JPH0637691B2 - High carbon stainless steel having high strength and high ductility and method for producing the same - Google Patents

High carbon stainless steel having high strength and high ductility and method for producing the same

Info

Publication number
JPH0637691B2
JPH0637691B2 JP21846888A JP21846888A JPH0637691B2 JP H0637691 B2 JPH0637691 B2 JP H0637691B2 JP 21846888 A JP21846888 A JP 21846888A JP 21846888 A JP21846888 A JP 21846888A JP H0637691 B2 JPH0637691 B2 JP H0637691B2
Authority
JP
Japan
Prior art keywords
stainless steel
weight
ductility
carbon stainless
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21846888A
Other languages
Japanese (ja)
Other versions
JPH01287254A (en
Inventor
鉄也 島田
章夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21846888A priority Critical patent/JPH0637691B2/en
Publication of JPH01287254A publication Critical patent/JPH01287254A/en
Publication of JPH0637691B2 publication Critical patent/JPH0637691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、高強度高延性を有し加工成形後加工誘起マル
テンサイトの生成によって高い強度が得られ、しかも焼
入れ処理による硬化も可能な高炭素ステンレス鋼および
その製造方法に関する。そして、特に浴槽、厨房用シン
クなどの大型のプレス成形品や各種ボルト類などの冷
間、温間鍛造品など強加工が施される部材、さらにはウ
エハスライサ用素材としても適用が可能な高炭素Cr系ス
テンレス鋼の板材及び棒線材に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention has high strength and high ductility, and high strength is obtained by the formation of work-induced martensite after work forming, and hardening by quenching is also possible. TECHNICAL FIELD The present invention relates to high carbon stainless steel and a method for manufacturing the same. In particular, large press-formed products such as bathtubs and kitchen sinks, members such as various bolts that undergo heavy working such as cold and warm forged products, and even high-strength materials that can be used as materials for wafer slicers It relates to carbon Cr-based stainless steel plates and rods.

(ロ)従来の技術 従来より、一般に高硬度、耐摩耗性に優れるステンレス
鋼としてSUS 440 鋼などの高炭素含有マルテンサイト系
ステンレス鋼が用いられている。従来この鋼は、軟質化
を目的とした球状化焼鈍を行ない、フェライト+Cr炭化
物組織にして加工が施されている(ステンレス鋼便覧、
長谷川正義監修、昭和48年発行、P.679〜68
0)。しかしCおよびCrの含有量が高くCr炭化物の析出
量が多いことから、球状化焼鈍を行なっても高々20〜
30%程度の伸びしか得られない。したがって、従来よ
り打抜き、引き抜きあるいは切削加工によって成形され
る各種刃物、ゲージ、ベアリング、カム、ブッシュ、ロ
ーラといった比較的単純な形状の部材に適用されている
にすぎない(ステンレス鋼便覧、長谷川正義監修、昭和
48年発行、P.380)。しかも、高炭素ステンレス
鋼は、粒径10μmを超える粗大な炭化物を生成し易い
ことから、引抜き伸線中にこの炭化物を起点として破断
する危険性が高い。したがって、1回の伸線加工におけ
る減面率は低く、高い減面率を得るには伸線加工の途中
に数回の中間焼鈍を挟んで行なっているのが現状であ
る。また、上記のような理由から冷間および温間での加
工性に著しく劣り、鍛造およびヘッダなどの加工も通常
熱間で行なわてれいる(ステンレス鋼便覧、長谷川正義
監修、昭和48年発行、P.376)。
(B) Conventional technology Conventionally, high-carbon martensitic stainless steel such as SUS 440 steel has been generally used as stainless steel having high hardness and excellent wear resistance. Conventionally, this steel has been subjected to spheroidizing annealing for the purpose of softening and processed into a ferrite + Cr carbide structure (Stainless Steel Handbook,
Supervised by Masayoshi Hasegawa, published in 1973, P. 679-68
0). However, since the contents of C and Cr are high and the amount of precipitation of Cr carbides is large, even if spheroidizing annealing is performed, at most 20-
Only about 30% elongation can be obtained. Therefore, it has only been applied to relatively simple shaped members such as various blades, gauges, bearings, cams, bushes and rollers that have been conventionally formed by punching, drawing or cutting (stainless steel handbook, edited by Masayoshi Hasegawa). , 1973, p. 380). Moreover, since high-carbon stainless steel easily produces coarse carbides having a grain size of more than 10 μm, there is a high risk of fracture during the drawing and drawing of these carbides. Therefore, the area reduction rate in one wire drawing is low, and in order to obtain a high area reduction, it is the current situation to perform intermediate annealing several times during the wire drawing. Further, due to the above reasons, cold and warm workability is remarkably inferior, and forging and processing of headers are usually carried out hot (Handbook of Stainless Steel, supervised by Masayoshi Hasegawa, published in 1973, P.376).

