JPH0638151B2 - Method for producing silver halide emulsion - Google Patents

Method for producing silver halide emulsion

Info

Publication number
JPH0638151B2
JPH0638151B2 JP59169768A JP16976884A JPH0638151B2 JP H0638151 B2 JPH0638151 B2 JP H0638151B2 JP 59169768 A JP59169768 A JP 59169768A JP 16976884 A JP16976884 A JP 16976884A JP H0638151 B2 JPH0638151 B2 JP H0638151B2
Authority
JP
Japan
Prior art keywords
silver
silver halide
solution
halide emulsion
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59169768A
Other languages
Japanese (ja)
Other versions
JPS6147939A (en
Inventor
歳夫 斎藤
久 原田
一男 二宮
貞行 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP59169768A priority Critical patent/JPH0638151B2/en
Publication of JPS6147939A publication Critical patent/JPS6147939A/en
Publication of JPH0638151B2 publication Critical patent/JPH0638151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はハロゲン化銀乳剤の製造方法に関し、詳しく
は、ハロゲン化銀乳剤溶液中の銀イオン濃度、厳密には
銀イオン活量測定用センサーに好適な電極を用いたハロ
ゲン化銀乳剤の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a silver halide emulsion, and more specifically, a sensor for measuring the silver ion concentration in a silver halide emulsion solution, specifically, a silver ion activity measuring sensor. The present invention relates to a method for producing a silver halide emulsion using an electrode suitable for.

[従来技術] 一般に当業界で広く写真感光材料に用いられているハロ
ゲン化銀乳剤は、ゼラチン等のような保護コロイドの存
在下で水溶性のハロゲン塩水溶液および水溶性の銀塩水
溶液を攪拌しながら混合することにより調製される。ハ
ロゲン化銀乳剤のこのような製造技術としては、シング
ルジェット混合法、ダブルジェット混合法等が知られて
いる。シングルジェット混合法は、反応容器にハロゲン
塩水溶液を入れ攪拌しながらこれに銀塩水溶液を所定の
添加時間で添加し、ハロゲン化銀結晶を得る方法であ
り、ダブルジェット混合法とは、反応容器にゼラチン水
溶液またはハロゲン化銀種結晶を含むゼラチン水溶液を
入れ攪拌しながらこれに銀塩水溶液およびハロゲン塩化
溶液をそれぞれ所定の添加時間で同時に添加し、ハロゲ
ン化銀結晶粒子を得るものである。
[Prior Art] Generally, a silver halide emulsion widely used in a photographic light-sensitive material in the art is prepared by stirring a water-soluble halogen salt aqueous solution and a water-soluble silver salt aqueous solution in the presence of a protective colloid such as gelatin. It is prepared by mixing while mixing. As such a production technique of a silver halide emulsion, a single jet mixing method, a double jet mixing method and the like are known. The single jet mixing method is a method in which an aqueous solution of a halogen salt is placed in a reaction vessel and stirred, and then an aqueous solution of a silver salt is added at a predetermined addition time to obtain a silver halide crystal. An aqueous solution of gelatin or an aqueous solution of gelatin containing silver halide seed crystals is added to the mixture while stirring, and the aqueous solution of silver salt and the solution of halogen chloride are simultaneously added thereto at predetermined addition times to obtain silver halide crystal grains.

近年では特に、コントロールドダブルジェット混合法を
中心として著しく粒径分布が狭く、一定晶癖で一定形状
のハロゲン化銀結晶より成る、いわゆる単分散乳剤の製
造方法がさかんに検討されている。かかる製造技術の例
として特開昭54-48521号記載のものを挙げることができ
る。単分散乳剤は高感度、高コントラストでカブリが低
いという写真特性上好ましい特徴を有するが、任意の粒
径、任意の晶癖の単分散乳剤を作り分けるためには、反
応溶液のpH、pAg(銀イオン濃度の逆数の対数)および添
加速度を精度よくコントロールすることが重要である。
In recent years, in particular, a method for producing a so-called monodisperse emulsion, which is composed of a silver halide crystal having a remarkably narrow grain size distribution and a constant crystal habit, has been extensively studied, especially in the controlled double jet mixing method. As an example of such a manufacturing technique, the one described in JP-A-54-48521 can be mentioned. Monodisperse emulsions have favorable characteristics in terms of photographic characteristics such as high sensitivity, high contrast, and low fog, but in order to make monodisperse emulsions of arbitrary grain size and crystal habit, pH of reaction solution, pAg ( It is important to accurately control the reciprocal of the silver ion concentration) and the addition rate.

