JPH0637712B2 - Electrolytic chromate treated steel plate for welding can - Google Patents

Electrolytic chromate treated steel plate for welding can

Info

Publication number
JPH0637712B2
JPH0637712B2 JP60192614A JP19261485A JPH0637712B2 JP H0637712 B2 JPH0637712 B2 JP H0637712B2 JP 60192614 A JP60192614 A JP 60192614A JP 19261485 A JP19261485 A JP 19261485A JP H0637712 B2 JPH0637712 B2 JP H0637712B2
Authority
JP
Japan
Prior art keywords
chromium
steel sheet
welding
electrolytic chromate
treated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60192614A
Other languages
Japanese (ja)
Other versions
JPS6254096A (en
Inventor
博英 古屋
浩樹 岩佐
豊文 渡辺
繁雄 神原
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP60192614A priority Critical patent/JPH0637712B2/en
Publication of JPS6254096A publication Critical patent/JPS6254096A/en
Priority to JP2083774A priority patent/JPH0726236B2/en
Publication of JPH0637712B2 publication Critical patent/JPH0637712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶接性に優れた溶接缶用電解クロメート処理鋼
板、具体的には、電気抵抗シーム溶接により製缶される
溶接缶用電解クロメート処理鋼板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrolytic chromate-treated steel plate for a welding can having excellent weldability, specifically, an electrolytic chromate treatment for a welding can produced by electric resistance seam welding. Regarding steel plates.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

鋼板表面に金属クロム及びクロム酸化物を主体とするク
ロム水和酸化物の皮膜を形成した電解クロメート処理鋼
板(TFS-CT)は、優れた塗装性、耐食性を有し、ブリキ
に比して安価でもあることから、飲料等の食缶関係、ペ
ール缶、18缶、オイル缶等の雑缶関係等、広い分野
で使用されている。従来、この種の鋼板を用いる缶材
は、主に絞り加工による2ピース缶や有機樹脂あるいは
特殊セメントを用いる接着缶(3ピース缶)として実用
化されているが、溶接缶としての利用割合は非常に小さ
い。これは電解クロメート処理鋼板が極めて溶接性に劣
るメッキ鋼板であるためである。
Electrolytic chromate treated steel sheet (TFS-CT), which has a coating of chromium hydrated oxide mainly consisting of metallic chromium and chromium oxide on the surface of the steel sheet, has excellent paintability and corrosion resistance, and is cheaper than tinplate. Therefore, it is used in a wide range of fields such as food cans related to beverages, pail cans, 18 cans, miscellaneous cans such as oil cans, and the like. Conventionally, a can material using this type of steel sheet has been put into practical use mainly as a two-piece can made by drawing and an adhesive can (3 piece can) using an organic resin or special cement, but its usage ratio as a welding can is Very small. This is because the electrolytic chromate treated steel plate is a plated steel plate having extremely poor weldability.

しかし昨今の製缶では、接合強度及び信頼製が高い接合
法が要求され、このため溶接接合が製缶溶接で大きなウ
エイトを占めるようになってきており、現在用いられて
いる電解クロメート処理鋼板では、その悪い溶接性ゆえ
に用途拡大が困難な状況にある。このように溶接性が乏
しい主な原因は、電解クロメート処理鋼板の表面皮膜に
あり、メッキ層を構成する金属クロム層及びクロム酸化
物を主体とするクロム水和酸化物層の非導電性と非熱伝
導性のために、溶接電流によって発生する熱の発熱形態
が不均一となり、鋼が局部的に発熱し、チリ、ブローホ
ール等の溶接欠陥を生じ易いからである。
However, in the recent can manufacturing, a bonding method with high bonding strength and high reliability is required, and therefore, welding bonding has become a major weight in can manufacturing welding, and in the electrolytic chromate treated steel sheet currently used. However, its poor weldability makes it difficult to expand its applications. As described above, the main cause of poor weldability is the surface coating of the electrochromic treated steel sheet, and the non-conductivity and non-conductivity of the metal chrome layer that constitutes the plating layer and the chromium hydrated oxide layer that is mainly composed of chromium oxide. This is because, due to the thermal conductivity, the heat generation mode of the heat generated by the welding current becomes non-uniform, the steel locally generates heat, and welding defects such as dust and blowholes are likely to occur.

このため従来では、あえて通常の電解クロメート処理鋼
板を溶接するような場合には、溶接部となるクロメート
処理皮膜を研磨除去してから溶接するという煩雑な方法
を採らざるを得ない。また、この他にも電解クロメート
処理鋼板の溶接性を確保するため以下のような提案がな
されている。
For this reason, conventionally, in the case of intentionally welding an ordinary electrolytic chromate-treated steel sheet, a complicated method of polishing and removing the chromate-treated film to be the welded portion and then welding is inevitable. In addition to the above, the following proposals have been made in order to secure the weldability of electrolytic chromate treated steel sheets.

(イ) 鋼板の溶接を必要とする部位に水ガラスを塗布、乾
燥した後、この鋼板表面にクロムメッキを施し、水ガラ
スを剥離して溶接する(特開昭57−143492
号)。
(B) Water glass is applied to a portion of a steel sheet requiring welding and dried, and then the surface of the steel sheet is plated with chrome, and the water glass is peeled off and welded (JP-A-57-143492).
issue).

(ロ) クロムメッキ鋼板に20%以下の調質圧延を施して
その面に亀裂を生じさせると、その無数の亀裂を介して
溶接電流が地鉄部に流れ良好なスードロニック溶接等を
行うことができる(特開昭55−48406号)。
(B) If a chromium-plated steel sheet is subjected to temper rolling of 20% or less and cracks are generated on the surface, welding current flows through the infinite cracks to the base metal part, and good sudronic welding can be performed. It is possible (JP-A-55-48406).