一方、比較的強度が高く高延性および加工性を有するス
テンレス鋼として、従来よりSUS 304 鋼に代表されるオ
ーステナイト系ステレンス鋼が用いられている。しか
し、伸び40〜60%の高い延性を有するものの、引張
強度は高々60〜70kg/mmにとどまっており、強度
部材として充分満足いくレベルではない。そこで、高強
度化する従来方法として、準安定オーステナイト系ステ
ンレス鋼に調質圧延などの冷間加工を施して加工硬化を
させるとともに加工誘起マルテンサイトを生成させる方
法(例えば、鉄と鋼67(1981)S619)、調質圧延後マルテ
ンサイト相が消滅しない低温(例えば、200〜550
℃)で時効処理を施し、マルテンサイト相を強化させる
方法(例えば、日本金属学会誌21(1957)P.583)が知られ
ている。この技術を用いてウエハスライナ用極薄板が製
造されている。しかし、これらの方法で得られた強度
は、充分満足いくレベルでない。
On the other hand, austenitic stainless steel typified by SUS 304 steel has been conventionally used as a stainless steel having relatively high strength and high ductility and workability. However, although it has a high ductility of elongation of 40 to 60%, the tensile strength remains at most 60 to 70 kg / mm 2 , which is not a sufficiently satisfactory level as a strength member. Therefore, as a conventional method for increasing the strength, a method of performing cold working such as temper rolling on metastable austenitic stainless steel to perform work hardening and generate work-induced martensite (for example, iron and steel 67 (1981) ) S619), a low temperature (for example, 200 to 550) at which the martensite phase does not disappear after temper rolling.
A method of strengthening the martensite phase by performing an aging treatment at (° C.) (for example, Journal of Japan Institute of Metals 21 (1957) P.583) is known. Ultra thin plates for wafer liners are manufactured using this technique. However, the strength obtained by these methods is not at a sufficiently satisfactory level.

そこでさらに、Ti、Al、Cu等の析出硬化元素を単独ある
いは複合で添加し析出硬化により強度を付与した析出硬
化型ステンレス鋼が開発された(ステンレス鋼便覧、長
谷川正義監修、昭和48年発行、P.483〜502)。
この中には伸びが20〜40%の比較的高い延性を有し
引張強度150 〜200 kg/mm2のものもあるが、硬化処理
後の硬度および耐摩耗性はマルテンサイト系ステンレス
鋼に比較して劣っている。
Therefore, precipitation hardening type stainless steel was developed in which precipitation hardening elements such as Ti, Al and Cu were added singly or in combination to give strength by precipitation hardening (Stainless Steel Handbook, edited by Masayoshi Hasegawa, published in 1973, P.483-502).
Some of these have a relatively high ductility with an elongation of 20 to 40% and a tensile strength of 150 to 200 kg / mm 2 , but the hardness and wear resistance after hardening are comparable to those of martensitic stainless steel. And is inferior.

(ハ)発明が解決しょうとする課題 上記のように高耐食性、高強度、高延性、高硬度および
耐摩耗性の内のいずれかを満足する鋼は多数見られるも
のの、これらの全てを満足する鋼は従来皆無であった。
本発明は高耐食性、高強度、高延性を有し加工成形後加
工誘起マルテンサイトを生成することによってさらに高
い強度が得られ、さらに焼入れ処理による高硬度化およ
び高耐摩耗化が可能な鋼およびその製造方法を開示する
ものである。
(C) Problems to be Solved by the Invention Although many steels satisfying any one of high corrosion resistance, high strength, high ductility, high hardness and wear resistance are found as described above, they satisfy all of them. Conventionally, there was no steel.
The present invention has high corrosion resistance, high strength, high ductility and further high strength can be obtained by forming work-induced martensite after forming, and a steel capable of high hardness and high wear resistance by quenching treatment and The manufacturing method is disclosed.

(ニ)課題を解決するための手段およびその作用 鉄鋼材料の硬度向上にはC含有量を高めることが不可欠
であることから、高炭素含有マルテンサイト系ステンレ
ス鋼の加工性向上を図った。前述したように高炭素含有
マルテンサイト系ステンレス鋼は、通常フェライト組織
の状態で加工するが、オーステナイト組織の状態で加工
することを指向して本発明を成しとげた。
(D) Means for Solving the Problem and Its Action Since it is essential to increase the C content in order to improve the hardness of the steel material, the workability of the high carbon content martensitic stainless steel was improved. As described above, the high carbon content martensitic stainless steel is usually processed in the state of the ferrite structure, but the present invention has been accomplished aiming at the processing in the state of the austenite structure.

