、bの分光透過率。
4 is a spectral transmittance of the film D obtained in Example 7 and the films a and b obtained in Example 1. FIG.

【図5】実施例7で得たフィルムDの励起および発光ス
ペクトル。 (p’)は蛍光色素(A)の462 nm発光に対する励起ス
ペクトル。 (q’)は蛍光色素(A)の397 nmの励起による発光ス
ペクトル。 (I)は蛍光色素(A)自体の発光ピーク。 (I’)は蛍光色素(A)の励起エネルギーが蛍光色素
(B)にエネルギー移動した結果発光するピーク。 (r’)は蛍光色素(B)の610 nm発光に対する励起ス
ペクトル。 (s’)は蛍光色素(B)の570 nmの励起による発光ス
ペクトル。
5 is an excitation and emission spectrum of the film D obtained in Example 7. FIG. (P ') is the excitation spectrum for the 462 nm emission of the fluorescent dye (A). (Q ') is the emission spectrum of the fluorescent dye (A) upon excitation at 397 nm. (I) is the emission peak of the fluorescent dye (A) itself. (I ′) is a peak that emits light as a result of energy transfer of the excitation energy of the fluorescent dye (A) to the fluorescent dye (B). (R ') is the excitation spectrum for the 610 nm emission of the fluorescent dye (B). (S ') is the emission spectrum of the fluorescent dye (B) upon excitation at 570 nm.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 猶原 剛士 福島県耶麻郡磐梯町大字更科字比丘尼山 3967 日本曹達株式会社磐梯農場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Gumihara 3967 Hikka Amadayama, Sarashina, Bandai-cho, Yama-gun, Fukushima Prefecture On the Bandai Farm of Nippon Soda Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 吸収極大が350 〜450 nmにあり、発光極
大が380 〜520 nmにある少くとも1つの蛍光色素(A)
と吸収極大が460 〜580 nmにあり、発光極大が540 〜80
0 nmにある少くとも1つの蛍光色素(B)が含有されて
おり、(A)の発光スペクトルと(B)の吸収スペクト
ルが部分的に重複するような組み合わせであり、(A)
の発光強度(I)と、(A)の励起エネルギーの一部が
(B)の発光位置で発光する強度(I’)の比(I)/
(I’)が0.2以上5以下であることを特徴とする農
業用波長変換資材。
1. At least one fluorescent dye (A) having an absorption maximum at 350-450 nm and an emission maximum at 380-520 nm.
And the absorption maximum at 460 to 580 nm, and the emission maximum at 540 to 80
At least one fluorescent dye (B) at 0 nm is contained in the combination such that the emission spectrum of (A) and the absorption spectrum of (B) partially overlap, (A)
Ratio (I) / intensity (I) of (A) and intensity (I ′) at which a part of the excitation energy of (A) emits light at the emission position of (B)
(I ') is 0.2 or more and 5 or less, The wavelength conversion material for agriculture characterized by the above-mentioned.
【請求項2】 少なくとも1つの蛍光色素(A)および
少なくとも1つの蛍光色素(B)のストークスシフトが
20nm以上である請求項1記載の農業用波長変換資材。
2. The agricultural wavelength conversion material according to claim 1, wherein the Stokes shift of at least one fluorescent dye (A) and at least one fluorescent dye (B) is 20 nm or more.
【請求項3】 少くとも1つの蛍光色素(A)および少
くとも1つの蛍光色素(B)の吸収極大波長における蛍
光色素の吸光度が1.3 以下である請求項1記載の農業用
波長変換資材。
3. The wavelength conversion material for agriculture according to claim 1, wherein the absorbance of the fluorescent dye at the absorption maximum wavelength of at least one fluorescent dye (A) and at least one fluorescent dye (B) is 1.3 or less.
JP4350581A 1991-12-05 1992-12-04 Wave length changing material Pending JPH0638635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4350581A JPH0638635A (en) 1991-12-05 1992-12-04 Wave length changing material

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP34845291 1991-12-05
JP3-348452 1991-12-05
JP11320592 1992-04-07
JP4-113205 1992-05-27
JP4-158971 1992-05-27
JP15897192 1992-05-27
JP4350581A JPH0638635A (en) 1991-12-05 1992-12-04 Wave length changing material

Publications (1)

Publication Number Publication Date
JPH0638635A true JPH0638635A (en) 1994-02-15

Family

ID=27470072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4350581A Pending JPH0638635A (en) 1991-12-05 1992-12-04 Wave length changing material

Country Status (1)

Country Link
JP (1) JPH0638635A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005077919A1 (en) * 2004-02-13 2005-08-25 Nippon Soda Co., Ltd. Novel cyanopyrazine derivative
JP2006505659A (en) * 2002-11-05 2006-02-16 ロディア エレクトロニクス アンド カタリシス Photoconversion material containing barium magnesium silicate as an additive
JP2008011790A (en) * 2006-07-06 2008-01-24 Unitika Ltd Covering material for citrus fruit
JP2010234583A (en) * 2009-03-30 2010-10-21 Sekisui Plastics Co Ltd Light reflecting plate
JP2011028914A (en) * 2009-07-22 2011-02-10 Sekisui Plastics Co Ltd Lighting device, and lighting system for cultivating plant
WO2013046989A1 (en) * 2011-09-30 2013-04-04 シャープ株式会社 Illuminating device for plant cultivation, plant cultivation system and plant cultivation method
JP2013153666A (en) * 2012-01-27 2013-08-15 Osaka Gas Co Ltd Method and material for raising plant
US8615925B2 (en) 2010-02-16 2013-12-31 Fujifilm Corporation Light guiding film and plant growing method using the light guiding film
CN104094784A (en) * 2014-07-21 2014-10-15 山西农业大学 Cultivation method for improving quality of astragalus
JP2016522906A (en) * 2013-03-26 2016-08-04 日東電工株式会社 Wavelength conversion film having multiple light stable organic chromophores
CN106525747A (en) * 2016-11-02 2017-03-22 常州工学院 Method for detecting bisphenol A in water environment on basis of azo coupling reaction

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505659A (en) * 2002-11-05 2006-02-16 ロディア エレクトロニクス アンド カタリシス Photoconversion material containing barium magnesium silicate as an additive
WO2005077919A1 (en) * 2004-02-13 2005-08-25 Nippon Soda Co., Ltd. Novel cyanopyrazine derivative
JP2008011790A (en) * 2006-07-06 2008-01-24 Unitika Ltd Covering material for citrus fruit
JP2010234583A (en) * 2009-03-30 2010-10-21 Sekisui Plastics Co Ltd Light reflecting plate
JP2011028914A (en) * 2009-07-22 2011-02-10 Sekisui Plastics Co Ltd Lighting device, and lighting system for cultivating plant
US8615925B2 (en) 2010-02-16 2013-12-31 Fujifilm Corporation Light guiding film and plant growing method using the light guiding film
CN103841818B (en) * 2011-09-30 2016-10-19 夏普株式会社 Plant culture illuminator, plant cultivation system and plant cultivation method
WO2013046989A1 (en) * 2011-09-30 2013-04-04 シャープ株式会社 Illuminating device for plant cultivation, plant cultivation system and plant cultivation method
CN103841818A (en) * 2011-09-30 2014-06-04 夏普株式会社 Illuminating device for plant cultivation, plant cultivation system and plant cultivation method
JP2013153666A (en) * 2012-01-27 2013-08-15 Osaka Gas Co Ltd Method and material for raising plant
JP2016522906A (en) * 2013-03-26 2016-08-04 日東電工株式会社 Wavelength conversion film having multiple light stable organic chromophores
CN104094784A (en) * 2014-07-21 2014-10-15 山西农业大学 Cultivation method for improving quality of astragalus
CN106525747A (en) * 2016-11-02 2017-03-22 常州工学院 Method for detecting bisphenol A in water environment on basis of azo coupling reaction
CN106525747B (en) * 2016-11-02 2019-03-01 常州工学院 The detection method of bisphenol-A in water environment based on diazo-coupling reactions

Similar Documents

Publication Publication Date Title
EP0949860B1 (en) Plant treatment material and method
JP5375510B2 (en) Crop cultivation method using fluorescent radioactive material and material used therefor
EP0579835A1 (en) Wavelength conversion material for agriculture
JPH0638635A (en) Wave length changing material
JPH07170865A (en) Wavelength conversion material
JPH0646685A (en) Light-quality converting material for agricultural use
RU2488621C1 (en) Light-converting biostimulant material and composition for production thereof
JPS59179017A (en) Application of specific illumination treatment for increasing antocyanine in economically important crop
JPH08252882A (en) Wavelength converting material
JP2022551160A (en) Use of silicates in greenhouse films to promote plant fruit development
US20140274706A1 (en) Compositions and methods for increasing photosynthesis
JP2002247919A (en) Method for plant cultivation
JP2001231381A (en) Light property-changing/selective covering material for agriculture and horticulture
Mortensen et al. Effects of selective screening of the daylight spectrum, and of twilight on plant growth in greenhouses
JPH0646684A (en) Material for agricultural use
JPH0641524A (en) Wavelength changing material for agriculture
JPH11196685A (en) Material for agriculture
JPH0640817A (en) New agricultural wavelength converting material
JPH06199814A (en) New wavelength-conversion material
RU2609801C2 (en) Polymer composition for production of greenhouse covering material (versions)
AU2004201984B2 (en) Plant Treatment Material And Method
JPH09252668A (en) Material for agriculture
JP2006191862A (en) Coating material for controlling flowering or fruition of plant and method for controlling flowering or fruition of plant
JPS60149322A (en) Culture of fruits vegetables
JPS5876031A (en) Agricultural cover material and culturing of cut lily flower using same