ハロゲン化銀乳剤製造時のpAgおよびそのコントロール
の重要性は以下の文献、特許等からも理解される。
The importance of pAg and its control during the production of silver halide emulsions can be understood from the following documents and patents.

ジャーナル・オブ・フォトグラフィック・サイエンス
(Journal of Photographic Science)第12巻,p242
〜251(1964)、同第27巻,p47〜53(1979)はハロゲン化
銀の晶癖および形状が製造時のpAgに依存していること
を示している。
Journal of Photographic Science, Volume 12, p242
~ 251 (1964), Vol. 27, p47-53 (1979) show that the crystal habit and shape of silver halide depend on pAg at the time of production.

pAgをコントロールして得られた晶癖の異なるハロゲン
化銀乳剤の化学熟成特性の相違に関してはジャーナル・
オブ・フォトグラフィック・サイエンス(Journal of P
hotographic Science)第14巻,p181〜184(1966)をは
じめ多くの報文があり、ハロゲン化銀乳剤製造時のpAg
は得られる乳剤の写真特性と密接に関係している。
Regarding differences in chemical ripening characteristics of silver halide emulsions with different crystal habits obtained by controlling pAg, see Journal.
Of Photographic Science (Journal of P
Hotographic Science) Volume 14, p181-184 (1966) and many other reports, pAg at the time of silver halide emulsion production
Are closely related to the photographic properties of the resulting emulsion.

ジャーナル・オブ・フォトグラフィック・サイエンス
(Journal of Photographic Science)第27巻,p1〜1
2(1979)はハロゲン化銀の溶解度がpAgに依存しているこ
とを示している。
Journal of Photographic Science, Volume 27, p1-1
2 (1979) show that the solubility of silver halide depends on pAg.

また、ビューレティン・オブ・ザ・ソサイエティ・オブ
・サイエンティフィック・フォトグラフィー・オブ・ジ
ャパン(Bulletin of the Society of Scientific Phot
ography of Japan)第16巻,P1〜7(1966)をはじめ
とする多くの報文は、ハロゲン化銀の成長速度がハロゲ
ン化銀の溶解度に比例することを示している。
Also, the Bulletin of the Society of Scientific Phot
Many reports, such as ography of Japan, Vol. 16, P1-7 (1966), show that the growth rate of silver halide is proportional to the solubility of silver halide.

これらの文献からもハロゲン化銀乳剤の製造において、
pAgがハロゲン化銀の成長速度を決定していることが理
解できる。
From these documents, in the production of silver halide emulsion,
It can be seen that pAg determines the growth rate of silver halide.

以上述べた如く、写真用ハロゲン化銀乳剤の調製の過程
で、その調製液のpAgを制御することは所望の写真特性
を得るために必要欠くべからざる条件である。従来から
上記目的のために用いられている銀イオンセンサーとし
ては、銀,金,白金等の金属電極が一般に用いられてき
た。しかしながら、銀イオンセンサーとして従来の金属
電極を用いたゼラチン水溶液等の系における銀イオン活
量の測定では、繰り返し測定における測定電位の再現性
は必ずしも満足できるものではなく、得られるハロゲン
化銀粒子のサイズ分布、形状、写真性能等にはバラツキ
があった。また、長時間の連続測定では指示電位のドリ
フトが起って、目的とするハロゲン化銀乳剤が得られな
いというトラブルがしばしば発生した。
As described above, in the process of preparing a photographic silver halide emulsion, controlling the pAg of the preparation is an essential condition for obtaining desired photographic characteristics. Conventionally, metal electrodes of silver, gold, platinum, etc. have been generally used as the silver ion sensor used for the above purpose. However, in the measurement of silver ion activity in a system such as a gelatin aqueous solution using a conventional metal electrode as a silver ion sensor, the reproducibility of the measured potential in repeated measurement is not always satisfactory, and the silver halide grain There were variations in size distribution, shape, photographic performance, etc. Further, in continuous measurement for a long time, a drift of the indicated potential occurred, and a problem that the intended silver halide emulsion could not be obtained often occurred.

上記ハロゲン化銀製造上の不安定性の原因は、必ずしも
明確には解明されていないが、ハロゲン化銀乳剤中の銀
イオン濃度が〜10-10モル/程度の範囲までの低濃度
域においてもハロゲン化銀結晶の生成に影響があるとさ
れており、その低濃度域における従来の銀イオンセンサ
ーの感度が充分ではないと考えられる。また、特にアン
モニア法による乳剤調製時のpH域、即ち、アルカリ側に
おける銀イオン指示電位の降下現象の発生時の影響が考
えられる。
The cause of the instability in the production of silver halide is not always clarified, but even in a low concentration range up to a silver ion concentration in the silver halide emulsion of up to about 10 -10 mol / halogen. It is said that the formation of silver halide crystals is affected, and the sensitivity of conventional silver ion sensors in the low concentration region is considered to be insufficient. Further, it is considered that there is an influence particularly when the silver ion indicating potential lowering phenomenon occurs in the pH range during emulsion preparation by the ammonia method, that is, on the alkali side.

従って、前述の如きハロゲン化銀乳剤の製造に際して、
ハロゲン化銀乳剤中の銀イオン濃度が〜10-10モル/
程度の低濃度域においても正確な銀イオン活量を測定で
き、かつ、アルカリ側のpH域においても指示電位の降下
現象が発生しない銀イオンセンサーの開発が望まれてい
た。
Therefore, in the production of the silver halide emulsion as described above,
The silver ion concentration in the silver halide emulsion is ~ 10 -10 mol /
It has been desired to develop a silver ion sensor that can accurately measure the silver ion activity even in a low concentration range and does not cause a decrease in the indicated potential even in the alkaline pH range.

[発明の目的] 本発明は、上記問題点に鑑み為されたものであり、ハロ
ゲン化銀乳剤中の銀イオン濃度が〜10-10モル/程度
の低濃度域においても正確な銀イオン活量を測定でき、
かつアルカリ側のpH域においても指示電位の降下現象が
発生しない信頼性の高い銀イオンセンサーを用いたハロ
ゲン化銀乳剤の製造方法を提供することである。
[Object of the Invention] The present invention has been made in view of the above problems, and it is possible to obtain an accurate silver ion activity even in a low concentration range of about 10 -10 mol / silver ion concentration in a silver halide emulsion. Can be measured,
Another object of the present invention is to provide a method for producing a silver halide emulsion using a highly reliable silver ion sensor that does not cause the phenomenon of drop of the indicated potential even in the pH range on the alkaline side.

[発明の構成] 本発明者等は、上記目的に対し種々検討を重ねた結果、
乳剤中の銀イオンを制御しつつ行なうハロゲン化銀乳剤
の製造方法において、銀イオン検出用センサーに硫化銀
電極を用いるハロゲン化銀乳剤の製造方法により達成さ
れることを見い出した。
[Structure of the Invention] As a result of various studies conducted by the present inventors on the above-mentioned object,
It has been found that a method for producing a silver halide emulsion while controlling silver ions in the emulsion is achieved by a method for producing a silver halide emulsion using a silver sulfide electrode as a sensor for detecting silver ions.

[発明の具体的構成] 本発明は、ハロゲン化銀乳剤の製造に、銀イオンの検出
制御センサーとして硫化銀電極を用いることを特徴とす
る。
[Specific Structure of the Invention] The present invention is characterized in that a silver sulfide electrode is used as a silver ion detection control sensor in the production of a silver halide emulsion.

元来、硫化銀電極は、銀イオン濃度として〜10-7モル/
(pAg=7)程度までの化学分析、環境計測の産業分
野に利用されてきた。
Originally, the silver sulfide electrode had a silver ion concentration of ~ 10 -7 mol /
It has been used in the industrial field of chemical analysis and environmental measurement up to about (pAg = 7).

しかしながら、この硫化銀電極をハロゲン化銀乳剤の製
造における銀イオン検出制御センサーに利用することは
今まで試みられてはいなかった。
However, utilization of this silver sulfide electrode as a silver ion detection control sensor in the production of silver halide emulsions has not been attempted until now.

また、一般に写真業界においては、ハロゲン化銀乳剤の
化学増感にチオ硫酸塩、アリルチオ尿素、チオシアン酸
塩等の硫黄化合物を用いる硫黄増感を行なうことが行な
われており、この硫黄増感を行なう時期はハロゲン化銀
乳剤の物理熟成後であり、ハロゲン化銀粒子の結晶成長
時に硫黄化合物である硫化銀を材料とした電極を用いる
ことが乳剤の物理熟成に悪影響を及ぼす懸念があった。
Further, generally in the photographic industry, sulfur sensitization using a sulfur compound such as thiosulfate, allylthiourea and thiocyanate is performed for chemical sensitization of silver halide emulsion. The time for performing the physical ripening was after the physical ripening of the silver halide emulsion, and there was a concern that the use of electrodes made of silver sulfide, which is a sulfur compound, as a material during crystal growth of the silver halide grains would adversely affect the physical ripening of the emulsion.

上記当業界の常識に対し、硫化銀電極を銀イオンセンサ
ーとしてハロゲン化銀乳剤の製造過程に用いて良好な結
果を得たのが本発明の特徴である。
It is a feature of the present invention that good results have been obtained by using a silver sulfide electrode as a silver ion sensor in the process of producing a silver halide emulsion, in contrast to the common knowledge in the art.

本発明に用いる硫化銀電極は、例えば、硝酸銀を硫化ナ
トリウムの溶液中に入れ作成した硫化銀沈殿を加圧成形
して得ることができる。
The silver sulfide electrode used in the present invention can be obtained, for example, by press-molding a silver sulfide precipitate prepared by placing silver nitrate in a solution of sodium sulfide.

一般にイオン活量測定用電極は、特定のイオンに選択的
に応答し、溶液中に浸された指示電極と比較電極との間
の電位差E(V)は次に示すネルンストの式で表わされ
る。
Generally, the ion activity measuring electrode responds selectively to a specific ion, and the potential difference E (V) between the indicator electrode and the reference electrode immersed in the solution is expressed by the following Nernst equation.

ここで、Eは指示電極の標準電位(V)、 はネルンスト係数、aはイオン活量である。上式におい
て、Eおよびネルンスト係数があらかじめ判っている
と、電位差Eを測定することにより、連続的にイオン活
量aを測定することができる。
Here, E 0 is the standard potential (V) of the indicator electrode, Is the Nernst coefficient, and a is the ion activity. In the above equation, if E 0 and the Nernst coefficient are known in advance, the ion activity a can be continuously measured by measuring the potential difference E.

ハロゲン化銀乳剤の難溶性銀粒子を製造するには、pHお
よびpAgを写真業界に公知の装置を用いてモニターされ
コントロールされる。代表的であり有用な前記コントロ
ール装置としては、米国特許第3,031,304号およびフォ
トグラフィシェ・コレスポンデンツ(Photographiche K
orrespondens)第103巻,p161〜164(1967)に記載されて
いるもの等を用いることができる。上記において、反応
液の電位をコントロールするとは、反応開始時(混合開
始時)から反応終了時(混合終了時)までの時間に伴な
って設定された電位に従って反応液の電位を変動させる
ことであり、これは反応開始から終了まで一定の電位に
保つことも包含し、反応途中で電位を変更することも包
含する。
To produce sparingly soluble silver grains in a silver halide emulsion, pH and pAg are monitored and controlled using equipment known in the photographic art. Representative and useful control devices include U.S. Pat. No. 3,031,304 and Photographiche Correspondents.
orrespondens) 103, p161-164 (1967) etc. can be used. In the above, controlling the potential of the reaction solution means changing the potential of the reaction solution according to the potential set with the time from the start of the reaction (at the start of mixing) to the end of the reaction (at the end of mixing). Yes, this includes maintaining a constant potential from the start to the end of the reaction, and changing the potential during the reaction.

上記ハロゲン化銀としては、臭化銀、塩化銀、沃化銀、
沃臭化銀、塩臭化銀、塩臭沃化銀等が含有される。
Examples of the silver halide include silver bromide, silver chloride, silver iodide,
Silver iodobromide, silver chlorobromide, silver chlorobromoiodide and the like are contained.

また、製造し得るハロゲン化銀の粒子直径は約0.1〜4
ミクロンが好ましく、0.2〜2ミクロンが特に好まし
い。
The grain diameter of silver halide that can be produced is about 0.1 to 4
Microns are preferred and 0.2-2 microns are particularly preferred.

粒子サイズ分布は広くても狭くてもよいが、分布の狭い
粒子を得ようとするとき、特に大きな効果を発揮する。
The particle size distribution may be wide or narrow, but when obtaining particles with a narrow distribution, a particularly large effect is exhibited.

また、上記ハロゲン化銀粒子は、双晶または双晶を含む
変則的な形状を持つものであってもよく、立方体、八面
体、球体のような規則的な結晶形をもつものでもよい
が、規則的な結晶形をもつハロゲン化銀粒子を得ようと
するとき特に効果が大きい。
Further, the silver halide grains may have twins or irregular shapes including twins, and may have regular crystal forms such as cubes, octahedra and spheres. It is particularly effective when trying to obtain silver halide grains having a regular crystal form.

さらにまた、上記のハロゲン化銀粒子は、内部と表面が
異なる相を持っていてもよく、均一相から成っていても
よい。また、潜像が主として表面に形成されるような粒
子でもよく、粒子内部に主として形成されるような粒子
であってもよい。
Furthermore, the above-mentioned silver halide grains may have a phase different from the inside and the surface, or may be composed of a uniform phase. Further, the particles may be such that the latent image is mainly formed on the surface, or the particles are mainly formed inside the particles.

代表的なハロゲン化銀溶媒としては、例えば、アンモニ
ア、チオエーテル類、チオシアネート、イミダゾール
類、硫黄あるいは酸素原子のいずれか1つと窒素原子に
結合したチオカルボニル基を有する化合物、およびチオ
尿素類が挙げられる。
Representative silver halide solvents include, for example, ammonia, thioethers, thiocyanates, imidazoles, compounds having a thiocarbonyl group bonded to any one of sulfur or oxygen atoms and a nitrogen atom, and thioureas. .

ここで得られるハロゲン化銀および有機銀塩を写真材料
に適用する場合は、例えば、白黒写真感光材料、カラー
写真感光材料、偽カラー写真感光材料のいずれの型でも
よく、また、一般用、印刷用、X線用、放射線用、熱現
像用等の種々の写真用途に供することができ、また写真
形式、または機構的にネガ型、ポジ型、拡散転写型等の
あらゆる写真感光材料を挙げることができる。
When the silver halide and the organic silver salt obtained here are applied to a photographic material, for example, any type of black-and-white photographic light-sensitive material, color photographic light-sensitive material, and pseudo-color photographic light-sensitive material may be used. , Various X-rays, radiations, heat development, and other photographic applications, and any photographic light-sensitive material of photographic type or mechanically negative type, positive type, diffusion transfer type, etc. You can

以下、実施例により本発明を例証するが、これによって
本発明の実施の態様が限定されるものではない。
Hereinafter, the present invention will be illustrated by examples, but the embodiments of the present invention are not limited thereby.

[発明の具体的実施例] 実施例1 pAg測定系として、東亜電波工業(株)製HM−20E pH
メーターを用い、比較電極用端子に東亜電波工業(株)
製銀−塩化銀電極HS−605Cを接続し、他方の端子に下
記の銀イオンセンサーを接続した。ここで、比較電極
は、特開昭57-197534号に記載の方法でダブルジャンク
ション型電極とし、硝酸カリウム1N水溶液をジャンク
ション液として用いた。
Specific Examples of the Invention Example 1 As a pAg measurement system, HM-20E pH manufactured by Toa Denpa Kogyo KK
Toa Denpa Kogyo Co., Ltd. is used as a reference electrode terminal using a meter.
The silver-silver chloride electrode HS-605C was connected, and the following silver ion sensor was connected to the other terminal. Here, the reference electrode was a double junction type electrode by the method described in JP-A-57-197534, and a 1N aqueous solution of potassium nitrate was used as the junction liquid.

銀イオンセンサーは、本発明に係る硫化銀電極以外に、
比較例として金属銀電極、金属金電極、金属白金電極を
用いた。
The silver ion sensor, in addition to the silver sulfide electrode according to the present invention,
As a comparative example, a metal silver electrode, a metal gold electrode, and a metal platinum electrode were used.

次に硝酸銀水溶液と臭化カリウム水溶液を混合し、1%
オセインゼラチン水溶液1000cc中に0.1モルの臭化銀を
含む乳剤を作成した。
Next, the silver nitrate aqueous solution and the potassium bromide aqueous solution are mixed, and 1%
An emulsion containing 0.1 mol of silver bromide in 1000 cc of ossein gelatin aqueous solution was prepared.

尚、乳剤の臭化銀粒子の平均粒径は1μm,理論銀電位
は、OmV(pAg=10)を示す様に調整してある(理論
銀電位は溶解度積から算出した)。
The average grain size of silver bromide grains in the emulsion was adjusted to 1 μm, and the theoretical silver potential was adjusted to show OmV (pAg = 10) (theoretical silver potential was calculated from the solubility product).

この乳剤液を40℃に保温して、その中に前掲の銀イオン
センサーを用いたpAg測定系を装着し、30秒経過した時
の電位を読み取った。続けて銀イオンセンサーを取り出
し、40℃の蒸留水で充分洗浄して化学実験用ティッシュ
ペーパーで水分をふき取った。
This emulsion solution was kept warm at 40 ° C., and the pAg measurement system using the silver ion sensor described above was mounted therein, and the potential when 30 seconds had elapsed was read. Subsequently, the silver ion sensor was taken out, thoroughly washed with distilled water at 40 ° C., and the water was wiped off with a tissue paper for chemical experiments.

以上の操作を30回くり返した時の値から平均値と標準偏
差を求め、これを表1に示した。
The average value and standard deviation were determined from the values when the above operation was repeated 30 times and are shown in Table 1.

表1の結果から明らかな様に、銀イオン濃度10-10モル
/程度のハロゲン化銀乳剤において本発明の方法であ
る硫化銀の銀イオンセンサーを用いた測定系の再環精度
が、他の比較銀イオンセンサーに比べて、優れている事
がわかる。
As is clear from the results shown in Table 1, the recirculation accuracy of the measurement system using the silver sulfide silver ion sensor, which is the method of the present invention, in silver halide emulsions having a silver ion concentration of 10 -10 mol / degree is It can be seen that it is superior to the comparative silver ion sensor.

実施例2 実施例1で用いたと同様の本発明および比較例の銀イオ
ン測定制御系を用い、また、pH測定制御系としては、前
記HM−20E pHメーターに銀イオン測定制御系に用いた
と同様の比較電極を採用し、pHセンサーとして東亜電波
工業製HGS−2005を接続して用いて、以下の如くハロ
ゲン化銀乳剤を調整した。
Example 2 The same silver ion measurement control system of the present invention and comparative example as used in Example 1 was used, and the pH measurement control system was the same as that used for the HM-20E pH meter in the silver ion measurement control system. A silver halide emulsion was prepared as follows by using the comparative electrode of No. 1 and connecting HGS-2005 manufactured by Toa Denpa Kogyo as a pH sensor.

ハロゲン化銀乳剤の製造には、以下に示す4種類の溶液
を調整し、これを用いてAgI含量が40モル%の単分散
沃臭化銀乳剤を作成した。
For the production of the silver halide emulsion, the following four kinds of solutions were prepared and used to prepare a monodisperse silver iodobromide emulsion having an AgI content of 40 mol%.

溶液A 溶液B 溶液C 硝酸銀の1モル水溶液 800ml 溶液D 1N硝酸水溶液 溶液Aを60℃で攪拌下、pAg測定制御系(上記各銀イオ
ンセンサーとダブルジャンクションHS−605C)とpH
測定制御系(HGS−2005とダブルジヤンクションHS
−605C)を浸して電位およびpHを測定し、pAg値を硝酸
銀溶液を用いて3.0(+404mV)、また、pH値を硝酸を用い
て2.0に調整した。
Solution A Solution B Solution C Silver nitrate 1 molar aqueous solution 800ml Solution D 1N nitric acid aqueous solution Solution A is stirred at 60 ° C, pAg measurement control system (the above silver ion sensors and double junction HS-605C) and pH.
Measurement control system (HGS-2005 and double junction HS
The potential and pH were measured by immersing -605C), the pAg value was adjusted to 3.0 (+404 mV) using a silver nitrate solution, and the pH value was adjusted to 2.0 using nitric acid.

pAgとpHがこの値を保つよう溶液Bと溶液Dの流量を制
御しつつ、溶液Aにダブルジェット法で溶液Bと溶液C
を添加した。溶液Cの添加速度は添加開始から6分間だ
け0.5ml/分の定速で添加し、以降10分間に0.385ml/分
の割合で直線的に増加させ、溶液Cを全て添加させるの
に197分を要した。
While controlling the flow rates of solution B and solution D so that pAg and pH maintain these values, solution B and solution C were applied to solution A by the double jet method.
Was added. The solution C was added at a constant rate of 0.5 ml / min for 6 minutes from the start of the addition, and then linearly increased at a rate of 0.385 ml / min for 10 minutes. Needed.

上記の如く調製したハロゲン化銀粒子を電子顕微鏡写真
で調べたところ[111]面の晶癖を有する単分散乳剤が
得られた。
When the silver halide grains prepared as described above were examined by an electron micrograph, a monodisperse emulsion having a [111] plane crystal habit was obtained.

得られたハロゲン化銀粒子の平均粒径を堀揚製作所製C
APA500により遠心沈降法で求めた。
The average grain size of the obtained silver halide grains is C
It was determined by the centrifugal sedimentation method with APA500.

また、単分散性の評価はCAPA500より出力された粒
径分布グラフから標準偏差を求め、さらに平均粒径で割
った値を単分散性の評価値とした。
For the evaluation of monodispersity, the standard deviation was obtained from the particle size distribution graph output from CAPA500, and the value obtained by dividing the standard deviation was used as the evaluation value of monodispersity.

以上のハロゲン化銀乳剤の製造から特性試験までの操作
を各3回試行した結果を表2に示す。
Table 2 shows the results of the above-described operations from the production of the silver halide emulsion to the characteristic test being tried three times each.

表2の結果から明らかなように、本発明の方法である硫
化銀の銀イオンセンサーを用いて調製したハロゲン化銀
粒子の平均粒径、単分散性は共に再現性があることがわ
かり、特に単分散性において、比較例に比べて優れた再
現性があることがわかる。
As is clear from the results shown in Table 2, both the average particle size and the monodispersity of silver halide grains prepared using the silver ion sensor for silver sulfide, which is the method of the present invention, are reproducible. It can be seen that the monodispersity has excellent reproducibility as compared with the comparative example.

実施例3 実施例2で用いたと同様の銀イオン測定制御系とpH測定
制御系を用いて、以下に示す5種類の溶液を用いてAg
Iの含有量が2モル%の立方体沃臭化銀乳剤を作製し
た。
Example 3 Using the same silver ion measurement control system and pH measurement control system as used in Example 2, and using the following five types of solutions, Ag was used.
A cubic silver iodobromide emulsion having an I content of 2 mol% was prepared.

溶液E 溶液F 溶液G 当量+5%のアンモニアを含む2N 硝酸銀溶液 800ml 溶液H 56%酢酸水溶液 300ml 溶液I 40%臭化カリウム溶液 100ml 溶液Eを60℃で攪拌下に、実施例2で用いたpAg測定制
御系、pH測定制御系の電極を浸してpAgを9.0(+42mV)、pH
を9.0に調整した。溶液Hと溶液Iの流速を制御してこ
の値を保ちつつ、新しい粒子が発生しない速度でダブル
ジェット法により溶液Fと溶液Gを添加した。添加終了
までに要した時間は54分であった。
Solution E Solution F Solution G Equivalent + 2% silver nitrate solution containing 5% ammonia 800 ml Solution H 56% acetic acid aqueous solution 300 ml Solution I 40% potassium bromide solution 100 ml Solution E was stirred at 60 ° C. and the pAg measurement control system used in Example 2, Immerse the electrode of the pH measurement control system to pAg 9.0 (+42 mV), pH
Was adjusted to 9.0. Solution F and solution G were added by the double jet method at a speed at which new particles were not generated while controlling the flow rates of solution H and solution I to maintain this value. The time required to complete the addition was 54 minutes.

添加終了後、溶液H、溶液Iを加えてpHを6.0、pAgを10.
0に合わせ、以下の操作により水洗、脱塩を行なった。
沈殿剤として花王アトラス社製デモールN5%水溶液と
硫酸マグネシウム20%水溶液をそれぞれ、158ml、142ml
加え、沈殿を静置沈降させ、上澄をデカントした後、40
℃の蒸留水2を加え再び分散させた。20%の硫酸マグ
ネシウム90mlを再び加えて静置して沈殿を沈降させた
後、上澄を再びデカントした。この沈殿物に21gのゼラ
チンを含む水溶液200mlを加え、総量が638mlになるまで
蒸留水を加えた後、20分間、40℃にて攪拌し分散させ
た。その後、製造時に用いた電極でpAgを8.55、pHを5.8
に再調整した。
After the addition was completed, Solution H and Solution I were added to adjust the pH to 6.0 and pAg to 10.
In accordance with 0, washing and desalting were performed by the following operations.
158 ml and 142 ml of a 5% aqueous solution of Demol N manufactured by Kao Atlas and a 20% aqueous solution of magnesium sulfate as precipitants, respectively.
In addition, the precipitate was allowed to settle, and the supernatant was decanted.
Distilled water 2 at ℃ was added and dispersed again. After 90 ml of 20% magnesium sulfate was added again and the mixture was left to stand to precipitate the precipitate, the supernatant was decanted again. To this precipitate, 200 ml of an aqueous solution containing 21 g of gelatin was added, and distilled water was added until the total amount became 638 ml, followed by stirring for 20 minutes at 40 ° C. to disperse. After that, pAg was 8.55 and pH was 5.8 with the electrode used during manufacturing.
Readjusted to.

上記の如く調整したハロゲン化銀乳剤粒子を実施例2と
同様の方法により、調べたところ[100]面の晶癖を有
する単分散乳剤であった。また、平均粒径と単分散性の
結果を実施例2と同様にして求め、結果を表3に示す。
When the silver halide emulsion grains prepared as described above were examined by the same method as in Example 2, it was a monodisperse emulsion having a [100] crystal habit. Further, the results of average particle size and monodispersity were determined in the same manner as in Example 2, and the results are shown in Table 3.

表3の結果から明らかなように、本発明の方法である硫
化銀の銀イオンセンサーを用いて調製したハロゲン化銀
粒子の平均粒径、単分散性は共に再現性があることがわ
かり、特に単分散性において、比較例に比べて優れた再
現性があることがわかる。
As is clear from the results in Table 3, both the average grain size and the monodispersity of silver halide grains prepared using the silver ion sensor for silver sulfide, which is the method of the present invention, are reproducible. It can be seen that the monodispersity has excellent reproducibility as compared with the comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮沢 貞行 東京都日野市さくら町1番地 小西六写真 工業株式会社内 (56)参考文献 特開 昭53−137096(JP,A) 特開 昭54−24012(JP,A) 特開 昭57−197534(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sadayuki Miyazawa 1 Sakura-cho, Hino-shi, Tokyo Konishi Roku Photo Industrial Co., Ltd. (56) Reference JP 53-137096 (JP, A) JP 54- 24012 (JP, A) JP-A-57-197534 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】乳剤中の銀イオンを制御しつつ行なうハロ
ゲン化銀乳剤の製造方法において、銀イオン検出用セン
サーに硫化銀電極を用いることを特徴とするハロゲン化
銀乳剤の製造方法。
1. A method for producing a silver halide emulsion, which is performed while controlling silver ions in the emulsion, wherein a silver sulfide electrode is used as a sensor for detecting silver ions.
JP59169768A 1984-08-14 1984-08-14 Method for producing silver halide emulsion Expired - Lifetime JPH0638151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59169768A JPH0638151B2 (en) 1984-08-14 1984-08-14 Method for producing silver halide emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59169768A JPH0638151B2 (en) 1984-08-14 1984-08-14 Method for producing silver halide emulsion

Publications (2)

Publication Number Publication Date
JPS6147939A JPS6147939A (en) 1986-03-08
JPH0638151B2 true JPH0638151B2 (en) 1994-05-18

Family

ID=15892494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59169768A Expired - Lifetime JPH0638151B2 (en) 1984-08-14 1984-08-14 Method for producing silver halide emulsion

Country Status (1)

Country Link
JP (1) JPH0638151B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172270A (en) * 1991-09-07 1993-07-09 Kyowa Eng Kk Valve
CN107720806B (en) * 2017-10-26 2019-06-11 青岛大学 A kind of method that nucleus growth method synthesizes controllable size silver sulfide nano particle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137096A (en) * 1977-05-06 1978-11-30 Fuji Photo Film Co Ltd Production of slightly soluble silver salt particles
JPS607775B2 (en) * 1977-07-26 1985-02-27 富士写真フイルム株式会社 Method for preparing composition for heat-developable photosensitive material
JPS57197534A (en) * 1981-05-19 1982-12-03 Konishiroku Photo Ind Co Ltd Manufacture for hardly soluble silver salt particles

Also Published As

Publication number Publication date
JPS6147939A (en) 1986-03-08

Similar Documents

Publication Publication Date Title
EP0288949A2 (en) Process for the preparation of tabular silver chloride emulsions
US3672901A (en) Process of precipitating silver halide in the presence of a colloid and a water-soluble iron salt
JPS6330616B2 (en)
DE2138873A1 (en) Process for the preparation of direct positive silver halide photographic emulsions
JPS6158027B2 (en)
Honig et al. Points of zero charge of inorganic precipitates
JPS6133177B2 (en)
US3849146A (en) Direct-print light-developable silver halide emulsion containing cyclic dioxide or selenone as sensitizer
Nomura et al. Determination of silver in solution with a piezoelectric detector after electrodeposition
US4332887A (en) Method for preparing photosensitive silver halide emulsions
US5318888A (en) Large tabular grains with novel size distribution and process for rapid manufacture
EP0304908B1 (en) Process for the preparation of octahedral silver chloride-containing emulsions
JPH0638151B2 (en) Method for producing silver halide emulsion
EP0531736B1 (en) Process and apparatus for monitoring supersaturation
JPS6343735B2 (en)
DE69401069T2 (en) Photographic silver halide emulsion containing contrast enhancing grain surface modifiers
GB2055221A (en) Process for the preparation of monodisperse photographic silver halide emulsions of sensitivity
EP0486629A1 (en) Silver halide grains having small twin-plane separations.
JPS60213858A (en) Manufacture of emulsion
US2146938A (en) Production of photographic emulsions
JPS583532B2 (en) Method for producing silver halide photographic emulsion
Endo et al. A Correlation Between [Rh (III) X6-n (H2On] n-3 (n= O, 1, 2) Complexes and the Photographic Properties of AgX Emulsions
JPH0355537A (en) Silver halide emulsion unified in shape and size
Kataky et al. Determination of silver in photographic emulsion: comparison of traditional solid-state electrodes and a new ion-selective membrane electrode
DE2932185A1 (en) Photographic emulsion contg. rhombic dodecahedron silver halide - crystals pptd. in presence of divalent cadmium ions and free ammonia