従来常温においてオーステナイト組織にする手段とし
て、オーステナイト安定化元素であるNiやMnの多量添加
が考えられたが、Ms点が常に室温以下であることから焼
入れ処理による硬化が不可能であるとともに、サブゼロ
処理や加工誘起変態によって生成するマルテンサイト相
の強度が低く充分満足いくレベルでなかった。そこで、
本発明者らは常温における準安定オーステナイト相の生
成、加工誘起マルテンサイト相の強化および焼入れ硬化
能の付与にCの利用を考えた。この結果、Cを従来以上
に多量固溶させ常温でオーステナイト化したステンレス
鋼を発明した。
Conventionally, a large amount of austenite stabilizing elements Ni and Mn have been considered as a means of forming an austenite structure at room temperature, but since the Ms point is always below room temperature, hardening by quenching treatment is impossible and subzero The strength of the martensite phase generated by the treatment or the transformation induced by the transformation was low and was not at a sufficiently satisfactory level. Therefore,
The present inventors considered the use of C for generating a metastable austenite phase at normal temperature, strengthening the work-induced martensite phase, and imparting quench hardening ability. As a result, the inventors invented a stainless steel in which a larger amount of C was solid-solved than before, and which was austenitized at room temperature.

本発明鋼はCrが10.0〜20.0重量%、Cが0.5
〜1.5重量%で、オーステナイト相を80%以上含有
する鋼である。この鋼は1150℃以上に加熱した後0.2
℃/sで冷却することにより得られる。Cr量を16.0
〜18.0重量%、Cを0.60〜1.20重量%含む
鋼は、従来よりSUS 440 鋼として規格化されており、高
知の成分系である。しかるに従来公知の鋼は、常温にお
いてフェライト+Cr炭化物組織であるかマルテンサイト
組織であり、本発明鋼とは明らかに異なる組織の鋼であ
る。従来公知の鋼は焼入れ硬化を狙うため硬度が低いオ
ーステナイト相を極力低減することが指向されているだ
けでなく、焼入れ処理後の靱性を確保するため焼入れ処
理においてオーステナイト粒の粗大化を抑制しなければ
ならない。このため、焼入れ処理は1100℃以下の加熱温
度で行なわれ、焼入れ後のオーステナイト量も20%以
下であることが必須の条件となっている。
In the steel of the present invention, Cr is 10.0 to 20.0% by weight and C is 0.5.
It is a steel containing ~ 1.5% by weight and containing 80% or more austenite phase. This steel is 0.2 after heating above 1150 ℃
Obtained by cooling at ° C / s. Cr amount is 16.0
Steel containing 18.0 wt% and 0.60 to 1.20 wt% C has been conventionally standardized as SUS 440 steel, and is a Kochi component system. However, the conventionally known steel has a ferrite + Cr carbide structure or a martensite structure at room temperature, and has a structure distinctly different from the steel of the present invention. Conventionally known steel is aimed at quenching hardening and is not only aimed to reduce the austenite phase with low hardness as much as possible, but it is necessary to suppress coarsening of austenite grains in the quenching process in order to secure toughness after the quenching process. I have to. Therefore, it is essential that the quenching treatment is performed at a heating temperature of 1100 ° C. or less, and the amount of austenite after quenching is also 20% or less.

本発明鋼およびその製造方法は、オーステナイト量が多
いと高い延性が得られ強加工が可能になるとの知見に基
づいて冶金的な材料設計を行なったもので、成分そのも
のは従来公知の鋼が含まれるが従来忌避されたオーステ
ナイト組織を80%以上とした点および従来忌避された
1150℃以上での溶体化処理を行なう点に新規性がある。
しかも、従来の同一成分鋼とは比較にならない高延性が
得られることから進歩性が充分に認められる。
The steel of the present invention and its manufacturing method are metallurgical material designs based on the knowledge that high ductility can be obtained when a large amount of austenite is obtained and strong working is possible, and the components themselves include conventionally known steels. However, the austenite structure that was conventionally repelled was 80% or more, and it was repelled conventionally.
There is novelty in performing solution treatment at 1150 ° C or higher.
Moreover, since a high ductility that is not comparable to that of the conventional steel of the same composition is obtained, the inventive step is sufficiently recognized.

本発明鋼のポイントは、従来認められることのあった残
留オーステナイトの量とは全く異なり、実質的にはほぼ
全量をオーステナイト相にする点にある。また、本発明
方法のポイントは、従来の焼入れ処理で行なわれていた
温度よりもはるかに高温で溶体化することにある。
The point of the steel of the present invention is that it is completely different from the amount of retained austenite that has been conventionally recognized, and that substantially the entire amount is made into an austenite phase. Further, the point of the method of the present invention is to perform solution treatment at a temperature much higher than the temperature used in the conventional quenching treatment.

第1図は、Cr含有量が17重量%でC含有量が0.7重
量%のマルテンサイト系ステンレス鋼におけるオーステ
ナイト量と伸びの関係を示している。この結果から、オ
ーステナイト相が80%以上になると延性が急激に向上
することが明らかとなった。この延性向上の機構は、オ
ーステナイト相に変形を加えることによって生ずるマル
テンサイト変態誘起塑性によるものと考えられる。
FIG. 1 shows the relationship between the amount of austenite and elongation in a martensitic stainless steel having a Cr content of 17% by weight and a C content of 0.7% by weight. From this result, it was revealed that the ductility was drastically improved when the austenite phase was 80% or more. It is considered that the mechanism for improving the ductility is due to the martensitic transformation-induced plasticity generated by applying the deformation to the austenite phase.

常温におけるオーステナイト量は、溶体化処理における
加熱温度と冷却速度に密接に関連している。第2図は、
Cr含有量が17重量%でC含有量が0.7重量%のマル
テンサイト系ステンレス鋼の常温におけるオーステナイ
ト量に及ぼす溶体化処理の加熱温度および冷却速度の影
響を示した図である。1150℃以上に加熱し0.2℃/s
以上の冷却速度で冷却すると、常温でのオーステナイト
量が80%以上となることが明らかとなった。加熱温度
が1150℃未満では、固溶C量が低いためにMs点が高くな
り、冷却過程でマルテンサイト変態が生じ常温でのオー
ステナイト量が80%未満となる。また、加熱温度が11
50℃以上であっても冷却速度が0.2℃/s未満では、
一旦固溶したCが炭化物として析出し固溶C量が減少す
るため、同様にMs点が高くなりマルテンサイト変態によ
ってオーステナイト量が80%未満となる。
The amount of austenite at room temperature is closely related to the heating temperature and cooling rate in solution treatment. Figure 2 shows
It is a figure showing the influence of the heating temperature and the cooling rate of solution treatment on the amount of austenite of the martensitic stainless steel with a Cr content of 17% by weight and a C content of 0.7% by weight at room temperature. 0.2 ℃ / s by heating above 1150 ℃
It was clarified that the amount of austenite at room temperature was 80% or more when cooled at the above cooling rate. If the heating temperature is lower than 1150 ° C, the Ms point becomes high because the amount of solid solution C is low, and martensitic transformation occurs in the cooling process, and the amount of austenite at room temperature becomes less than 80%. Also, the heating temperature is 11
If the cooling rate is less than 0.2 ° C / s even at 50 ° C or higher,
Once solid-soluted C precipitates as carbides and the amount of solid-solved C decreases, the Ms point similarly rises, and the amount of austenite becomes less than 80% due to martensitic transformation.

第3図はCrを17重量%、Cを0.7重量%含み準安定
オーステナイト相を90%有する高炭素含有マルテンサ
イト系ステンレス鋼を冷間圧延した場合の加工強化曲線
を示している。冷延率5%以上でウエハスライサ用素材
に要求される最低レベル以上の硬度を有する。しかも冷
延率25%以上で従来技術で到達可能な強度以上の高強
度を有することが明らかとなった。
FIG. 3 shows a work strengthening curve in the case of cold rolling a high carbon content martensitic stainless steel containing 17% by weight of Cr, 0.7% by weight of C and 90% of a metastable austenite phase. With a cold rolling rate of 5% or more, it has a hardness of at least the minimum level required for a material for a wafer slicer. Moreover, it has been revealed that the cold rolling ratio is 25% or more and the strength is higher than that which can be achieved by the conventional technique.

以上の知見から、マルテンサイト系ステンレス鋼の延性
が大幅に改善され、高強度高延性を有し焼入れ処理が可
能なステンレス鋼の製造が可能となった。
From the above findings, the ductility of martensitic stainless steel was significantly improved, and it became possible to manufacture a stainless steel having high strength and high ductility and capable of being quenched.

次いで本発明の限定理由を説明する。Next, the reasons for limitation of the present invention will be described.

C含有量は、高温溶体化処理によってMs点を低下させ常
温オーステナイト量を80%以上にするために必要最小
限度の0.5重量%を下限とした。しかし、1.5重量
%を超えると巨大な炭化物が生成することや炭化物の粒
界析出量が増えることによって延性が著しく低下するた
め、1.5重量%を上限とした。
The lower limit of the C content is 0.5% by weight, which is the minimum necessary for lowering the Ms point by high temperature solution treatment and increasing the amount of normal temperature austenite to 80% or more. However, if it exceeds 1.5% by weight, ductility is remarkably reduced due to the formation of huge carbides and an increase in the amount of carbide grain boundary precipitation, so the upper limit was made 1.5% by weight.

Cr含有量は、ステンレス鋼として必要な耐食性を得るに
必要最小限度の10.0重量%を下限とした。しかし、
20.0重量%を越えると巨大炭化物および粒界炭化物
が生成しやすくなり延性が著しく低下するため、20.
0重量%を上限とした。
The Cr content has a lower limit of 10.0% by weight, which is the minimum necessary for obtaining the corrosion resistance required for stainless steel. But,
If it exceeds 20.0% by weight, large carbides and intergranular carbides are likely to be formed and ductility is remarkably reduced.
The upper limit was 0% by weight.

本発明の溶体化加熱温度あるいは熱延後捲取り温度を11
50℃以上としたのは、Ms点を低下させ常温オーステナイ
ト量を80%以上にするのに必要なC量を鋼中に固溶す
るのに必要な最低温度であるためである。しかし、固相
線温度を超えると融液化してしまうため上限を固相線温
度とした。
The solution heating temperature of the present invention or the coiling temperature after hot rolling is set to 11
The reason why the temperature is 50 ° C. or higher is that it is the minimum temperature required to form a solid solution in the steel in the amount of C necessary for lowering the Ms point and making the amount of normal temperature austenite 80% or more. However, if the temperature exceeds the solidus temperature, it will be melted, so the upper limit was made the solidus temperature.

さらに溶体化後あるいは熱延捲取り後の冷却速度を0.2
℃/s以上にするのは、これ未満の冷却速度では冷却途
中に鋼中に固溶したCがCr炭化物として再析出しC固溶
量が低下するため、Ms点が高くなりマルテンサイト変態
を生じ延性が著しく低下するためである。
Furthermore, the cooling rate after solution heat treatment or hot rolling is 0.2
If the cooling rate is lower than this, the C dissolved in the steel during the cooling is re-precipitated as Cr carbide and the amount of the C dissolved decreases, so that the Ms point becomes high and the martensitic transformation occurs. This is because the resulting ductility is significantly reduced.

調質圧延の冷延率を5%以上とするのは、調質圧延によ
って準安定オーステナイト相が加工誘起マルテンサイト
に変態し、ウエハスライサ用素材として必要な引張強度
130kg/mm以上とするのに必要な最小冷延率である
ためである。
The cold rolling rate of the temper rolling is set to 5% or more because the metastable austenite phase is transformed into the process-induced martensite by the temper rolling and the tensile strength required as a material for wafer slicer is 130 kg / mm 2 or more. This is because it is the minimum cold rolling rate required for.

(ホ)実施例 第1表に示す成分の鋼を150kg真空溶解炉にて溶製
後、熱延および球状化処理を行なった後、板厚1.5mm
に冷延した鋼板に第2表に示す種々の条件で熱処理を施
した。これらの材料からJIS 13号Bの試験片を採取し、
同じく第2表に示す引張温度で引張試験を行ない、引張
強さおよび全伸びを調べた。
(E) Example Steel having the components shown in Table 1 was melted in a 150 kg vacuum melting furnace, then hot rolled and spheroidized, and then the plate thickness was 1.5 mm.
The cold-rolled steel sheet was heat-treated under various conditions shown in Table 2. JIS 13 B test pieces were collected from these materials,
Similarly, a tensile test was conducted at the tensile temperature shown in Table 2 to examine the tensile strength and the total elongation.

その結果、第2表に見られるように本発明である試料N
o.1〜9のものは、引張強さ90kg/mm2以上で全伸び
が20〜100%と極めて良好な材質を有することが明
らかである。これに対し試料No.10〜14は、従来の
球状化熱処理であるためフェライト+Cr炭化物組織とな
り、引張強さおよび全伸びが低い。試料No.15は加熱
温度が低いため、また試料No.17〜18はC含有量が
低いため、Ms点が高く冷却中にマルテンサイト変態が生
じ、全伸びが著しく低い。また、試料No.16は冷却速
度が遅いためフェライト+Cr炭化物組織となり、引張強
さおよび全伸びが低い。
As a result, as shown in Table 2, Sample N of the present invention
It is apparent that those of o.1 to 9 have a very good material with a tensile strength of 90 kg / mm 2 or more and a total elongation of 20 to 100%. On the other hand, Sample Nos. 10 to 14 have a ferrite + Cr carbide structure because of the conventional spheroidizing heat treatment, and have low tensile strength and total elongation. Sample No. 15 has a low heating temperature, and Samples Nos. 17 to 18 have a low C content, so that the Ms point is high and martensitic transformation occurs during cooling and the total elongation is extremely low. Further, Sample No. 16 has a ferrite + Cr carbide structure due to a slow cooling rate, and has low tensile strength and total elongation.

次に、第1表に示す成分の鋼を溶製し熱間圧延でφ6mm
線材コイルに仕上げた後、第3表に示す条件で捲取り、
加熱あるいは冷却を行なった。また従来の熱延条件で捲
取り、750℃×5hの球状可処理を施した後、第3表
に示す条件で溶体化処理を施した。これらの材料から引
張り試験片を採取し、同じく第3表に示す加工温度で引
張試験および圧縮試験を行ない、全伸びおよび冷間鍛造
性を調べた。冷間鍛造性の評価は、φ5mm×7.5mmの
試験片で据込率50%の圧縮試験を行なった時の割れ発
生の有無で求め、○印は割れが発生しなかったこと、×
印は割れが発生したことを示す。
Next, steel with the components shown in Table 1 was melted and hot-rolled to a diameter of 6 mm.
After finishing the wire coil, wind it under the conditions shown in Table 3,
Heating or cooling was performed. Further, after winding under the conventional hot rolling conditions, subjected to a spherical processable treatment at 750 ° C. for 5 hours, a solution treatment was performed under the conditions shown in Table 3. Tensile test pieces were sampled from these materials, and a tensile test and a compression test were also performed at the processing temperatures shown in Table 3 to examine the total elongation and the cold forgeability. The evaluation of the cold forgeability was determined by the presence or absence of cracks when a compression test was conducted on a φ5 mm × 7.5 mm test piece with an upsetting ratio of 50%.
The mark indicates that cracking occurred.

その結果、第3表に見られるように本発明方法である試
料No.1〜14は、加工温度によって変動が見られるも
のの、全伸びが30〜95%と極めて良好な延性を有し
鍛造性に優れることが明らかである。これに対し試料N
o.15〜17およびNo.19は溶体化温度が低いことか
ら、マルテンサイト組織となり伸びが極めて低くなる。
また試料No.18は捲取り後の冷却速度が遅いため、冷
却中にフェライト+Cr炭化物組織となるため、伸びが2
0〜25%と低く鍛造性にも劣る。従来法で製造された
試料No.20〜23は、フェライト+Cr炭化物組織とな
り、伸びが低く鍛造性にも劣る。
As a result, as shown in Table 3, the sample Nos. 1 to 14 which are the method of the present invention have a very good ductility with a total elongation of 30 to 95% and a good forgeability although the fluctuations are observed depending on the processing temperature. It is clear that it is superior to. On the other hand, sample N
Since Nos. 15 to 17 and No. 19 have a low solution temperature, they have a martensite structure and have extremely low elongation.
In addition, since the sample No. 18 has a slow cooling rate after winding, it has a ferrite + Cr carbide structure during cooling, so the elongation is 2
It is as low as 0 to 25% and inferior in forgeability. Sample Nos. 20 to 23 produced by the conventional method have a ferrite + Cr carbide structure and have low elongation and poor forgeability.

さらに、第1表に示す成分を有する鋼の熱延コイルに球
状化焼鈍および酸洗を行なった後、冷延焼鈍を繰り返し
第4表に示す熱処理条件で溶体化処理を行ない、調質圧
延を施した。この材料からJIS 13号Bの試験片を採取
し、引張強度を調べた。
Further, the hot rolled coil of steel having the components shown in Table 1 was subjected to spheroidizing annealing and pickling, and then cold rolled annealing was repeated to perform solution treatment under the heat treatment conditions shown in Table 4 and temper rolling. gave. A JIS 13 B test piece was sampled from this material, and the tensile strength was examined.

その結果、第4表に示すように本発明方法で製造した試
料No.1〜11は、いずれもウエハスライサ用素材に要
求される130kg/mm2以上の引張強度が得られること
が明らかである。これに対し、溶体化処理温度の低い試
料No.12〜15は、溶体化処理後マルテンサイト組織
となるため、調質圧延の冷延率が5%以下で割れが生じ
冷延不能となる。溶体化処理後の冷却速度の遅い試料N
o.16〜19は、冷却途中にオーステナイトがフェライ
トに変態するため、調質圧延後の引張強度は低い。
As a result, as shown in Table 4, it is clear that all of Sample Nos. 1 to 11 produced by the method of the present invention can obtain the tensile strength of 130 kg / mm 2 or more required for the wafer slicer material. . On the other hand, Sample Nos. 12 to 15 having a low solution heat treatment temperature have a martensite structure after the solution heat treatment, and therefore cracking occurs at a cold rolling ratio of the temper rolling of 5% or less and cold rolling becomes impossible. Sample N with slow cooling rate after solution treatment
In Nos. 16 to 19, austenite was transformed into ferrite during cooling, so that the tensile strength after temper rolling was low.

以上の実施例から、本発明は成分および熱処理条件が密
接に関連して極めて効果的に作用し、優れた強度−延性
バランスを有することが明らかである。
From the above examples, it is clear that the present invention works extremely effectively in close association of the components and heat treatment conditions and has an excellent strength-ductility balance.

(ト)発明の効果 以上の実施例からも明らかなように、本発明によれば引
張強度90kg/mm2以上の高強度でかつ高延性を有し加
工成形後加工誘起マルテンサイトの生成によって高い強
度が得られ、しかも焼入れ処理による硬化も可能なステ
ンレス鋼製造が可能となる。この技術によって、従来小
物部品を主たる用途とするマルテンサイト系ステンレス
鋼が、浴槽、厨房用シンクをはじめとする大型のプレス
成形品や各種ボルト類などの冷間、温間鍛造品など強加
工が施される部材にも適用が可能となった。
(G) Effect of the invention As is clear from the above examples, according to the present invention, the tensile strength is high, 90 kg / mm 2 or more, and the ductility is high. It is possible to manufacture stainless steel which has high strength and can be hardened by quenching. With this technology, conventional martensite stainless steel, which is mainly used for small parts, can be used for large-scale press forming such as bathtubs and kitchen sinks, as well as for cold and warm forgings such as various bolts. It has become possible to apply it to applied parts.

さらに本発明によって、従来不可能と考えられていたCr
系ステンレス鋼のウエハスライサ用素材として適用が可
能となった。特に、冷延率25%以上の調質圧延を行な
うことによって従来の最高引張り強度であった200kg
/mm2を超える高強度ウエハスライサ用極薄ステンレス
鋼の製造が可能となった。その結果、SiやGaAsインゴッ
トの精度の高いウエハ切断が可能となるため、切断歩留
りの向上および極薄ウエハの製造が可能となり、産業上
の寄与は極めて大きい。
Further, according to the present invention, Cr, which was conventionally considered impossible,
It has become possible to apply it as a raw material for wafer slicers of stainless steel. In particular, by performing temper rolling at a cold rolling rate of 25% or more, the maximum tensile strength of the past was 200 kg.
It has become possible to manufacture ultra-thin stainless steel for high-strength wafer slicers exceeding / mm 2 . As a result, it is possible to cut a wafer of Si or GaAs ingot with high precision, which makes it possible to improve the cutting yield and to manufacture an extremely thin wafer, which greatly contributes to the industry.

【図面の簡単な説明】[Brief description of drawings]

第1図は、Cr含有量が17重量%でC含有量が0.7重
量%のマルテンサイト系ステンレス鋼におけるオーステ
ナイト量の伸びの関係を示した図である。 第2図は、Cr含有量が17重量%でC含有量が0.7重
量%のマルテンサイト系ステンレス鋼における溶体化処
理の加熱温度および冷却速度とオーステナイト量との関
係を示した図である。 第3図は、準安定オーステナイト相を有するマルテンサ
イト系ステンレス鋼の冷間圧延による加工強化曲線を示
す図である。
FIG. 1 is a diagram showing a relationship of elongation of austenite amount in a martensitic stainless steel having a Cr content of 17% by weight and a C content of 0.7% by weight. FIG. 2 is a diagram showing the relationship between the austenite amount and the heating temperature and cooling rate of the solution treatment in the martensitic stainless steel having a Cr content of 17% by weight and a C content of 0.7% by weight. . FIG. 3 is a diagram showing a work strengthening curve by cold rolling of martensitic stainless steel having a metastable austenite phase.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】Cr:10.0〜20.0重量%、C:0.
5〜1.5重量%を含み常温で80%以上のオーステナ
イト相を有することを特徴とする高強度高延性を有する
高炭素ステンレス鋼。
1. Cr: 10.0-20.0% by weight, C: 0.
A high carbon stainless steel having high strength and high ductility, which comprises 5 to 1.5% by weight and has an austenite phase of 80% or more at room temperature.
【請求項2】Cr:10.0〜20.0重量%、C:0.
5〜1.5重量%を含む高炭素ステンレス鋼を1150℃以
上固相線温度以下に溶体化加熱した後、冷却速度0.2 ℃
/s以上で冷却することを特徴とする高強度高延性を有
する高炭素ステンレス鋼の製造方法。
2. Cr: 10.0 to 20.0% by weight, C: 0.
After high-carbon stainless steel containing 5 to 1.5% by weight is solution heated to above 1150 ℃ and below the solidus temperature, cooling rate is 0.2 ℃
/ S or higher cooling method for producing high-carbon stainless steel having high strength and high ductility.
【請求項3】Cr:10.0〜20.0重量%、C:0.
5〜1.5重量%を含む高炭素ステンレス鋼を熱間圧延
した後、1150℃以上固相線温度以下で捲取り冷却速度
0.2℃/s以上で冷却することを特徴とする高強度高
延性を有する高炭素ステンレス鋼の製造方法。
3. Cr: 10.0-20.0% by weight, C: 0.
High strength characterized in that after high-carbon stainless steel containing 5 to 1.5 wt% is hot-rolled, it is cooled at a coiling cooling rate of 0.2 ° C / s or more at 1150 ° C or more and solidus temperature or less. A method for producing high carbon stainless steel having high ductility.
【請求項4】Cr:10.0〜20.0重量%、C:0.
5〜1.5重量%を含む高炭素ステンレス鋼を熱間圧延
した後、1150℃以上固相線温度以下に溶体化加熱し冷却
速度0.2℃/s以上で冷却することを特徴とする高強
度高延性を有する高炭素ステンレス鋼の製造方法。
4. Cr: 10.0-20.0% by weight, C: 0.
A high-carbon stainless steel containing 5 to 1.5% by weight is hot-rolled, then solution heat-treated at a temperature of 1150 ° C or higher and a solidus temperature or lower, and cooled at a cooling rate of 0.2 ° C / s or more. A method for producing high carbon stainless steel having high strength and high ductility.
【請求項5】Cr:10.0〜20.0重量%、C:0.
5〜1.5重量%を含み常温で80%以上のオーステナ
イト相を有する鋼板に冷延率5%以上の調質圧延を行な
うことを特徴とする高強度高延性を有する高炭素ステン
レス鋼の製造方法。
5. Cr: 10.0-20.0% by weight, C: 0.
Production of high carbon stainless steel with high strength and high ductility, characterized by performing temper rolling with a cold rolling ratio of 5% or more on a steel sheet containing 5 to 1.5% by weight and having an austenite phase of 80% or more at room temperature. Method.
【請求項6】Cr:10.0〜20.0重量%、C:0.
5〜1.5重量%を含む高炭素ステンレス鋼板を1150℃
以上固相線温度以下に溶体化加熱し、冷却速度0.2 ℃/
s以上で冷却した後、冷延率5%以上の調質圧延を行な
うことを特徴とする高強度高延性を有する高炭素ステン
レス鋼の製造方法。
6. Cr: 10.0-20.0% by weight, C: 0.
High carbon stainless steel sheet containing 5 to 1.5% by weight at 1150 ° C
Solution heating below solidus temperature, cooling rate 0.2 ℃ /
A method for producing a high-carbon stainless steel having high strength and high ductility, which comprises performing temper rolling at a cold rolling rate of 5% or more after cooling at s or more.
JP21846888A 1988-01-12 1988-09-02 High carbon stainless steel having high strength and high ductility and method for producing the same Expired - Fee Related JPH0637691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21846888A JPH0637691B2 (en) 1988-01-12 1988-09-02 High carbon stainless steel having high strength and high ductility and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP321388 1988-01-12
JP63-3213 1988-01-12
JP21846888A JPH0637691B2 (en) 1988-01-12 1988-09-02 High carbon stainless steel having high strength and high ductility and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01287254A JPH01287254A (en) 1989-11-17
JPH0637691B2 true JPH0637691B2 (en) 1994-05-18

Family

ID=26336742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21846888A Expired - Fee Related JPH0637691B2 (en) 1988-01-12 1988-09-02 High carbon stainless steel having high strength and high ductility and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0637691B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231717B (en) * 2021-12-31 2024-02-02 无锡派克新材料科技股份有限公司 Forging method of martensitic stainless steel forging

Also Published As

Publication number Publication date
JPH01287254A (en) 1989-11-17

Similar Documents

Publication Publication Date Title
KR20220129609A (en) Steel for mining chain and its manufacturing method
EP2226406B1 (en) Stainless austenitic low Ni alloy
RU2322531C2 (en) Steel and tools for cold metalworking
EP3385400A1 (en) Rolling rod for cold-forged thermally refined article
CN109790602B (en) Steel
JP2003147485A (en) High toughness high carbon steel sheet having excellent workability, and production method therefor
JP2952929B2 (en) Duplex stainless steel and method for producing the same
JPH08225833A (en) Production of martensitic heat resistant steel excellent in high temperature creep strength
US4259126A (en) Method of making razor blade strip from austenitic steel
JP3677972B2 (en) Method for producing steel material for cold forging containing boron
JP6044870B2 (en) Manufacturing method of steel strip for blades
JP4342924B2 (en) Stainless steel wire rod for high-strength products and stainless steel high-strength bolts with excellent durability
JP2841468B2 (en) Bearing steel for cold working
JPH064889B2 (en) Method for manufacturing thick ultra high strength steel
JP7444018B2 (en) Steel plates, their manufacturing methods, and members
US4353755A (en) Method of making high strength duplex stainless steels
JPH09287056A (en) Wire rod and bar steel excellent on cold forgeability and their production
JPH1192868A (en) Steel for cold forging excellent in crystal grain-coarsening preventability and delayed fracture resistance and its production
JPH0699741B2 (en) Processing method of high Cr ferritic steel for high temperature
JPH0637691B2 (en) High carbon stainless steel having high strength and high ductility and method for producing the same
JP3721723B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP3118566B2 (en) Precipitation-hardened martensitic iron-base heat-resistant alloy
JP4006857B2 (en) Cold forging steel for induction hardening, machine structural parts and manufacturing method thereof
JP3688311B2 (en) Manufacturing method of high strength and high toughness steel
JP3204080B2 (en) Method for producing precipitation-hardened martensitic stainless steel with excellent cold forgeability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees