JPH0638535B2 - Integrated semiconductor laser device - Google Patents

Integrated semiconductor laser device

Info

Publication number
JPH0638535B2
JPH0638535B2 JP2187585A JP2187585A JPH0638535B2 JP H0638535 B2 JPH0638535 B2 JP H0638535B2 JP 2187585 A JP2187585 A JP 2187585A JP 2187585 A JP2187585 A JP 2187585A JP H0638535 B2 JPH0638535 B2 JP H0638535B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
integrated semiconductor
laser device
integrated
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2187585A
Other languages
Japanese (ja)
Other versions
JPS61182291A (en
Inventor
幸雄 渡辺
直人 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2187585A priority Critical patent/JPH0638535B2/en
Publication of JPS61182291A publication Critical patent/JPS61182291A/en
Publication of JPH0638535B2 publication Critical patent/JPH0638535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、集積化半導体レーザ装置に係わり、特に集積
化半導体レーザ素子からの各レーザ光を監視するための
集積化半導体光検出素子を備えた集積化半導体レーザ装
置に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to an integrated semiconductor laser device, and more particularly to an integrated semiconductor photodetector for monitoring each laser beam from the integrated semiconductor laser device. The present invention relates to an integrated semiconductor laser device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

種々の発振波長若しくは本質的には同一波長の半導体レ
ーザ素子を同一基板上に形成した集積化半導体レーザ装
置は、光ファイバ通信における通信の多重化、或いはビ
ットパラレル伝送を実現する上で非常に有用なデバイス
である。また、半導体レーザを用いたレーザビームプリ
ンタに集積化半導体レーザ装置を用いれば、同時に数行
の掃引ができ高速化が実現可能となり、更には集積化半
導体レーザ装置を光ディスク用ピックアップの光源とし
て用いれば、やはり数行の書込みと読出しとを殆ど同時
に行うことも可能となる。この点で集積化半導体レーザ
装置は、光情報処理・光情報伝送の分野で今後非常に有
用なものと見なされている。
An integrated semiconductor laser device in which semiconductor laser devices having various oscillation wavelengths or essentially the same wavelength are formed on the same substrate is very useful for multiplexing communication in optical fiber communication or bit parallel transmission. Device. Further, if an integrated semiconductor laser device is used in a laser beam printer using a semiconductor laser, it is possible to simultaneously sweep several lines and achieve high speed. Furthermore, if the integrated semiconductor laser device is used as a light source for an optical disk pickup, Also, it is possible to write and read several lines almost at the same time. In this respect, the integrated semiconductor laser device is considered to be very useful in the fields of optical information processing and optical information transmission.

ところで、この種の集積化半導体レーザ装置では個々の
半導体レーザ素子の光出力をいかに監視するのかが非常
に重要な問題となる。一般に、半導体レーザ素子の電流
−光出力特性は温度に敏感であるため、各素子の光出力
を一定に保つためには各素子の光出力を監視し、一定の
光出力になるよう各素子に流す電流を調節することが必
要となる。また、長期の使用によっても各素子の電流−
光出力特性は変化するため、これを補償するためにも光
出力の監視は是非とも必要とされる。ところが多くの場
合、集積化半導体レーザ装置における各素子が50〔μ
m〕〜500〔μm〕前後と近接して形成される点と、半
導体レーザ素子から放射されるレーザ光のビーム広がり
角が数10度と広いために、集積化半導体レーザ装置か
ら少し離れた場所で光出力を検出しようとすると、隣り
同志のレーザ光が混ざり合い、結果として半導体レーザ
素子の各光出力を正しく監視することができない自体と
なる。
By the way, in this kind of integrated semiconductor laser device, how to monitor the optical output of each semiconductor laser element becomes a very important issue. In general, the current-light output characteristics of a semiconductor laser device are sensitive to temperature. Therefore, in order to keep the light output of each device constant, the light output of each device is monitored and each device is controlled to have a constant light output. It is necessary to adjust the current to flow. In addition, the current of each element-
Since the optical output characteristics change, it is absolutely necessary to monitor the optical output to compensate for this. However, in many cases, each element in the integrated semiconductor laser device is 50 [μ
m] to about 500 [μm] and the beam divergence angle of the laser light emitted from the semiconductor laser element is as wide as several tens of degrees, so that it is a little away from the integrated semiconductor laser device. When trying to detect the optical output with, the adjacent laser lights are mixed with each other, and as a result, the respective optical outputs of the semiconductor laser device cannot be properly monitored.

半導体レーザ素子の光出力の監視には、例えばGaA
Asレーザの場合にはシリコンフォトダイオードが用い
られる。これを用いて集積化GaAAsレーザの光出
力を監視をしようとする場合、シリコンフォトダイオー
ドをアレイ状に集積し、これを集積化GaAAsレー
ザに十分近付けて装着することになるが、各半導体レー
ザ素子の光出力を互いに干渉なく独立に監視するために
は、シリコンフォトダイオードアレイを各レーザ素子の
間隔と同程度かそれ以下に取付けることが必要となる
が、多くの場合半導体レーザ素子のマウントの制約条件
のために、近接して取付けることはできない。
For monitoring the optical output of the semiconductor laser device, for example, GaA
In the case of As laser, a silicon photodiode is used. When the optical output of the integrated GaAAs laser is to be monitored by using this, silicon photodiodes are integrated in an array form, and they are mounted sufficiently close to the integrated GaAAs laser. In order to monitor the optical output of each of them independently of each other without interference, it is necessary to mount the silicon photodiode array within the distance between each laser element or less, but in many cases the mounting restrictions of the semiconductor laser element are restricted. Due to the conditions, they cannot be mounted close together.

このような問題を解決する手段として本発明者等は、半
導体レーザ素子と半導体光検出素子とを層状に重ねてマ
ウントし、レール素子から放射される光をレーザ素子の
結晶面と平行な受光面で受光する方法を考えた(特開昭
51-83872号)。しかしながらこの方法は、単一のレーザ
素子からのレーザ光を監視するには有効であるが、集積
化された半導体レーザ装置には適用した場合、次のよう
な問題がある。即ち、前述したように集積化半導体レー
ザ装置における各素子の間隔は50〜500〔μm〕前後で
あるから、当然モノリシックな構成となる。この場合、
レーザ各素子の間隔が非常に近接しているため、一つの
素子で発生した熱が隣接した素子の温度を上昇させ、レ
ーズ素子の電流−光出力特性に温度依存性が存在するこ
とから、隣接した素子の光出力が変動すると云う、各レ
ーザ素子間の熱の相互干渉が生じる。そして、熱の相互
干渉効果は、モノリシックなレーザアレイにおいては避
けがたい問題であることが判明した。
As a means for solving such a problem, the inventors of the present invention have mounted a semiconductor laser element and a semiconductor photodetection element in a layered manner and mounted the light emitted from a rail element on a light-receiving surface parallel to the crystal plane of the laser element. I considered a method of receiving light with
51-83872). However, this method is effective for monitoring laser light from a single laser element, but has the following problems when applied to an integrated semiconductor laser device. That is, as described above, since the distance between the respective elements in the integrated semiconductor laser device is around 50 to 500 [μm], the structure is naturally monolithic. in this case,
Since the laser elements are very close to each other, the heat generated in one element raises the temperature of the adjacent element, and the current-light output characteristics of the lathe element have temperature dependence. Mutual interference of heat occurs between the laser elements, that is, the optical output of the laser elements varies. Then, it has been found that the mutual interference effect of heat is an unavoidable problem in the monolithic laser array.

また、もう一つの問題として以下のような問題点があ
る。
Further, there is the following problem as another problem.

前述したようなレーザアレイの個々のレーザ素子は第3
図に示すように各素子間の電気的分離のためp−n接合
より深い位置に達する溝39が形成されており、シリコ
ンホトダイオード上にマウントする場合、この溝が形成
された面を下にマウントする。また第4図のようにシリ
コンホトダイオードアレイも電気的分離を行なうため、
やはり深い溝29が形成される。ところでこのレーザア
レイとホトダイオードアレイを一体化する場合、放熱特
性を良くするため、発光部分を下にマウントするすなわ
ち電気的分離用の溝39と29が一致するようにマウン
トする。この時、融着金属としてIn,AaSn等を使
用するが、溶融金属がV溝を埋めてしまい電気的な分離
が損なわれることが生じる。また、素子間に選択的に融
着金属を付着させる場合にも作業は困難をきわめる。
The individual laser elements of the laser array as described above are the third
As shown in the figure, a groove 39 reaching a position deeper than the pn junction is formed for electrical isolation between elements. When mounting on a silicon photodiode, the surface on which the groove is formed is mounted downward. To do. Also, as shown in FIG. 4, since the silicon photodiode array also performs electrical isolation,
After all, a deep groove 29 is formed. When the laser array and the photodiode array are integrated, the light emitting portion is mounted downward, that is, the electrical isolation grooves 39 and 29 are aligned so as to improve the heat dissipation characteristics. At this time, In, AaSn, or the like is used as the fusion metal, but the fusion metal may fill the V groove and impair the electrical separation. Further, the work is extremely difficult when the fusion metal is selectively adhered between the elements.

〔発明の目的〕[Object of the Invention]

本発明は上記の欠点にかんがみ、放熱特性の良い、また
融着金属を各素子と同一間隔で付着させる工程などを必
要としない簡単な工程で構成される集積化半導体レーザ
装置を提供することにある。
In view of the above-mentioned drawbacks, the present invention provides an integrated semiconductor laser device having good heat dissipation characteristics and including simple steps that do not require a step of depositing a fusion metal at the same intervals as each element. is there.

〔発明の概要〕[Outline of Invention]

前述したレーザ素子間の熱の相互干渉効果を抑えるため
に本発明ではより速く熱を逃がす構造として融着金属を
用いずまた融着金属と反応して高熱抵抗化する電極金属
28,38をも用いず研摩面を直接に接着し、低熱抵抗
化を計ったものでしかも従来の融着金属を選択的に付着
させる工程をなくし簡略化できる構造としたものであ
る。
In order to suppress the mutual heat interference effect between the laser elements described above, the present invention does not use a fusion metal as a structure that allows heat to escape faster, and also includes electrode metals 28 and 38 that react with the fusion metal to increase the heat resistance. It has a structure in which the polished surface is directly bonded without using it, and the thermal resistance is reduced, and the structure is simplified by omitting the conventional step of selectively adhering the fusion metal.

〔発明の効果〕〔The invention's effect〕

本発明による集積化半導体レーザ素子の放熱特性は、従
来のマウント方法で得られていた放熱特性を大巾に改善
でき、その熱抵抗は数分の1に減少した。また、融着金
属を選択的に付着することを必要とせず融着金属による
素子間の短絡を防止することができ歩留りが向上した。
The heat dissipation characteristics of the integrated semiconductor laser device according to the present invention can greatly improve the heat dissipation characteristics obtained by the conventional mounting method, and the heat resistance thereof is reduced to a fraction. Further, it is possible to prevent a short circuit between the elements due to the fusion metal without requiring selective adhesion of the fusion metal, and the yield is improved.

〔発明の実施例〕Example of Invention

第1図は本発明の一実施例に係わる集積化半導体レーザ
の概略構成を示す斜視図である。この実施例装置は、集
積化半導体レーザ素子としてGaAAsレーザアレイ
を、集積化半導体素子としてシリコンPNホトダイオー
ドアレイを用いた例である。図中10は銅製ステムで、
このステム10上には集積化半導体光検出素子20がマ
ウントされ、該光検出素子20上には集積化半導体レー
ザ素子30がマウントされている。
FIG. 1 is a perspective view showing a schematic structure of an integrated semiconductor laser according to an embodiment of the present invention. The device of this embodiment is an example in which a GaAAs laser array is used as an integrated semiconductor laser device and a silicon PN photodiode array is used as an integrated semiconductor device. In the figure, 10 is a copper stem,
An integrated semiconductor photodetection element 20 is mounted on the stem 10, and an integrated semiconductor laser element 30 is mounted on the photodetection element 20 .

ここで、半導体光検出素子20は、第2図に示す如く、
i基板21,n層22,及び拡散によるp層23からな
るpnホトダイオードであり各ホトダイオード素子は30
0μm間隔で設けられたi層まで達する深い溝で電気的
に分離されており各受光部24の面積は150μm×150μ
mとなっている。各ホトダイオードのn電極60及びp
電極26はそれぞれ独立となっており後述するようにホ
トダイオードのn電極60はレーザアレイの各素子のp
電極と共通となる。
Here, the semiconductor photodetector element 20 is, as shown in FIG.
A pn photodiode including an i substrate 21, an n layer 22, and a p layer 23 formed by diffusion. Each photodiode element is 30
The area of each light receiving portion 24 is 150 μm × 150 μm because they are electrically separated by deep grooves reaching the i layer provided at intervals of 0 μm.
It has become m. N-electrode 60 and p of each photodiode
The electrodes 26 are independent of each other, and as will be described later, the n electrode 60 of the photodiode is the p electrode of each element of the laser array.
It becomes common with the electrode.

一方、前記半導体レーザ素子30はN型GaAs基板3
1,N−GaAAsクラッド層32,GaAs活性層
33,P−GaAAsクラツド層34及びP−GaA
sコンタクト層35等からなるヘテロ接合構造のレーザ
を集積してなるもので、各レーザ素子間の間隔は300
〔μm〕である。このレーザのN側電極36は共通電極
となっており、P側は次の述べるようなマウントによっ
てホトダイオードのn側電極60と共通電極となる。す
なわち第5図に示す半導体レーザアレイのP側−GaA
sコンタクト層表面37には電属金属はつけられず鏡面
研摩後清浄な状態に保たれ、第6図に示すホトダイオー
ドの電極の設けられていない鏡面研摩された清浄な面2
7へ前述した電気的分離のため設けられた溝を合わせて
接着される。
On the other hand, the semiconductor laser device 30 includes an N-type GaAs substrate 3
1, N-GaAAs cladding layer 32, GaAs active layer 33, P-GaAAs cladding layer 34 and P-GaA
A laser having a heterojunction structure composed of the s contact layer 35 and the like is integrated.
[Μm]. The N-side electrode 36 of this laser serves as a common electrode, and the P-side serves as a common electrode with the n-side electrode 60 of the photodiode by mounting as described below. That is, the P-side-GaA of the semiconductor laser array shown in FIG.
The metal surface is not attached to the surface 37 of the s contact layer and is kept clean after mirror-polishing. The mirror-polished clean surface 2 shown in FIG. 6 is provided with no photodiode electrode.
7 is bonded together with the groove provided for electrical isolation described above.

直接接着法による素子ウェーハの形成工程は次の通りで
ある。まず二枚の半導体基板の被接着面を鏡面研磨して
表面粗さ500Å以下に形成する。そして半導体基板の表
面状態によって脱脂およびステインフィルム除去の前処
理を行なう。Si基板であれば、この前処理は例えば、
H2O2+H2SO4→王水ボイル→HFのような工程とする。こ
の後基板を清浄な水で数分程度水洗し、室温でのスピン
ナ乾燥による脱水処理する。この脱水処理は鏡面研磨面
に過剰に吸着している水分を除去するためのもので、吸
着水分の殆どが揮散するような100℃以上の加熱乾燥は
避けることが重要である。その後両基板を、クラス1以
下の清浄な雰囲気下で実質的に異物が介在しない状態で
研磨面同士を接着させ、200℃以上で熱処理する。Si
基板の場合好ましい熱処理温度は1000℃〜1200℃であ
る。
The process of forming the element wafer by the direct bonding method is as follows. First, the adhered surfaces of the two semiconductor substrates are mirror-polished to form a surface roughness of 500 Å or less. Then, depending on the surface condition of the semiconductor substrate, pretreatment for degreasing and stain film removal is performed. In the case of a Si substrate, this pretreatment is, for example,
A process such as H 2 O 2 + H 2 SO 4 → royal water boil → HF is performed. After that, the substrate is washed with clean water for several minutes, and dehydrated by spinner drying at room temperature. This dehydration treatment is for removing the water that is excessively adsorbed on the mirror-polished surface, and it is important to avoid heating and drying at 100 ° C. or higher where most of the adsorbed water vaporizes. After that, the two substrates are bonded to each other in a clean atmosphere of class 1 or less in a state where substantially no foreign matter is present, and heat-treated at 200 ° C. or more. Si
In the case of a substrate, the preferable heat treatment temperature is 1000 ° C to 1200 ° C.

この操作ににより電気的にも放熱特性的にも良好な接着
が可能となり、融着金属の不要な作業性の良いしかも電
極金属と融着金属の反応による高熱抵抗層も含まない放
熱特性の良い集積化レーザ構造が得られる。
By this operation, good adhesion can be achieved both in terms of electrical characteristics and heat dissipation characteristics, good workability without the need for a fusion metal, and good heat dissipation characteristics not including the high thermal resistance layer due to the reaction between the electrode metal and the fusion metal. An integrated laser structure is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図,第2図,第3図,第4図,第5図及び第6図は
本発明を説明する図である。 図において、 10……ステム、20……PNフォトダイオードアレイ
(集積化半導体光検出素子)、22……N型層、21…
…I層、23……P層、24……受光面、28,36…
…N型電極、26,38……P側電極、30……GaA
Asレーザアレイ(集積化半導体レーザ素子)、31
……N型GaAs基板、32,34……クラッド層、3
3……活性層、35……コンタクト層、27,37……
鏡面研摩面、29,39……素子分離用溝、40……金
−錫合金(融着金属)、60……共通電極。
1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, and FIG. 6 are views for explaining the present invention. In the figure, 10 ... Stem, 20 ... PN photodiode array (integrated semiconductor photodetector), 22 ... N-type layer, 21 ...
... I layer, 23 ... P layer, 24 ... light receiving surface, 28, 36 ...
... N-type electrode, 26, 38 ... P-side electrode, 30 ... GaA
As laser array (integrated semiconductor laser device), 31
... N-type GaAs substrate, 32,34 ... cladding layer, 3
3 ... Active layer, 35 ... Contact layer, 27, 37 ...
Mirror-polished surface, 29, 39 ... Element separation groove, 40 ... Gold-tin alloy (fusion metal), 60 ... Common electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】同一チップ上に複数のレーザ素子を集積し
てなる集積化半導体レーザ素子と、同一チップ上に複数
の光検出素子を集積してなり、上記半導体レーザ素子の
結晶面と平行な一主面にその受光面側が該主面と接する
ように、且つその受光面が上記半導体レーザ素子の結晶
面と略平行に出射されるレーザ光の出射端面より外側に
突出するように固定されてなる集積化半導体レーザ装置
において、集積化半導体レーザの主面及び受光面の研磨
面に脱水処理を行い、清浄雰囲気中で接着させ、その後
熱処理により直接接着させたことを特徴とする集積化半
導体レーザ装置。
1. An integrated semiconductor laser device formed by integrating a plurality of laser devices on the same chip, and a plurality of photodetection devices integrated on the same chip, which are parallel to a crystal plane of the semiconductor laser device. The light receiving surface side is fixed to the one main surface so that the light receiving surface is in contact with the main surface, and the light receiving surface projects outward from the emission end surface of the laser light emitted substantially parallel to the crystal plane of the semiconductor laser device. In this integrated semiconductor laser device, the integrated semiconductor laser is characterized in that the main surface and the light-receiving surface of the integrated semiconductor laser are dehydrated, bonded in a clean atmosphere, and then directly bonded by heat treatment. apparatus.
JP2187585A 1985-02-08 1985-02-08 Integrated semiconductor laser device Expired - Lifetime JPH0638535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2187585A JPH0638535B2 (en) 1985-02-08 1985-02-08 Integrated semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2187585A JPH0638535B2 (en) 1985-02-08 1985-02-08 Integrated semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS61182291A JPS61182291A (en) 1986-08-14
JPH0638535B2 true JPH0638535B2 (en) 1994-05-18

Family

ID=12067299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2187585A Expired - Lifetime JPH0638535B2 (en) 1985-02-08 1985-02-08 Integrated semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0638535B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592235B2 (en) * 1985-09-24 1997-03-19 ローム 株式会社 Semiconductor laser device

Also Published As

Publication number Publication date
JPS61182291A (en) 1986-08-14

Similar Documents

Publication Publication Date Title
KR100563853B1 (en) Method for producing a light-emitting component
US6597713B2 (en) Apparatus with an optical functional device having a special wiring electrode and method for fabricating the same
JP2005150692A (en) Semiconductor laser device
EP0204725A1 (en) ASYMMETRIC CHIP DESIGN FOR LEDs.
US5022035A (en) Semiconductor laser device
CN100466301C (en) Semiconductor light-receiving device and method for manufacturing same
JP3610235B2 (en) Surface light emitting device
US5544269A (en) Optical transmission module and method of forming the same
JPH05136152A (en) Photoelectronic part
JPH02112250A (en) Method of coupling semiconductor chip with substrate
US20040029366A1 (en) Method for calculating a temporal level signal
JPS6223163A (en) Hybrid optical ic device
JPS5996789A (en) Photosemiconductor device
JPH0638535B2 (en) Integrated semiconductor laser device
JPH0810496B2 (en) Optical head manufacturing method
JP2000183438A (en) Manufacture of semiconductor laser
US7094664B2 (en) Method for fabricating semiconductor photodetector
JP2002335032A (en) Optical device and its manufacturing method
JP2003229636A (en) Semiconductor laser element and semiconductor laser device
JP3379726B2 (en) Optical transmission module and method of manufacturing the same
JPS60198885A (en) Integrated semiconductor laser
KR101917665B1 (en) Apparatus and fabrication method for optical transmitter module with laser diode driver IC
JP2001028455A (en) Optical semiconductor device, manufacture thereof, and optical transmission module
JP2006108262A (en) Semiconductor laser element and its manufacturing method, semiconductor laser device, optical disk device, and electronic equipment
JPS61159788A (en) Semiconductor laser array device