JPH0637574A - Surface acoustic wave oscillator and surface acoustic wave filter - Google Patents

Surface acoustic wave oscillator and surface acoustic wave filter

Info

Publication number
JPH0637574A
JPH0637574A JP19122792A JP19122792A JPH0637574A JP H0637574 A JPH0637574 A JP H0637574A JP 19122792 A JP19122792 A JP 19122792A JP 19122792 A JP19122792 A JP 19122792A JP H0637574 A JPH0637574 A JP H0637574A
Authority
JP
Japan
Prior art keywords
electrode
acoustic wave
surface acoustic
thin film
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19122792A
Other languages
Japanese (ja)
Inventor
Yoshihiro Takahashi
義弘 高橋
Shinichi Fukukawa
伸一 福川
Hiroyuki Kudo
裕之 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Miyagi Ltd
Original Assignee
NEC Corp
NEC Miyagi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Miyagi Ltd filed Critical NEC Corp
Priority to JP19122792A priority Critical patent/JPH0637574A/en
Publication of JPH0637574A publication Critical patent/JPH0637574A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a desired resonance frequency or pass band frequency without requiring high manufacturing accuracy by providing a comb-line reed screen type electrode formed by applying mask vapor-deposition on the surface of organic system macromolecule thin film formed on the surface of a piezoelectric monocrystal substrate by vapor-deposition, and electrodes to apply a DC voltage for use of resonance frequency adjustment at both terminals of the organic system macromolecule thin film. CONSTITUTION:In a surface acoustic wave oscillator, it is required to regulate the width and interval of the electrode so as to accurately establish relation a0=S0 assuming the width of the reed screen type electrode 1 as a0, and the interval as S0 to accurately take out the resonance frequency of the surface acoustic wave oscillator. The DC voltage from a power source 3 is applied to the organic system macromolecule thin film 3 vapor-deposited on the piezoelectric monocrystal substrate 8. In such a case, the propagation velocity of a surface acoustic wave is varied by a tensile force according to the shrinkage/expansion of the thin film in the length direction generated by high voltage property. In other words, since the resonance frequency is varied, it can be adjusted by varying the DC voltage. Thereby, the manufacturing accuracy can be moderated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はすだれ状電極を有する弾
性表面波発振子および弾性表面波フィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave oscillator having a comb-shaped electrode and a surface acoustic wave filter.

【0002】[0002]

【従来の技術】従来、この種の弾性表面波発振子は、圧
電体結晶基板の表面に櫛形のすだれ状電極が電極の幅と
電極と電極との間隔が全て等しく一様に、弾性表面波の
伝播方向に沿って配置されている。この幅と間隔は、通
常弾性表面波の波長の1/4に設計される。原則的には
この幅と間隔により共振周波数が決まるがしかし、所望
の共振周波数を得る為には、このような幅と間隔の一様
なすだれ状電極では十分でなく、電極の設計上で種々の
工夫が行なわれている。
2. Description of the Related Art Conventionally, a surface acoustic wave oscillator of this type has a comb-shaped interdigital transducer formed on the surface of a piezoelectric crystal substrate so that the width of the electrode and the distance between the electrodes are all equal. Are arranged along the propagation direction of. The width and the interval are usually designed to be 1/4 of the wavelength of the surface acoustic wave. In principle, the resonance frequency is determined by the width and the interval. However, in order to obtain a desired resonance frequency, such an interdigital electrode having a uniform width and interval is not enough, and various electrode designs are required. Is devised.

【0003】また、この種の弾性表面波素子を応用した
弾性表面波フィルタは、同一圧電圧基板上に2組みの弾
性表面波素子を左右に配置しインターデジタル電極を構
成したもので、この左右の弾性表面波素子の間隔により
共振子のQを下げ、通過帯域幅を確保している。
A surface acoustic wave filter to which this type of surface acoustic wave element is applied is one in which two sets of surface acoustic wave elements are arranged on the left and right on the same piezo-voltage substrate to form an interdigital electrode. The Q of the resonator is lowered by the distance between the surface acoustic wave elements to secure the pass band width.

【0004】[0004]

【発明が解決しようとする課題】一般にすだれ状電極に
より構成した弾性表面波の音速は、圧電体結晶基板のみ
の場合の音速とすだれ状電極を形成する金属表面の音速
とでは異なり、したがってすだれ状電極部分を通過する
弾性表面波の音速とすだれ状電極の無い圧電体結晶部分
を伝播する弾性表面波の音速とは異なる。すだれ状電極
の構成は、通常圧電体結晶基板上に櫛形に対向した電極
が設けられている。このすだれ状電極領域のうち、金属
表面の面積をaとし、圧電体部分の面積をSとした時、
a/(a+S)が大きくなるに従い音速は小さくなる。
その値は、a/(a+S)が0.1変化する時に音速は
約1〜6m/sec変化し金属表面の比率が電極部分の
圧電体結晶部分に比べ高くなるに従い、音速が小さくな
ることを示す。
Generally, the speed of sound of a surface acoustic wave composed of interdigital electrodes is different from the speed of sound when only a piezoelectric crystal substrate is used and the speed of sound on the metal surface forming the interdigital electrode, and therefore the interdigital shape is used. The sound velocity of the surface acoustic wave passing through the electrode portion is different from the sound velocity of the surface acoustic wave propagating through the piezoelectric crystal portion without the interdigital transducer. In the configuration of the interdigital electrodes, the electrodes facing each other in a comb shape are usually provided on the piezoelectric crystal substrate. In this interdigital electrode region, when the area of the metal surface is a and the area of the piezoelectric portion is S,
The sound velocity decreases as a / (a + S) increases.
The value is such that when a / (a + S) changes by 0.1, the sound speed changes by about 1 to 6 m / sec, and the sound speed decreases as the ratio of the metal surface becomes higher than that of the piezoelectric crystal part of the electrode part. Show.

【0005】この様に素子の表面状態及び電極自体の寸
法の製作精度によって弾性表面波の音速が異なることか
ら、従来、この種の弾性表面波発振子においては、すだ
れ状電極間の間隔の違いにより音速に差を生ずると、共
振周波数に影響を及ぼし共振周波数がずれるので、製作
精度を高度に要求される問題がある。
Since the acoustic velocity of the surface acoustic wave varies depending on the surface condition of the element and the manufacturing precision of the dimensions of the electrode itself, conventionally, in this type of surface acoustic wave oscillator, the gap between the interdigital electrodes is different. When a difference in sound velocity occurs due to the above, the resonance frequency is affected and the resonance frequency shifts, so that there is a problem that a high manufacturing precision is required.

【0006】本発明の目的は、このような問題を解決
し、製作精度をあまり要さず所望の共振周波数あるいは
通過帯域周波数を得られる弾性表面波発振子および弾性
表面波フィルタを提供することにある。
An object of the present invention is to solve the above problems and provide a surface acoustic wave oscillator and a surface acoustic wave filter that can obtain a desired resonance frequency or pass band frequency without requiring much manufacturing precision. is there.

【0007】[0007]

【課題を解決するための手段】本発明の弾性表面波発振
子は圧電単結晶基板と、前記圧電単結晶基板の表面に蒸
着により形成された有機系高分子薄膜と、前記有機系高
分子薄膜の表面にマスク蒸着により形成された櫛形のす
だれ状電極と、前記有機系高分子薄膜の両端に共振用波
数調整用の直流電圧を印加するための電極とを備えてい
る。
A surface acoustic wave oscillator according to the present invention comprises a piezoelectric single crystal substrate, an organic polymer thin film formed on the surface of the piezoelectric single crystal substrate by vapor deposition, and the organic polymer thin film. Is provided with comb-shaped interdigital electrodes formed by mask vapor deposition on the surface thereof and electrodes for applying a DC voltage for adjusting the resonance wave number to both ends of the organic polymer thin film.

【0008】また、弾性表面波フィルタは、圧電基板
と、前記圧電基板の左側表面に設けられた櫛形の第1の
すだれ状電極と、前記圧電基板と前記第1のすだれ状電
極との間でかつ前記第1のすだれ状電極の櫛歯部分の全
長に亘って設けられた第1の有機系高分子薄膜と、前記
第1の有機系高分子薄膜の両端に設けられた共振周波数
調整用の直流電圧を印加するための第1の電極と前記第
1の直流電圧を発生する第1の直流電源と、前記圧電基
板の右側表面でかつ前記第1の電極とインターデジタル
電極を構成するように設けられた櫛形の第2のすだれ状
電極と、前記圧電基板と前記第2のすだれ状電極との間
でかつ前記第2のすだれ状電極の櫛歯部分の全長に亘っ
て設けられた第2の有機系高分子薄膜と、前記第2の有
機系高分子薄膜の両端に設けられた共振周波数調整用の
直流電圧を印加するための第2の電極と前記直流電圧を
発生する第2の直流電源とを備えている。
The surface acoustic wave filter includes a piezoelectric substrate, a comb-shaped first interdigital electrode provided on the left surface of the piezoelectric substrate, and the piezoelectric substrate and the first interdigital electrode. Further, a first organic polymer thin film provided over the entire length of the comb tooth portion of the first interdigital electrode, and a resonance frequency adjusting device provided at both ends of the first organic polymer thin film. A first electrode for applying a DC voltage, a first DC power source for generating the first DC voltage, a right surface of the piezoelectric substrate, and an interdigital electrode with the first electrode. A second comb-shaped comb-shaped electrode provided and a second comb-shaped electrode provided between the piezoelectric substrate and the second comb-shaped electrode and over the entire length of the comb-teeth portion of the second comb-shaped electrode. Both the organic polymer thin film of the above and the second organic polymer thin film And a second DC power supply for generating the DC voltage and the second electrodes for applying a DC voltage for adjusting the resonance frequency provided.

【0009】尚、前記有機系高分子薄膜は一例としてポ
リフッ化ビニリデン(PVDF)を用いても良い。
The organic polymer thin film may be made of polyvinylidene fluoride (PVDF), for example.

【0010】[0010]

【実施例】次に、本発明の実施例を図面により説明す
る。図1は第1の実施例として弾性表面波共振子の
(a)上面図および(b)A−A線断面図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a (a) top view and (b) a sectional view taken along line AA of a surface acoustic wave resonator as a first embodiment.

【0011】図1(a)において、圧電体結晶基板8の
板面にすだれ状電極1の櫛形電極を対向配置し、その一
端にアルミニウム等の金属電極が入力端子14及び出力
端子15として設けられている。又これらすだれ状電極
1と圧電体結晶基板8との間には図示のように一軸延伸
性の有機系高分子薄膜2が蒸着により形成され、その両
端には電極6が設けられている。
In FIG. 1A, the comb-shaped electrodes of the interdigital electrode 1 are arranged on the plate surface of the piezoelectric crystal substrate 8 so as to face each other, and a metal electrode such as aluminum is provided at one end as the input terminal 14 and the output terminal 15. ing. A uniaxially stretchable organic polymer thin film 2 is formed by vapor deposition between the interdigital electrode 1 and the piezoelectric crystal substrate 8, and electrodes 6 are provided at both ends thereof.

【0012】この有機系高分子薄膜2は、例えば圧電定
数の大きなポリフッ化ビニリデン(PVDF)等を用
い、変調手段となる直流電源3からの直流電圧を電極1
6に印加することによって、薄膜12が長さ方向に伸縮
する。このすだれ状電極1は、トランジェント・エコー
を極力除外する為に、電極の間隔を全て一様に等しくし
ており、電極の幅も間隔も全て等しくしたものである。
The organic polymer thin film 2 is made of, for example, polyvinylidene fluoride (PVDF) having a large piezoelectric constant, and a DC voltage from a DC power source 3 serving as a modulation means is applied to the electrode 1.
By applying to No. 6, the thin film 12 expands and contracts in the length direction. In this interdigital transducer 1, in order to eliminate transient echoes as much as possible, the intervals between the electrodes are made uniform, and the width and the intervals of the electrodes are made equal.

【0013】この弾性表面波発振子の場合、図2のよう
にすだれ状電極1の幅をa0 , その間隔をS0 とする
と、電極部分における金属表面の占める比率Rは次式の
ようになる。
In the case of this surface acoustic wave oscillator, assuming that the width of the interdigital electrode 1 is a 0 and the interval is S 0 as shown in FIG. 2, the ratio R of the metal surface in the electrode portion is given by the following equation. Become.

【0014】 R=m・a0 /m・a0 +(m−1)・S0 ここで、弾性表面波発振子の共振周波数を正確にとり出
す為には、a0 =S0 が正確に成り立つ様に電極の幅と
間隔を規定する必要がある。
R = m · a 0 / m · a 0 + (m−1) · S 0 Here, in order to accurately extract the resonance frequency of the surface acoustic wave oscillator, a 0 = S 0 is accurate. It is necessary to define the width and spacing of the electrodes so that they hold.

【0015】圧電体結晶基板8の上に蒸着した有機系高
分子薄膜2に電源3から直流電圧を加えると、その高い
圧電性により生ずる薄膜の長さ方向の伸縮に伴う張力で
弾性表面波の伝播速度が連続的に変化する。即ち共振周
波数が変化するので、この直流電圧を変化させることに
より共振周波数を調整することができる。
When a direct current voltage is applied to the organic polymer thin film 2 deposited on the piezoelectric crystal substrate 8 from the power source 3, the surface acoustic wave is generated by the tension caused by the expansion and contraction of the thin film in the length direction caused by its high piezoelectricity. The propagation speed changes continuously. That is, since the resonance frequency changes, the resonance frequency can be adjusted by changing the DC voltage.

【0016】これは無機系高分子材料に比べ、比較的高
い音響インピーダンスと電気機械結合係数の大きな有機
系高分子材料を利用することによって可能になると共に
電極素材の金属と圧電体結晶基板の無機系材料(例えば
水晶基板,アルミナ等)の媒質間の違いによる過渡応答
特性,伝搬損失等の特性改善をも兼ねている。尚、本実
施例は、すだれ状電極11の間隔が一様で等しいものに
ついて説明したが、所望特性を得る様に所定間隔に配列
され、位相変調したすだれ状電極についても適用するこ
とができる。
This is made possible by using an organic polymer material having a relatively high acoustic impedance and a large electromechanical coupling coefficient as compared with an inorganic polymer material, and at the same time, the metal of the electrode material and the inorganic material of the piezoelectric crystal substrate are used. It also serves to improve characteristics such as transient response characteristics and propagation loss due to differences in the media of the system materials (eg, quartz substrate, alumina, etc.). Although the present embodiment has been described for the case where the intervals between the interdigital electrodes 11 are uniform and equal to each other, the present invention can be applied to the interdigital electrodes that are phase-modulated and arranged at predetermined intervals so as to obtain desired characteristics.

【0017】図2は第2の実施例の弾性表面波フィルタ
の(a)上面図,(b)A−A線断面図である。図2は
図1で説明した弾性表面波共振子を応用したもので2つ
の弾性表面波共振子を左右に配置しその間の間隔により
共振子のQを下げて通過帯域幅を設定する帯域通過フィ
ルタである。その構成と動作は図1の場合と同様である
ので説明は省略するが特性について図3を用いて説明す
る。図3は図2における特性図である。図2における直
流電源16,17を同時に同方向に変化させた場合図3
(a)に示すように通過周波数がシフトする。また直流
電源16,17を個別に変化させた場合図3(b)に示
すように通過帯域幅を変化させることができる。図3
(b)は直流電源17のみを変化させた場合の特性図で
ある。
FIG. 2 is a (a) top view of the surface acoustic wave filter of the second embodiment, and (b) a sectional view taken along line AA. FIG. 2 is an application of the surface acoustic wave resonator described in FIG. 1, in which two surface acoustic wave resonators are arranged on the left and right, and the Q of the resonator is lowered by the distance between them to set the pass band width. Is. The structure and operation are the same as in the case of FIG. 1, so description thereof will be omitted, but characteristics will be described with reference to FIG. FIG. 3 is a characteristic diagram of FIG. When the DC power supplies 16 and 17 in FIG. 2 are simultaneously changed in the same direction, FIG.
The passing frequency shifts as shown in (a). When the DC power supplies 16 and 17 are individually changed, the pass band width can be changed as shown in FIG. Figure 3
(B) is a characteristic diagram when only the DC power supply 17 is changed.

【0018】[0018]

【発明の効果】以上説明したように、本発明による弾性
表面波発振子は、有機系高分子薄膜に加える直流電圧に
よって共振周波数を調整することができるので、共振周
波数に対する設計上の自由度の拡大及び製作精度の緩和
などの効果がある。
As described above, in the surface acoustic wave oscillator according to the present invention, the resonance frequency can be adjusted by the DC voltage applied to the organic polymer thin film, so that the degree of freedom in designing the resonance frequency is reduced. There are effects such as enlargement and ease of manufacturing accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の(a)上面図及び
(b)A−A線断面図である。
FIG. 1A is a top view and FIG. 1B is a sectional view taken along the line AA of the first embodiment of the present invention.

【図2】第2の実施例の(a)上面図及び(b)A−A
線断面図である。
FIG. 2A is a top view of the second embodiment and FIG.
It is a line sectional view.

【図3】図2における特性図で(a)周波数特性,
(b)帯域幅特性である。
FIG. 3 is a characteristic diagram in FIG.
(B) Bandwidth characteristics.

【符号の説明】[Explanation of symbols]

1,22 すだれ状電極 2,15 有機系高分子薄膜 3,16,17 直流電源 4,13 入力端子 5,14 出力端子 6,7,18〜21 電極 8,11 圧電体単結晶基板 1,22 Interdigital electrodes 2,15 Organic polymer thin film 3,16,17 DC power source 4,13 Input terminal 5,14 Output terminal 6,7,18-21 Electrode 8,11 Piezoelectric single crystal substrate

フロントページの続き (72)発明者 工藤 裕之 宮城県黒川郡大和町吉岡字雷神2番地宮城 日本電気株式会社内Front page continuation (72) Inventor Hiroyuki Kudo No.2 Raijin, Yoshioka, Yamato-cho, Kurokawa-gun, Miyagi Miyagi NEC Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧電基板と、前記圧電基板の表面に設け
られた櫛形のすだれ状電極と、前記圧電基板と前記すだ
れ状電極との間でかつ前記すだれ状電極の櫛歯部分の全
長に亘って設けられた有機系高分子薄膜と、前記有機系
高分子薄膜の両端に共振周波数調整用の直流電圧を印加
するための電極と、前記直流電圧を発生する直流電源と
を備えることを特徴とする弾性表面波発振子。
1. A piezoelectric substrate, a comb-shaped interdigital electrode provided on the surface of the piezoelectric substrate, between the piezoelectric substrate and the interdigital electrode, and over the entire length of the comb-teeth portion of the interdigital electrode. An organic polymer thin film provided as an electrode, electrodes for applying a DC voltage for resonance frequency adjustment to both ends of the organic polymer thin film, and a DC power source for generating the DC voltage. Surface acoustic wave oscillator.
【請求項2】 圧電基板と、前記圧電基板の左側表面に
設けられた櫛形の第1のすだれ状電極と、前記圧電基板
と前記第1のすだれ状電極との間でかつ前記第1のすだ
れ状電極の櫛歯部分の全長に亘って設けられた第1の有
機系高分子薄膜と、前記第1の有機系高分子薄膜の両端
に設けられた共振周波数調整用の直流電圧を印加するた
めの第1の電極と前記第1の直流電圧を発生する第1の
直流電源と前記圧電基板の右側表面でかつ前記第1の電
極とインターデジタル電極を構成するように設けられた
櫛形の第2のすだれ状電極と、前記圧電基板と前記第2
のすだれ状電極との間でかつ前記第2のすだれ状電極の
櫛歯部分の全長に亘って設けられた第2の有機系高分子
薄膜と、前記第2の有機系高分子薄膜の両端に設けられ
た共振周波数調整用の直流電圧を印加するための第2の
電極と前記直流電圧を発生する第2の直流電源とを備え
ることを特徴とする弾性表面波フィルタ。
2. A piezoelectric substrate, a comb-shaped first interdigital transducer electrode provided on the left surface of the piezoelectric substrate, and between the piezoelectric substrate and the first interdigital electrode and the first interdigital transducer. A first organic polymer thin film provided over the entire length of the comb tooth portion of the electrode, and a DC voltage for adjusting resonance frequency provided at both ends of the first organic polymer thin film Of the first electrode, the first DC power source for generating the first DC voltage, and the comb-shaped second electrode provided on the right surface of the piezoelectric substrate and so as to form the interdigital electrode with the first electrode. The interdigital transducer, the piezoelectric substrate, and the second electrode
A second organic polymer thin film provided between the interdigital electrode and the entire length of the comb-teeth portion of the second interdigital electrode, and on both ends of the second organic polymer thin film. A surface acoustic wave filter comprising: a provided second electrode for applying a DC voltage for resonance frequency adjustment; and a second DC power supply for generating the DC voltage.
【請求項3】 前記有機系高分子薄膜はポリフッ化ビニ
リデン(PVDF)を用いることを特徴とする請求項1
および2記載の弾性表面波発振子および弾性表面波フィ
ルタ。
3. The organic polymer thin film is made of polyvinylidene fluoride (PVDF).
And the surface acoustic wave oscillator and the surface acoustic wave filter according to 2.
JP19122792A 1992-07-20 1992-07-20 Surface acoustic wave oscillator and surface acoustic wave filter Pending JPH0637574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19122792A JPH0637574A (en) 1992-07-20 1992-07-20 Surface acoustic wave oscillator and surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19122792A JPH0637574A (en) 1992-07-20 1992-07-20 Surface acoustic wave oscillator and surface acoustic wave filter

Publications (1)

Publication Number Publication Date
JPH0637574A true JPH0637574A (en) 1994-02-10

Family

ID=16271014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19122792A Pending JPH0637574A (en) 1992-07-20 1992-07-20 Surface acoustic wave oscillator and surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JPH0637574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007315A3 (en) * 2009-07-16 2011-08-11 Koninklijke Philips Electronics N.V. A system and method for measuring a resonance frequency of a tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007315A3 (en) * 2009-07-16 2011-08-11 Koninklijke Philips Electronics N.V. A system and method for measuring a resonance frequency of a tube
CN102472661A (en) * 2009-07-16 2012-05-23 皇家飞利浦电子股份有限公司 A system and method for measuring a resonance frequency of a tube
US9958316B2 (en) 2009-07-16 2018-05-01 Koninklijke Philips N.V. System and method for measuring a resonance frequency of a tube

Similar Documents

Publication Publication Date Title
EP1557945B1 (en) Piezoelectric vibrator, filter using same, and method for adjusting piezoelectric vibrator
JPH0590872A (en) Surface acoustic wave element
JPS5861686A (en) Surface elastic wave element
JP2001524295A (en) Surface acoustic wave device including separated comb electrodes
KR20020032585A (en) Acoustic wave device comprising alternating polarization domains
GB2118745A (en) Tuning fork resonator
US4363990A (en) Surface acoustic wave transducer
JPH02295211A (en) Energy shut-up type surface acoustic wave element
JP3106912B2 (en) Method of manufacturing edge reflection type surface acoustic wave device
US4276524A (en) Acoustic surface wave device
JPH0637574A (en) Surface acoustic wave oscillator and surface acoustic wave filter
US3952269A (en) Surface acoustic wave delay line
JPH0410764B2 (en)
JPS59213A (en) Surface acoustic wave device
JPH0356013B2 (en)
JPH10502237A (en) Generation of surface skim bulk waves in KTiOPO 4 and its analogs
JPS6172408A (en) Surface acoustic wave element
JPH01123514A (en) Guided wave path
JP2012503394A (en) Interface acoustic wave device
JPH02198211A (en) Surface acoustic wave resonator
JPH02260908A (en) Surface acoustic wave device
JPH0265405A (en) Frequency adjusting method for surface acoustic wave resonator
JPS6173409A (en) Elastic surface wave device
CN113992178A (en) Reflection structure of plate wave resonator, and MEMS device
JPS61222312A (en) Surface acoustic wave device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990518