しかしこれらの方法は、溶接を行うに当りクロメート処
理鋼板に何らかの前処理を施すというものであるため、
工程の簡素化、製缶コストという面で大きな問題があ
る。
However, these methods are to perform some pretreatment on the chromate-treated steel plate before welding.
There are major problems in terms of process simplification and can manufacturing costs.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記のような従来の問題に鑑み、溶接前
の特別な前処理を行うことなく優れた溶接性(抵抗シー
ム溶接性)が得られる溶接缶用電解クロメート処理鋼板
について検討を加えた。その結果、金属クロム層表面
が、鋼板全面に亘る総ての結晶方位面上において多数の
粒状若しくは角状の突起を有する製造を持つ電解クロメ
ート皮膜が極めて優れた溶接性を示すことを見い出し、
本発明を完成させたものである。
In view of the conventional problems as described above, the present inventors have studied an electrolytic chromate-treated steel plate for a welding can that can obtain excellent weldability (resistive seam weldability) without performing special pretreatment before welding. added. As a result, it was found that the surface of the metal chrome layer has an extremely excellent weldability with an electrolytic chromate coating having a large number of granular or angular protrusions on all crystal orientation planes over the entire surface of the steel sheet,
The present invention has been completed.

すなわち本発明は、鋼板表面に目付量5〜200mg/m2
の金属クロム層と、その上部に金属クロム換算で目付量
3〜15mg/m2のクロム酸化物を主体とするクロム水和
酸化物層とを有し、前記金属クロム層表面が、鋼板全面
に亘る総ての結晶方位面上において多数の粒状若しくは
角状の突起を有する製造としたことをその基本的特徴と
する。
That is, the present invention is that the surface area of the steel sheet is 5 to 200 mg / m 2
And a chromium hydrated oxide layer mainly composed of chromium oxide having a basis weight of 3 to 15 mg / m 2 in terms of metallic chromium, and the metallic chromium layer surface covers the entire surface of the steel sheet. The basic feature of the production is that it has a large number of granular or angular protrusions on all crystal orientation planes.

このような金属クロム層表面に突起を有する電解クロメ
ート鋼板の製造方法として、特開昭59−100291
号が提案されているが、こ技術は接着缶用としての電解
クロメート処理鋼板に言及することにとどまり、また、
必ずしも鋼板の総ての結晶方位面上に多数の突起を形成
させることを条件としたものではない。本発明は、上記
突起と溶接性との関係、さらには鋼板全面に亘る総ての
結晶方位面上に上記突起を多数形成させることが優れた
溶接性を得る上で不可欠の条件であることを見い出し、
これに基づきなされたものである。
As a method for producing an electrolytic chromate steel sheet having protrusions on the surface of the metal chromium layer, Japanese Patent Laid-Open No. 59-100291
No. has been proposed, but this technology is limited to mentioning electrolytic chromate treated steel sheets for adhesive cans, and
It is not always necessary to form a large number of protrusions on all crystal orientation planes of the steel sheet. The present invention, the relationship between the protrusions and weldability, further forming a large number of the protrusions on all crystal orientation planes over the entire surface of the steel sheet is an essential condition for obtaining excellent weldability. Found,
It is based on this.

従来の電解クロメート処理鋼板をスードロニック型の抵
抗シーム溶接する場合、外層のクロム酸化物が絶縁皮膜
となり、缶胴縦縁部分のラップ部における接触抵抗を高
くする。したがって溶接開始直後の溶接電流は低く、一
定時間経過後に始めて一定の溶接電流値を示すようにな
る。このために発熱が不均一となり、鋼が局部的に発熱
し、チリを発生したり、溶接ナゲット部に不都合な空洞
(ブローホール)を生じさせる。このような溶接時に局
部的に過大電流が流れるかどうかの評価をするのに接触
抵抗値(静的抵抗値)が知られている。すなわち、接触
抵抗の高い材料では溶接電流の通路が狭く、局部的な過
大電流が流れ易いのである。通常の電解クロメート処理
鋼板では上記接触抵抗が102から105オーダーと他の
溶接缶用表面処理鋼板に比して極端に大きい。
When a conventional electrolytic chromate treated steel sheet is subjected to pseudo-resistance type resistance seam welding, the chromium oxide of the outer layer serves as an insulating film and increases the contact resistance in the lap portion of the vertical edge of the can body. Therefore, the welding current is low immediately after the start of welding and starts to show a constant welding current value only after a certain time has elapsed. As a result, the heat generation becomes non-uniform, the steel locally generates heat, and dust is generated, or an inconvenient cavity (blow hole) is generated in the weld nugget portion. A contact resistance value (static resistance value) is known to evaluate whether or not an excessive current locally flows during such welding. That is, in a material having a high contact resistance, the passage of the welding current is narrow, and a local excessive current easily flows. The contact resistance of an ordinary electrolytic chromate-treated steel sheet is on the order of 10 2 to 10 5 , which is extremely large compared to other surface-treated steel sheets for welding cans.

本発明者等はこのような点に鑑み電解クロメート処理鋼
板の接触抵抗を下げるという方向で種々検討を行った結
果、基本的に、電解クロメート皮膜を構成する金属クロ
ム層に、粒状や角状の突起(金属クロム)が均一な分
布、具体的には鋼板全面に亘るあらゆる結晶方位面上に
おいて多数分布するよう形成された皮膜構造とすること
により、接触抵抗を2桁まで低下させ得ることが判っ
た。そして、それに伴い接触開始直後の溶接電流低下は
ほとんどなく、瞬時に一定溶接電流値を示すようにな
り、局部的な異常発熱も軽微になり良好なシーム溶接部
を安定して得られることが判明した。
In view of such a point, the present inventors have made various studies in the direction of reducing the contact resistance of the electrolytic chromate-treated steel sheet, and as a result, basically, in the metal chromium layer constituting the electrolytic chromate film, granular or angular It has been found that the contact resistance can be reduced to two orders of magnitude by forming a film structure in which the protrusions (metallic chromium) are uniformly distributed, specifically, a large number are distributed on all crystal orientation planes over the entire surface of the steel sheet. It was As a result, there was almost no decrease in welding current immediately after the start of contact, and a constant welding current value was instantaneously displayed. Local abnormal heat generation was also reduced and it was found that a good seam weld can be stably obtained. did.

第1図はこのような本発明の皮膜構造の断面を模式的に
示すもので、(1)は鋼板、(2)は金属クロム層、(3)はク
ロム水和酸化物層であり、金属クロム層(2)の表面には
多数の突起(4)が形成されている。そして、この金属ク
ロムの突起(4)のために、その上のクロム水和酸化物層
(3)もその突起に沿った起伏を呈している。
FIG. 1 schematically shows a cross section of such a coating structure of the present invention. (1) is a steel plate, (2) is a metal chromium layer, and (3) is a chromium hydrate oxide layer. A large number of protrusions (4) are formed on the surface of the chrome layer (2). And because of this metal chromium protrusion (4), a chromium hydrate oxide layer on it
(3) also has undulations along the protrusion.

そして、このような皮膜構造により上記したような良好
な溶接性が得られるのは、第1図に示すような皮膜構造
の鋼板面どうしが重ね合されるため接触面積が大になる
ことから導電性が向上し、溶接電流が流れ易くなったた
めと推定される。さらに、このような作用に加え金属ク
ロム層(2)に沿ったクロム水和酸化物層(3)が凹凸状であ
るため外圧により亀裂を生じ易くなっており、このため
皮膜面どうしを圧接させた際、金属クロムの突起上にあ
るクロム水和酸化物層に容易に亀列が生じ、溶接電流が
流れ易くなることによるものと推定される。
The good weldability as described above can be obtained by such a film structure because the contact areas become large because the steel plate surfaces having the film structure as shown in FIG. It is presumed that this is because the weldability has improved and the welding current has become easier to flow. Furthermore, in addition to such an action, the hydrated chromium oxide layer (3) along the metallic chromium layer (2) is uneven, so that cracks are likely to occur due to external pressure, and therefore the coating surfaces are pressed together. It is presumed that, in this case, a turtle row is easily formed in the hydrated chromium oxide layer on the protrusions of metallic chromium, and the welding current easily flows.

以下、本発明の皮膜構造を具体的に説明する。Hereinafter, the film structure of the present invention will be specifically described.

電解クロメート処理皮膜は、鋼板面上に形成される金属
クロム層(2)と、その上のクロム酸化物を主体とするク
ロム水和酸化物層(3)とからなっているが、このうち金
属クロム層(2)は5〜200mg/m2、クロム水和酸化物層
(3)は金属クロム換算値で3〜15mg/m2の付着量とされ
る。
The electrolytic chromate treatment film is composed of a chromium metal layer (2) formed on the steel plate surface and a chromium hydrate oxide layer (3) mainly composed of chromium oxide on the metal chromium layer. Chromium layer (2) is 5-200 mg / m 2 , chromium hydrate oxide layer
(3) is an adhesion amount of 3 to 15 mg / m 2 in terms of metal chromium.

金属クロム及びクロム酸化物は抵抗溶接の面からは少な
い方が望ましく、できるならば多数の突起状金属クロム
を形成するのに必要な目付量を確保し、かつ耐食性に支
障をきたさない最少の目付量に管理することが好まし
い。金属クロム(2)の金属クロム量が200mg/m2超で
は、金属クロムの突起による効果が金属クロム過多によ
る溶接性の低下により打ち消され、溶接性の向上は望め
なくなる。また金属クロム量が5mg/m2未満となると皮
膜に十分な耐食性が期待できなくなる。クロム水和酸化
物層(3)のクロム酸化物量に関しても同様であり、その
付着量が金属クロム換算で15mg/m2を超えると、クロ
ム酸化物層に亀列が入りにくくなり、特に高速製缶の場
合の溶接性が低下してしまう。また付着量が3mg/m2
下回ると耐食性に問題を生ずる。
From the viewpoint of resistance welding, it is desirable that the amount of metallic chromium and chromium oxide is small, and if possible, the minimum basis weight that secures the basis weight necessary to form a large number of protruding metallic chromium and does not hinder the corrosion resistance. It is preferable to control the amount. When the amount of metallic chromium in the metallic chromium (2) exceeds 200 mg / m 2 , the effect of the protrusions of metallic chromium is canceled by the decrease in weldability due to excessive metal chromium, and improvement in weldability cannot be expected. If the amount of metallic chromium is less than 5 mg / m 2 , sufficient corrosion resistance cannot be expected for the coating. The same applies to the amount of chromium oxide in the hydrated chromium oxide layer (3). If the amount of adhered chromium oxide exceeds 15 mg / m 2 in terms of metallic chromium, it is difficult for the chrome oxide layer to form a turtle row, and especially when using high speed products. Weldability of the can is reduced. Further, if the adhesion amount is less than 3 mg / m 2 , there will be a problem in corrosion resistance.

金属クロム層(2)に形成される突起(4)は、板状に広い範
囲に形成されるものではなく、平面的にみて粒状あるい
は角状のものである。このような突起(4)は、鋼板自体
の結晶方向の影響を受けて特定の結晶面にのみ集中して
形成されても本発明の目的とする効果は期待できず、こ
のため鋼板全面に亘る総ての結晶方位面に多数形成され
る程度の均一な分布性が必要とされる。
The protrusions (4) formed on the metallic chrome layer (2) are not formed in a wide area in a plate shape, but are granular or angular in a plan view. Such projections (4) cannot be expected to have the intended effect of the present invention even if they are concentrated and formed only on a specific crystal plane under the influence of the crystal orientation of the steel sheet itself. It is necessary to have uniform distribution so that a large number of crystals are formed on all crystal orientation planes.

なお、このような金属クロムの突起は鋼板両面または片
面に適宜形成させることができる。
It should be noted that such metallic chromium projections can be appropriately formed on both surfaces or one surface of the steel plate.

次に、以上のような電解クロメート処理鋼板の製造方法
の一例について説明する。
Next, an example of a method for manufacturing the electrolytic chromate-treated steel sheet as described above will be described.

本発明の電解クロメート処理鋼板は、鋼板を一液法によ
り断続電解で電解クロメート処理(陰極電解処理)する
とともに、その陰極電解処理の途中で少なくとも1回陽
極電解処理を行うことにより製造することができる。す
なわち鋼板を複数パスの陰極電解処理により電解クロメ
ート処理する所謂、縦型処理設備の場合には、例えば複
数パスの陰極電解処理の途中で少なくとも1つのパスに
おいて陽極電解処理を行うことにより製造することがで
きる。
The electrolytic chromate-treated steel sheet of the present invention can be produced by subjecting the steel sheet to electrolytic chromate treatment (cathodic electrolysis treatment) by intermittent electrolysis by a one-component method, and at least once during the cathodic electrolysis treatment. it can. That is, in the case of so-called vertical processing equipment in which a steel sheet is subjected to electrolytic chromate treatment by a plurality of passes of cathodic electrolysis treatment, for example, it is manufactured by performing anodization treatment in at least one pass in the course of a plurality of passes of cathodic electrolysis treatment. You can

電解クロメート処理鋼板を製造するには、無水クロム
酸、クロム酸塩及び重クロム酸塩の少なくとも1つを主
成分とし、かつその中にF-及び/又はSO4 2-を含む電
解液中において鋼板を陰極にして陰極電解処理(断続電
解処理)を行う。
To produce an electrolytic chromate-treated steel sheet, in an electrolytic solution containing at least one of chromic anhydride, chromate and dichromate as main components, and containing F and / or SO 4 2− in it. Cathode electrolysis (intermittent electrolysis) is performed using the steel sheet as a cathode.

電解クロメート処理には、一般に一液法と二液法という
2種類の処理法があるが、二液法ではクロム酸化物の付
着量が多くなり過ぎ、クロム酸化物の付着量を上述した
15mg/m2以下に抑えることが難しい。
There are generally two types of electrolytic chromate treatments, the one-liquid method and the two-liquid method. In the two-liquid method, the amount of chromium oxide deposited becomes too large, and the amount of chromium oxide deposited is 15 mg / It is difficult to keep it below m 2 .

電解クロメート処理の所謂縦型設備は連続的に配置され
る複数の処理槽を有しており、このような設備で電解ク
ロメート処理される鋼板は、各処理槽のシンクロールへ
の接触により必然的に断続処理となる。そして上記のよ
うな金属クロム層の突起は、このような断続処理によっ
て生成する傾向があり、また断続時間がある程度長くな
ると不可避的に生成する。しかし、このようにして生成
した突起は極めて不均一なものとなる。すなわち、この
ような突起の生成は、被処理鋼板の結晶方位の影響を受
け、特定の結晶面(例えば(001)面)にのみ形成さ
れる。その結果、このような突起状の金属クロムがほと
んど形成されていない電解クロメート処理鋼板に比べる
と接触抵抗はある程度低下するものの良好な溶接性は何
ら期待できない。
The so-called vertical equipment for electrolytic chromate treatment has a plurality of treatment tanks that are continuously arranged, and a steel sheet that is electrolytically chromate treated in such equipment is inevitable due to contact with the sink roll of each treatment tank. It becomes an intermittent process. The above-mentioned protrusions of the metallic chromium layer tend to be generated by such an interrupting treatment, and are inevitably generated when the interrupting time becomes long to some extent. However, the protrusions generated in this way are extremely uneven. That is, the generation of such protrusions is influenced by the crystal orientation of the steel sheet to be processed and is formed only on a specific crystal plane (for example, the (001) plane). As a result, although the contact resistance is reduced to some extent as compared with the electrolytic chromate-treated steel sheet on which such protruding metallic chromium is hardly formed, no good weldability can be expected.

これらに対して本発明では、断続電解による陰極処理の
途中で陽極処理を行うため突起状の金属クロムが均一に
しかも密な状態で形成されるものであり、その詳細なメ
カニズムは必ずしも明らかではないが、基本的には次の
ような理由によるものと考えられる。すなわち、陽極処
理が行われるまで、あるいは陰極電解処理が中断される
までの陰極電解処理により、鋼板上には金属クロム層と
その上にクロム水和酸化物層が生成する。クロム水和酸
化物層はコロイド状であるため、陰極電解が中断すると
酸化性の電解液により金属クロム表面は酸化され酸化ク
ロムに変化する。酸化クロムと金属クロムでは格子定数
が異なることから酸化クロム層中には原子配列の乱れた
欠陥部が点在し、この部分は酸化クロム膜厚が他より薄
いか、金属クロムが露出しているため電気抵抗が低く、
再陰極電解時に金属クロムが優先析出するため突起状の
金属クロムが生成するものと考えられる。そして陰極電
解中断時の陽極処理は、酸化クロム層中の原子配列の乱
れた欠陥部を中断だけの場合よりも多く生成させる効果
があるために、あらゆる結晶方位面上に多数の突起状の
金属クロムが生成するものと考えられる。
On the other hand, in the present invention, since the anodic treatment is performed during the cathodic treatment by intermittent electrolysis, the protruding metallic chromium is formed in a uniform and dense state, and the detailed mechanism thereof is not always clear. However, it is considered that the reason is basically as follows. That is, a metal chrome layer and a hydrated chromium oxide layer are formed on the steel sheet by the cathodic electrolysis until the anodization is performed or the cathodic electrolysis is interrupted. Since the chromium hydrate oxide layer is colloidal, when the cathodic electrolysis is interrupted, the surface of the metallic chromium is oxidized by the oxidizing electrolytic solution and changed to chromium oxide. Since chromium oxide and metal chromium have different lattice constants, defects in which the atomic arrangement is disturbed are scattered in the chromium oxide layer, and the chromium oxide film thickness is thinner than other parts in this part, or metal chromium is exposed. Therefore, the electric resistance is low,
It is considered that protrusion-shaped metal chromium is generated because metal chromium is preferentially precipitated during the re-cathode electrolysis. The anodizing process during the interruption of the cathodic electrolysis has the effect of producing more defects in which the atomic arrangement in the chromium oxide layer is disturbed than in the case of only the interruption. It is considered that chromium is generated.

金属クロムの突起(4)を成長させるためには、陽極処理
を行った後、さらに陰極処理を行う必要があり、これを
満たすような位置に陽極処理を導入しなければならな
い。さらに、陽極処理を一連の陰極処理のできるだけ早
い時期の処理途中で行うことにより金属クロム突起の成
長と分布の均一化を図ることができる。なお、上記陽極
処理は金属クロム突起を広く形成させるため本発明にお
いて不可欠な処理であるが、クロム電解効率も向上させ
る効果も有している。
In order to grow the protrusions (4) of metallic chromium, it is necessary to further perform cathodic treatment after anodizing, and the anodizing must be introduced at a position satisfying this. Furthermore, by performing the anodizing treatment in the middle of the treatment of the series of cathodic treatments as early as possible, the growth and distribution of the metallic chromium projections can be made uniform. The above-mentioned anodizing treatment is indispensable in the present invention because it forms a wide range of metal chromium projections, but it also has the effect of improving the chromium electrolysis efficiency.

陰極電解処理における電流密度は10A/dm2以下になら
ないようにするこが好ましい。すなわち、電流密度が1
0A/dm2以下では陽極処理を施しても均一な分布の金属
クロム突起は得にくい。また陽極処理電気量は0.01
〜5クーロン/dm2、望ましくは0.1〜5クーロン/d
m2で選択するのが好ましい。陽極処理電気量が0.1ク
ーロン/dm2未満、特に0.01クーロン/dm2未満の場
合、陽極処理した効果はあまり見られず、一方、5クー
ロン/dm2を超えると金属クロムが溶出するため好まし
くない。
It is preferable that the current density in the cathodic electrolysis treatment does not fall below 10 A / dm 2 . That is, the current density is 1
If it is 0 A / dm 2 or less, it is difficult to obtain a uniform distribution of metal chromium projections even if anodizing is performed. The amount of electricity for anodization is 0.01
~ 5 coulomb / dm 2 , preferably 0.1-5 coulomb / d
It is preferable to select by m 2 . When the amount of electricity used for anodizing is less than 0.1 coulombs / dm 2 , especially less than 0.01 coulombs / dm 2 , the effect of anodizing is not very noticeable, whereas when it exceeds 5 coulombs / dm 2 , metallic chromium elutes. It is not preferable because

なお、上記方法は所謂、縦型処理設備で実施する場合に
は、陽極処理途中で1つのパスで陽極処理を行う等の方
法で実施できるが、所謂横型処理設備でも陰極電解中に
供給電流を一時逆転して陽極処理を行う等の方法で実施
することができる。
The above method can be carried out in a so-called vertical processing facility by performing anodizing in one pass during the anodizing process.However, even in a so-called horizontal processing facility, a supply current is supplied during cathode electrolysis. It can be carried out by a method of temporarily reversing and performing anodization.

〔実施例〕 次に本発明の実施例を説明する。[Examples] Next, examples of the present invention will be described.

縦型処理設備により以下に示すような条件で製造した電
解クロメート処理鋼板を210℃×10分空焼した後、
スードロニック溶接機に供し、その溶接性を調べた。ま
た、これとは別に、金属クロム層の透過電子顕微鏡写真
により突起状金属クロムの生成状況を観察するととも
に、Crの付着量と205℃×23分空焼後の接触抵抗
も測定した。その結果を第1表に示す。また、金属クロ
ム層の透過電子顕微鏡写真を第2図(a)〜(h)に示す。第
2図の各図と実施例及び比較例との対応関係は以下の通
りである。なお、これら写真の鋼板について、直径が20
〜30nm以上である金属クロムの突起の密度を計数した。
その結果を以下に併せて示す。
After air-baking the electrolytic chromate treated steel sheet produced under the following conditions by a vertical treatment facility at 210 ° C. for 10 minutes,
It was subjected to a pseudoronic welder and its weldability was examined. Separately from this, the state of formation of protruding metallic chromium was observed by a transmission electron micrograph of the metallic chromium layer, and the amount of Cr deposited and the contact resistance after air-baking at 205 ° C. for 23 minutes were also measured. The results are shown in Table 1. Further, transmission electron micrographs of the metal chromium layer are shown in FIGS. 2 (a) to (h). Correspondence between each drawing in FIG. 2 and the examples and comparative examples is as follows. Note that the steel plates in these photographs have a diameter of 20.
The density of metal chrome protrusions that are ~ 30 nm or more was counted.
The results are also shown below.

また第3図は実施例等で得られた結果をもとに陽極処理
位置と接触抵抗との関係を示したものである。
Further, FIG. 3 shows the relationship between the anodizing position and the contact resistance based on the results obtained in Examples and the like.

・比較例(1)(2)(3) 0.22mm厚の冷延鋼板(T4CA相当)を常法に従い脱脂
酸洗し水洗した後、下記の第一液中で電流密度5A/dm2
(比較例(1))、25A/dm2(比較例(2))、30A/dm2
(比較例(3))の各電解条件にて通電時間:0.3秒、
無通電時間:0.3秒、全通電時間:1.2秒の陰極電
解を行い、水洗した後、下記第二液中で下記条件にて陰
極電解を行い、水洗し乾燥した。
・ Comparative Examples (1) (2) (3) A 0.22 mm thick cold-rolled steel sheet (equivalent to T4CA) was degreased and acid-washed and water-washed according to a conventional method, and then the current density was 5 A / dm 2 in the following first liquid.
(Comparative Example (1)), 25 A / dm 2 (Comparative Example (2)), 30 A / dm 2
Energization time under each electrolysis condition of (Comparative Example (3)): 0.3 seconds,
After non-energizing time: 0.3 seconds and total energizing time: 1.2 seconds, the cathode was electrolyzed, washed with water, and then subjected to cathodic electrolysis in the following second liquid under the following conditions, washed with water and dried.

第一液 CrO3 :1750/ Na2SiF6:5g/ Na2SO4:0.9g/ 浴温:45℃ 第二液 CrO3:50g/ NH4F:2g/ 浴温:40℃ 電流密度:30A/dm2 通電時間:0.3秒 無通電時間:0.3秒 全通電時間:0.9秒 ・比較例(4) 比較例(1)(2)(3)と同様の浴条件、処理手順により、第
一液中で電流密度:25A/dm2、通電時間:0.3秒、
無通電時間:0.3秒、全通電時間:1.5秒の陰極電
解のみ行い、水洗した後、第二液中で前述と同様の処理
を施し、電解クロメート処理鋼板を製造した。
First liquid CrO 3: 1750 / Na 2 SiF 6: 5g / Na 2 SO 4: 0.9g / bath temperature: 45 ° C. Second solution CrO 3: 50g / NH 4 F : 2g / bath temperature: 40 ° C. Current density : 30A / dm 2 Energization time: 0.3 seconds Non-energization time: 0.3 seconds Total energization time: 0.9 seconds ・ Comparative Example (4) Bath conditions similar to Comparative Examples (1) (2) (3) , Depending on the treatment procedure, current density in the first liquid: 25 A / dm 2 , energization time: 0.3 seconds,
Only the cathodic electrolysis with the non-energization time: 0.3 seconds and the total energization time: 1.5 seconds was performed, washed with water, and then subjected to the same treatment as described above in the second liquid to produce an electrolytic chromate-treated steel sheet.

・比較例(5) 比較例(1)〜(3)と同様の浴条件、処理手順で第一液中、
電流密度:5A/dm2、通電時間:0.3秒、全通電時
間:1.2秒の断続陰極電解を行うに当り、第2パスに
おいて1A/dm2の電流密度で処理時間:0.3秒の陽極
処理を1回施し、前述の第二液中で陰極電解を行い、電
解クロメート処理鋼板を製造した。
-Comparative Example (5) In the first liquid under the same bath conditions and treatment procedures as Comparative Examples (1) to (3),
Current density: 5A / dm 2, the energizing time: 0.3 seconds, total conduction time: per to do intermittent cathodic electrolysis in 1.2 seconds, 1A / dm 2 of current density in the processing time in the second pass: 0. Anodization was performed once for 3 seconds, and cathodic electrolysis was performed in the above-mentioned second liquid to produce an electrolytic chromate-treated steel sheet.

・実施例(1)(2)(3) 比較例(1)〜(4)の第一液と同様の浴条件で、電流密度:
25A/dm2、通電時間:0.3秒、全通電時間:0.9
秒(実施例(1)),1.2秒(実施例(2)),1.5秒
(実施例(3))の断続陰極電解を行うに当り、第2パス
において1A/dm2の電流密度で処理時間:0.3秒の陽
極処理を1回施し、電解クロメート処理鋼板を製造し
た。
-Examples (1) (2) (3) Current density under the same bath conditions as the first liquid of Comparative Examples (1) to (4):
25 A / dm 2 , energizing time: 0.3 seconds, total energizing time: 0.9
When performing intermittent cathodic electrolysis for 2 seconds (Example (1)), 1.2 seconds (Example (2)), and 1.5 seconds (Example (3)), 1 A / dm 2 was applied in the second pass. Anodizing was performed once at a current density and a treatment time of 0.3 seconds to produce an electrolytic chromate treated steel sheet.

・実施例(4)(5)(6)および比較例(6) 比較例(1)〜(4)の第一液と同様の浴条件で、電流密度:
25A/dm2、通電時間:0.3秒、全通電時間:1.5
秒の断続陰極電解を行うに当り、第3パス(実施例
(4))、第4パス(実施例(5))、第5パス(実施例
(6))、第6パス(最終陰極電解後)(比較例(6))にそ
れぞれ1A/dm2の電流密度で処理時間:0.3秒の陽極
処理を1回施し、電解クロメート処理鋼板を製造した。
-Example (4) (5) (6) and Comparative Example (6) Current density under the same bath conditions as the first liquid of Comparative Examples (1) to (4):
25 A / dm 2 , energizing time: 0.3 seconds, total energizing time: 1.5
In performing the second intermittent cathode electrolysis, the third pass (Example
(4)), 4th pass (Example (5)), 5th pass (Example)
(6)), the sixth pass (after the final cathodic electrolysis) (Comparative Example (6)) was subjected to anodizing treatment once at a current density of 1 A / dm 2 for 0.3 seconds each, and was subjected to electrolytic chromate treatment. Was manufactured.

なお、上記第1表における接触抵抗の測定は以下のよう
にして行った。すなわち、接触抵抗測定用として特別に
比較例(1)〜(5)、実施例(1)〜(3)それぞれの電解クロメ
ート処理を被処理鋼板の片面に施し、他面には#25の
すずメッキを施す。205℃×23分空焼した後の電解
クロメート皮膜面どうしを合せて上記鋼板の2枚重ね板
とし、接触抵抗測定機の上下の銅チップ間に挾み、その
抵抗を測定する。したがって上下の銅チップは#25メ
ッキされたすず層と接することになる。これにより得ら
れた値から#25すずメッキを両面に施した鋼板1枚の
抵抗を差し引いて接触抵抗とした。
The contact resistance in Table 1 above was measured as follows. That is, the comparative examples (1) to (5) and the electrolytic chromate treatments of Examples (1) to (3) were applied to one surface of the steel sheet to be treated, and the other surface was plated with # 25 tin. Apply plating. The surfaces of the electrolytic chromate coatings after being air-baked at 205 ° C. for 23 minutes are put together to form two laminated plates of the above steel plates, which are sandwiched between the upper and lower copper chips of a contact resistance measuring machine and the resistance is measured. Therefore, the upper and lower copper chips are in contact with the # 25 plated tin layer. The contact resistance was obtained by subtracting the resistance of one steel plate having both sides plated with # 25 tin from the value thus obtained.

溶接性の評価はスードロニック溶接機を使用し、溶接可
能適性電流範囲の広さ、溶接外観、溶接強度による総合
評価であり、その評価については以下の如くである。
The weldability was evaluated by using a pseudoronic welder and was a comprehensive evaluation based on the range of the current range suitable for welding, the weld appearance, and the weld strength. The evaluation is as follows.

◎……著しく良好、△……やや劣る ○……比較的良好、×……著しく劣る 第1表によれば、比較例(1)〜(4)のものは接触抵抗が1
2オーダー以上で溶接性が劣るのに対し、本発明によ
る突起状金属クロムが鋼板全面に亘る総ての結晶方向面
上に多数形成された電解処理鋼板では接触抵抗が10μ
Ω以下にまで低下し、好ましい溶接性を示している。こ
のように均一な突起状金属クロムを形成させた電解クロ
メート鋼板では溶接性が著しく改善されることは明白で
ある。
◎ …… Remarkably good, △ …… Slightly inferior ○ …… Comparatively good, × …… Remarkably inferior According to Table 1, the comparative examples (1) to (4) have a contact resistance of 1
While the weldability is inferior at 0 2 order or more, the contact resistance is 10 μm in the electrolytically treated steel sheet according to the present invention in which a large number of protruding metallic chromium is formed on all the crystal orientation planes over the entire surface of the steel sheet.
It has fallen to less than Ω and shows favorable weldability. It is apparent that the weldability is remarkably improved in the electrolytic chromated steel sheet on which the uniform protruding chromium metal is formed.

なお、比較例(1)はCr目付量が少ないにもかかわらず
接触抵抗が極端に大きくなっているが、これは第一液の
陰極処理電流密度が小さく突起状の金属クロムがほとん
ど形成されていないためと推定される。比較例(2),
(3),(4)のようにCr目付量が多くても比較例(1)に比
して接触抵抗が小さいのは特定方位だけではあるが、僅
かに突起状の金属クロムが形成されているためと推定さ
れる。なお、比較例(5)から過度の低電流密度による陰
極処理を行った場合においては陽極処理を施しても効果
がないことがわかる。
In Comparative Example (1), the contact resistance was extremely high despite the small Cr basis weight, but this was because the cathodic treatment current density of the first liquid was small and almost no protruding metallic chromium was formed. It is presumed that there is no. Comparative example (2),
Even if the Cr basis weight is large as in (3) and (4), the contact resistance is smaller than that in Comparative Example (1) only in a specific orientation, but slightly protruding metallic chromium is formed. It is presumed that this is because From Comparative Example (5), it can be seen that anodizing has no effect when cathodic treating is performed with an excessively low current density.

また、比較例(6)は陰極電解処理後に陽極電解処理を行
った例(最終パスで陽極電解処理)であり、この場合に
は粒状化が十分でなく、溶接性が劣っている。また、第
3図は実施例等で得られた結果をもとに陽極処理位置と
接触抵抗との関係を示したものであるが、二液法に較べ
一液法で得られた鋼板は1桁台の低い接触抵抗が得られ
ていることが判る。
Further, Comparative Example (6) is an example in which anodic electrolysis was performed after cathodic electrolysis (anodic electrolysis in the final pass), in which case granulation was insufficient and weldability was poor. Further, FIG. 3 shows the relationship between the anodizing position and the contact resistance based on the results obtained in the examples, etc., but the steel sheet obtained by the one-component method is 1 compared to the two-component method. It can be seen that a contact resistance of the order of magnitude is obtained.

〔発明の効果〕〔The invention's effect〕

以上述べた本発明の電解クロメート処理鋼板によれば、
特別な前処理を施すことなく優れた溶接性を得ることが
でき、この種の表面処理鋼板の用途を大いに拡大するこ
とができるものである。
According to the electrolytic chromate-treated steel sheet of the present invention described above,
Excellent weldability can be obtained without performing special pretreatment, and the application of this type of surface-treated steel sheet can be greatly expanded.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の電解クロメート処理鋼板の皮膜断面構
造を模式的に示す説明図である。第2図(a)〜(h)は実施
例における電解クロメート処理鋼板の金属クロム結晶構
造透過電子顕微鏡写真である。第3図は実施例の結果を
もとに陽極処理位置と接触抵抗との関係を示したもので
ある。 図において、(1)は鋼板、(2)は金属クロム、(3)はクロ
ム水和酸化物層、(4)は突起である。
FIG. 1 is an explanatory view schematically showing the coating cross-section structure of the electrolytic chromate-treated steel sheet of the present invention. 2 (a) to (h) are transmission electron micrographs of the metal chromium crystal structure of the electrolytic chromate-treated steel sheets in Examples. FIG. 3 shows the relationship between the anodizing position and contact resistance based on the results of the examples. In the figure, (1) is a steel plate, (2) is metallic chromium, (3) is a chromium hydrate oxide layer, and (4) is a protrusion.

フロントページの続き (56)参考文献 特開 昭59−100291(JP,A) 特開 昭61−281899(JP,A) 特公 昭57−19752(JP,B1)Continuation of the front page (56) Reference JP-A-59-100291 (JP, A) JP-A-61-281899 (JP, A) JP-B-57-19752 (JP, B1)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋼板表面に目付量5〜200mg/m2の金属
クロム層と、その上部に金属クロム換算で目付量3〜1
5mg/m2のクロム酸化物を主体とするクロム水和酸化物
層とを有し、前記金属クロム層表面が、鋼板全面に亘る
総ての結晶方位面上において多数の粒状若しくは角状の
突起を有していることを特徴とする溶接缶用電解クロメ
ート処理鋼板。
1. A metallic chromium layer having a basis weight of 5 to 200 mg / m 2 on the surface of a steel plate, and a basis weight of 3 to 1 in terms of metallic chromium on the upper portion thereof.
A chromium hydrated oxide layer mainly containing 5 mg / m 2 of chromium oxide, wherein the surface of the metallic chromium layer is a large number of granular or angular projections on all crystal orientation planes over the entire surface of the steel sheet. An electrolytic chromate-treated steel plate for a welding can, which is characterized by having:
JP60192614A 1985-08-31 1985-08-31 Electrolytic chromate treated steel plate for welding can Expired - Fee Related JPH0637712B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60192614A JPH0637712B2 (en) 1985-08-31 1985-08-31 Electrolytic chromate treated steel plate for welding can
JP2083774A JPH0726236B2 (en) 1985-08-31 1990-03-30 Method for producing electrolytic chromate treated steel plate for welding can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60192614A JPH0637712B2 (en) 1985-08-31 1985-08-31 Electrolytic chromate treated steel plate for welding can

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2083774A Division JPH0726236B2 (en) 1985-08-31 1990-03-30 Method for producing electrolytic chromate treated steel plate for welding can

Publications (2)

Publication Number Publication Date
JPS6254096A JPS6254096A (en) 1987-03-09
JPH0637712B2 true JPH0637712B2 (en) 1994-05-18

Family

ID=16294186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60192614A Expired - Fee Related JPH0637712B2 (en) 1985-08-31 1985-08-31 Electrolytic chromate treated steel plate for welding can

Country Status (1)

Country Link
JP (1) JPH0637712B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149997A (en) * 1987-12-04 1989-06-13 Kawasaki Steel Corp Welded can body used with chrome-plated steel sheet
JPH0637713B2 (en) * 1988-02-27 1994-05-18 日本鋼管株式会社 Method for producing electrolytic chromate treated steel sheet
JPH04224697A (en) * 1990-12-26 1992-08-13 Nkk Corp Surface treated steel sheet for welded can
JPH04224696A (en) * 1990-12-26 1992-08-13 Nkk Corp Surface treated steel sheet for welded can
JP2005194559A (en) * 2004-01-06 2005-07-21 Nippon Steel Corp Chromium-plated steel sheet for welded can
JP4843950B2 (en) * 2005-01-27 2011-12-21 スズキ株式会社 Tilt-up regulating device for outboard motor
WO2019156245A1 (en) * 2018-02-09 2019-08-15 日本製鉄株式会社 Steel sheet for containers and method for producing steel sheet for containers
US20240141504A1 (en) * 2021-01-27 2024-05-02 Jfe Steel Corporation Can steel sheet and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719752A (en) * 1980-07-10 1982-02-02 Fuji Electric Co Ltd Manufacture of electrophotographic receptor
JPS59100291A (en) * 1982-11-30 1984-06-09 Nippon Kokan Kk <Nkk> Production of electrolytically chromate treated steel sheet having excellent adhesion to secondary painting
JPS61281899A (en) * 1985-06-08 1986-12-12 Kawasaki Steel Corp Tin-free steel sheet for welded can and its production

Also Published As

Publication number Publication date
JPS6254096A (en) 1987-03-09

Similar Documents

Publication Publication Date Title
JPH0216397B2 (en)
JPH0637712B2 (en) Electrolytic chromate treated steel plate for welding can
JPS6326200B2 (en)
JPS63186894A (en) Chrome plated steel sheet for welded can and its production
CA1272159A (en) Chrome electro plating tin-free steel with intervening anodic treatment
JPH0726236B2 (en) Method for producing electrolytic chromate treated steel plate for welding can
JPH0366397B2 (en)
EP0260374B1 (en) Process for producing a multilayer-coated strip having excellent corrosion resistance and weldability and useful for containers
JPS5931598B2 (en) New welded can and manufacturing method
JPS61264189A (en) Matrix plate
JP2576570B2 (en) Pretreatment method for electrolytic chromate treated steel sheet
US4898649A (en) Method for manufacturing electrolytically chromated steel sheet
EP0492319B1 (en) Surface treated steel sheet for welded cans
JPS63238299A (en) Steel sheet subjected to electrochromating treatment for welded can
JPH0366398B2 (en)
JPH11197704A (en) Plating steel plate having excellent color tone, adhesion and weldability and its manufacture
JPS62139898A (en) Surface treated steel sheet for can making having excellent seam weldability
JP3224457B2 (en) Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion
JPS6353288A (en) Low-cost surface treated steel sheet having superior weldability
JPS6379994A (en) Production of steel sheet for welded can
JPS6396294A (en) Production of steel sheet having excellent weldability and corrosion resistance
CA1179629A (en) Process for producing a chromium-plated steel strip having enhanced weldability
JPS6059072A (en) Surface-treated steel sheet for can having superior weldability and superior corrosion resistance after coating
JPH1161492A (en) Electrolytic chromatic steel sheet for welded can
JPS63134695A (en) Tin-free steel sheet for welded can and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees