JPH0637360B2 - Method for growing ZnSe single crystal - Google Patents

Method for growing ZnSe single crystal

Info

Publication number
JPH0637360B2
JPH0637360B2 JP2532689A JP2532689A JPH0637360B2 JP H0637360 B2 JPH0637360 B2 JP H0637360B2 JP 2532689 A JP2532689 A JP 2532689A JP 2532689 A JP2532689 A JP 2532689A JP H0637360 B2 JPH0637360 B2 JP H0637360B2
Authority
JP
Japan
Prior art keywords
single crystal
concentration
crystal
pieces
znse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2532689A
Other languages
Japanese (ja)
Other versions
JPH02208298A (en
Inventor
明憲 勝井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2532689A priority Critical patent/JPH0637360B2/en
Publication of JPH02208298A publication Critical patent/JPH02208298A/en
Publication of JPH0637360B2 publication Critical patent/JPH0637360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はZnSe単結晶の成長方法、さらに詳細には青
色発光材料として期待の大きいZnSe単結晶の成長方
法に関するものであり、特に不純物の添加による高品質
化に関するものである。
TECHNICAL FIELD The present invention relates to a method for growing a ZnSe single crystal, and more particularly to a method for growing a ZnSe single crystal, which is highly expected as a blue light emitting material. Is related to high quality.

(従来技術) ZnSe単結晶は、通常高圧ブリッジマン法によって製
造される。高圧ブリッジマン法は大型の円形単結晶を成
長させ易いメリットがある。しかし、従来の方法で製造
される単結晶には高密度の結晶欠陥、特に転位や双晶が
存在することが欠点であった。この理由として、上記の
結晶成長には、高温、および高雰囲気ガスを必要とする
ことがまず挙げられる。ZnSeの場合、昇華を防ぐた
めには、数十から50気圧の不活性ガスの圧力を加えな
ければならないし、また1520℃の高温が必要であ
る。そのため、技術的に難しい点が多く、成長装置も極
めて複雑になる等、結晶欠陥密度の低い単結晶を成長す
ることが難しい欠点を有し、実用的な成長方法として完
成するには至っていない。
(Prior Art) A ZnSe single crystal is usually manufactured by a high-pressure Bridgman method. The high-pressure Bridgman method has an advantage that a large circular single crystal can be easily grown. However, the single crystal produced by the conventional method has a drawback that high-density crystal defects, especially dislocations and twins are present. The reason for this is that the above crystal growth requires high temperature and high atmospheric gas. In the case of ZnSe, in order to prevent sublimation, a pressure of several tens to 50 atm of an inert gas must be applied, and a high temperature of 1520 ° C. is necessary. For this reason, there are many technical difficulties, and the growth apparatus becomes extremely complicated, which makes it difficult to grow a single crystal having a low crystal defect density, and has not been completed as a practical growth method.

また、もっと基本的な理由として、ZnSeが、Siや
GaAsと比べ、結晶欠陥を導入し易い材料特性を持つ
ことが挙げられる。すなわち、転位発生臨界応力や転位
の移動度が小さいため、成長結晶の冷却時に発生する熱
応力などにより、結晶外周から転位が発生・伝播し易
く、伝位密度の増加をもたらす。また、積層欠陥エネル
ギーが小さいため、双晶密度の増加を容易にもたらすこ
とになっている。
Further, as a more fundamental reason, ZnSe has a material property that is more likely to introduce crystal defects than Si or GaAs. That is, since the critical stress for generating dislocations and the mobility of dislocations are small, dislocations are easily generated and propagated from the outer periphery of the crystal due to thermal stress generated when the grown crystal is cooled, etc., resulting in an increase in transfer density. In addition, since the stacking fault energy is small, it is possible to easily increase the twin density.

これまで高圧ブリッジマン法以外にも色々な成長方法が
提案されているが、以上の理由から、実用的な方法とし
て完成するに至っていない。
Various growth methods other than the high-pressure Bridgman method have been proposed so far, but for the above reasons, they have not been completed as a practical method.

(発明が解決しようとする問題点) 転位の発生・伝播を抑制するため不純物を高濃度に添加
する方法があることは従来から知られている。しかしな
がら、この方法に適した不純物を見いだす指導原理はま
だ確立されていない。例えば、GaAsにおいてIn
(インジウム)添加は転位の発生・伝播抑制に有効であ
るが、周期律表で同族のB(ほう素)やAl(アルミニ
ウム)添加では効果が著しく低下する。またS(硫黄)
は顕著な効果を持つが、Se(セレン)やZnは効果が
ない。しかしながら、ZnはInPに対しては著しい抑
制効果を持つ。一方、抑制効果を持つに必要な臨界濃度
は、不純物の種類によって異なっている。例えば、Ga
Asにおいて、Sは1×1018個/cm3以上の添加濃度
で顕著な効果が現われるが、Inでは臨界値は1×10
20個/cm3である。また、不純物は偏析係数を持ってい
るがその値は未知である。偏析係数が1と著しく異なる
値を持つ場合、不純物の偏析現象のため、成長単結晶の
部位によって著しく不純物濃度が変化し、転位の発生・
伝播を抑制する濃度以下の結晶部位が存在し、成長結晶
全体の転位密度を低下させることができない、という問
題が出てくる。
(Problems to be Solved by the Invention) It is conventionally known that there is a method of adding impurities at a high concentration in order to suppress the generation and propagation of dislocations. However, the guiding principle for finding impurities suitable for this method has not yet been established. For example, in GaAs
Addition of (indium) is effective for suppressing the generation and propagation of dislocations, but addition of B (boron) and Al (aluminum), which are homologous to the periodic table, significantly reduces the effect. Also S (sulfur)
Has a remarkable effect, but Se (selenium) and Zn have no effect. However, Zn has a remarkable suppressing effect on InP. On the other hand, the critical concentration required to have the suppressing effect differs depending on the type of impurities. For example, Ga
In As, S has a remarkable effect at a concentration of 1 × 10 18 atoms / cm 3 or more, but in In, the critical value is 1 × 10.
20 pieces / cm 3 . Moreover, the impurity has a segregation coefficient, but its value is unknown. When the segregation coefficient has a value significantly different from 1, the impurity concentration significantly changes depending on the site of the grown single crystal due to the impurity segregation phenomenon, causing the generation of dislocations.
There is a problem that the dislocation density of the entire grown crystal cannot be reduced because there is a crystal part whose concentration is below the concentration that suppresses the propagation.

本発明は、このような従来方法の欠点に鑑み、ZnSe
への適正な不純物添加により結晶欠陥を導入し易い材料
特性を改善することにより欠陥密度の低いZnSe単結
晶を成長し得る方法を提供しようとするものである。
In view of such drawbacks of the conventional method, the present invention provides ZnSe.
It is an object of the present invention to provide a method capable of growing a ZnSe single crystal having a low defect density by improving the material characteristics in which crystal defects are easily introduced by appropriately adding impurities to the ZnSe single crystal.

(問題点を解決するための手段) 以上説明したように、結晶欠陥密度を低減するため、如
何なる不純物を、どれだけ(濃度)添加すべきかを判定
するためのデータは極めて乏しい。したがって、経験的
に決めるのが通例であり、ZnSeの場合にも如何なる
元素が最も適した不純物となるかは知られていなかっ
た。
(Means for Solving Problems) As described above, there are very few data for determining what kind of impurities should be added and how much (concentration) to reduce the crystal defect density. Therefore, it is usually determined empirically, and it has not been known which element is the most suitable impurity in the case of ZnSe.

本発明は、結晶欠陥密度の低いZnSe単結晶成長のた
め、不純物として、S、Oのいずれか一種または二種
を、5×1017個/cm3から5×1019個/cm3の範囲内
で添加し、単結晶成長を行なうことを特徴とするもので
ある。
In the present invention, since ZnSe single crystal growth having a low crystal defect density is performed, one or two kinds of S and O are added as impurities in a range of 5 × 10 17 pieces / cm 3 to 5 × 10 19 pieces / cm 3 . It is characterized in that it is added internally to grow a single crystal.

以下、本発明の原理を説明する。第1図は、結晶欠陥の
発生(および伝播)に対して抑制効果を持つ不純物の添
加濃度と欠陥密度の相関の一例を示すグラフである。図
より明らかなように、添加不純物濃度が1×1018個/
cm3以上で顕著な効果があり、低欠陥密度の単結晶が成
長できる。なお、不純物の種類によって抑制効果は異な
る。
The principle of the present invention will be described below. FIG. 1 is a graph showing an example of the correlation between the concentration of added impurities and the defect density, which has an effect of suppressing the generation (and propagation) of crystal defects. As is clear from the figure, the concentration of added impurities is 1 × 10 18 /
A cm 3 or more has a remarkable effect, and a low defect density single crystal can be grown. The suppression effect differs depending on the type of impurities.

以下、実施例に基づいて具体的に説明するが、本発明の
方法は、インゴット状単結晶に限定されるものでなく、
エピタキシャル成長薄膜単結晶にも適用し得るものであ
る。
Hereinafter, although specifically described based on Examples, the method of the present invention is not limited to ingot-shaped single crystal,
It can also be applied to an epitaxially grown thin film single crystal.

(実施例1) 99.999%の原材料ZnSe粉末をまず、真空中約105
0℃で24時間の昇華処理を行ない、再結晶化した。こ
れを少量の精製ZnS粉末と共に、内径約5mm、高さ約
70mmの高純度グラファイトるつぼに装填した。ここ
で、るつぼ内部はテーパーを付けてあり、またるつぼの
先端部には内径1mm、長さ5mmの細管部を設けて単結晶
化し易くしてある。次にるつぼを高温高圧電気炉内の融
点1515℃で100℃/cmの温度勾配を持つ位置に置
いた。電気炉内を排気した後、高純度Arガスを約70
kg/cm2充填した。次に、最高温度を約1650℃まで
上げ、約30分間溶融状態で保持した。次に、るつぼを
4.5mm/hrの速度で降下し、るつぼ下部から結晶成長
させた。
(Example 1) First, 99.999% of raw material ZnSe powder was placed in a vacuum for about 105
Sublimation treatment was performed at 0 ° C. for 24 hours to recrystallize. This was loaded with a small amount of purified ZnS powder into a high-purity graphite crucible having an inner diameter of about 5 mm and a height of about 70 mm. Here, the inside of the crucible is tapered, and the tip of the crucible is provided with a thin tube portion having an inner diameter of 1 mm and a length of 5 mm to facilitate single crystal formation. Next, the crucible was placed in a high temperature high pressure electric furnace at a position having a temperature gradient of 100 ° C./cm with a melting point of 1515 ° C. After exhausting the electric furnace, high-purity Ar gas was added to about 70
It was filled with kg / cm 2 . Next, the maximum temperature was raised to about 1650 ° C. and kept in the molten state for about 30 minutes. Next, the crucible was lowered at a speed of 4.5 mm / hr to grow crystals from the lower part of the crucible.

以上のようにして得られた直径約5mm、長さ40mmの結
晶は、ほぼ透明な単結晶で、双晶密度は、Sを添加しな
い場合と比べ、かなり減少していた。また、ウェーハ状
に切り出した試料を、煮沸した飽和NaOH溶液中でエ
ッチングし、エッチピット密度(転位密度に対応する)
を調べたところ、Sを添加しない場合と比べ、二桁以上
低下していた。
The crystal having a diameter of about 5 mm and a length of 40 mm obtained as described above was a substantially transparent single crystal, and the twin density was considerably reduced as compared with the case where S was not added. Also, a sample cut into a wafer is etched in a boiling saturated NaOH solution to obtain an etch pit density (corresponding to the dislocation density).
When compared with the case where S was not added, it was decreased by two digits or more.

結晶中のS濃度を不純物分析したところ、約5×1018
個/cm3であった。S濃度に対する欠陥密度の変化を調
べたところ、1×1018個/cm3以上の濃度で欠陥密度
の減少効果が観察された。一方、5×1019個/cm3
上のS濃度では組成的過冷却による多結晶化が進行し
た。したがって、S濃度は、1×1018個/cm3から5
×1019個/cm3の間が適当であった。
Impurity analysis of S concentration in the crystal revealed that it was about 5 × 10 18.
The number was pieces / cm 3 . When the change in the defect density with respect to the S concentration was examined, the defect density reducing effect was observed at a concentration of 1 × 10 18 defects / cm 3 or more. On the other hand, when the S concentration was 5 × 10 19 pieces / cm 3 or more, polycrystallization proceeded due to compositional supercooling. Therefore, the S concentration is 1 × 10 18 pieces / cm 3 to 5
A value of × 10 19 pieces / cm 3 was suitable.

(実施例2) 精製したZnSe粉末に、少量の精製ZnO粉末を色々
な割合で添加混合したものを高純度グラファイトるつぼ
に装填し、実施例1と同様の方法で単結晶を成長した。
得られた単結晶を実施例1と同様の方法で評価したとこ
ろ、5×1017個/cm3以上のO濃度で欠陥密度減少効
果が現われ始めた。一方、5×1019個/cm3以上のO
濃度では多結晶化が顕著に進行した。したがって、最適
なO濃度は、5×1017個/cm3から5×1019個/cm3
の範囲内にあった。
(Example 2) A purified ZnSe powder to which a small amount of purified ZnO powder was added and mixed in various proportions was charged into a high-purity graphite crucible, and a single crystal was grown in the same manner as in Example 1.
When the obtained single crystal was evaluated in the same manner as in Example 1, the defect density reducing effect began to appear at an O concentration of 5 × 10 17 / cm 3 or more. On the other hand, 5 × 10 19 pieces / cm 3 or more of O
At the concentration, polycrystallization proceeded remarkably. Therefore, the optimum O concentration is 5 × 10 17 pieces / cm 3 to 5 × 10 19 pieces / cm 3
Was within the range of.

(実施例3) 精製したZnSe粉末に、少量の精製ZnS粉末と精製
ZnO粉末を色々な割合で添加混合したものを高純度グ
ラファイトるつぼに装填し、実施例1と同様の方法で単
結晶を成長した。得られた単結晶を実施例1と同様の方
法で評価したところ、5×1017個/cm3以上の(S+
O)濃度で欠陥密度減少効果が見られた。一方、5×1
19個/cm3以上の(S+O)濃度では多結晶化が顕著
に進行した。したがって、最適な(S+O)濃度は、5
×1017個/cm3から5×1019個/cm3の範囲内にあっ
た。
Example 3 Purified ZnSe powder, to which a small amount of purified ZnS powder and purified ZnO powder were added and mixed in various proportions, was charged into a high-purity graphite crucible, and a single crystal was grown in the same manner as in Example 1. did. When the obtained single crystal was evaluated in the same manner as in Example 1, 5 × 10 17 pieces / cm 3 or more (S +
The effect of reducing the defect density was observed at the O) concentration. On the other hand, 5 × 1
At a (S + O) concentration of 0 19 pieces / cm 3 or more, polycrystallization markedly progressed. Therefore, the optimum (S + O) concentration is 5
It was in the range of × 10 17 pieces / cm 3 to 5 × 10 19 pieces / cm 3 .

(発明の効果) 本発明の方法を用いることによって、大型で、かつ結晶
欠陥密度の低いZnSe単結晶が得られるので、青色発
光素子製作用のエピタキシャル成長用基板またはエピタ
キシャル薄膜成長法としての価値は大きい。
(Effect of the invention) By using the method of the present invention, a large-sized ZnSe single crystal having a low crystal defect density can be obtained, so that it is of great value as an epitaxial growth substrate or an epitaxial thin film growth method for producing a blue light emitting device. .

【図面の簡単な説明】[Brief description of drawings]

第1図は結晶欠陥の発生(および伝播)に対して抑制効
果を持つ不純物濃度と欠陥密度の関係の一例を示す特性
図である。
FIG. 1 is a characteristic diagram showing an example of the relationship between the impurity concentration and the defect density, which has an effect of suppressing the generation (and propagation) of crystal defects.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ZnSe(セレン化亜鉛)単結晶の成長に
おいて、不純物として、S(硫黄)、または、O(酸
素)のいずれか一方、または同時に、5×1017個/cm
3から5×1019個/cm3の範囲内で添加することを特徴
とするZnSe単結晶の成長方法。
1. In the growth of a ZnSe (zinc selenide) single crystal, one of S (sulfur) and O (oxygen) as impurities, or simultaneously, 5 × 10 17 pieces / cm 3.
A method of growing a ZnSe single crystal, characterized in that it is added within a range of 3 to 5 × 10 19 pieces / cm 3 .
JP2532689A 1989-02-03 1989-02-03 Method for growing ZnSe single crystal Expired - Fee Related JPH0637360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2532689A JPH0637360B2 (en) 1989-02-03 1989-02-03 Method for growing ZnSe single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2532689A JPH0637360B2 (en) 1989-02-03 1989-02-03 Method for growing ZnSe single crystal

Publications (2)

Publication Number Publication Date
JPH02208298A JPH02208298A (en) 1990-08-17
JPH0637360B2 true JPH0637360B2 (en) 1994-05-18

Family

ID=12162837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2532689A Expired - Fee Related JPH0637360B2 (en) 1989-02-03 1989-02-03 Method for growing ZnSe single crystal

Country Status (1)

Country Link
JP (1) JPH0637360B2 (en)

Also Published As

Publication number Publication date
JPH02208298A (en) 1990-08-17

Similar Documents

Publication Publication Date Title
EP0986655B1 (en) THE METHOD OF FABRICATION OF HIGHLY RESISTIVE GaN BULK CRYSTALS
Nause et al. Pressurized melt growth of ZnO boules
US4478675A (en) Method of producing GaAs single crystals doped with boron
US4303464A (en) Method of manufacturing gallium phosphide single crystals with low defect density
Harman et al. Horizontal unseeded vapor growth of IV-VI compounds and alloys
Sato et al. Recent developments in II–VI substrates
WO2021251349A1 (en) Gaas ingot, method for manufacturing gaas ingot, and gaas wafer
Iseler Liquid-encapsulated Czochralski growth of InP crystals
US4637854A (en) Method for producing GaAs single crystal
US4299650A (en) Minimization of strain in single crystals
JP2003206200A (en) p-TYPE GaAs SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JP2000086398A (en) P type gaas single crystal and its production
JPH0637360B2 (en) Method for growing ZnSe single crystal
US20070079751A1 (en) Inp single crystal, gaas single crystal, and method for production thereof
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL
US11926924B2 (en) Indium phosphide substrate, semiconductor epitaxial wafer, method for producing indium phosphide single-crystal ingot and method for producing indium phosphide substrate
WO2022075112A1 (en) GaAs WAFER AND METHOD FOR PRODUCING GaAs INGOT
JPS62123095A (en) Production of gaas single crystal having low dislocation density
JPS5912639B2 (en) crystal growth method
Ayabe et al. Improvements in SSD Growth of GaP
Isshiki et al. 9 Bulk Crystal Growth of Wide-Bandgap ll-Vl Materials
Glass et al. Control of defects and impurities in production of CdZnTe crystals by the Bridgman method
JP2873449B2 (en) Compound semiconductor floating zone melting single crystal growth method
JPH1025192A (en) Crystal growing method
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees