JPH0637301A - Semiconductor device and fabrication of the same - Google Patents

Semiconductor device and fabrication of the same

Info

Publication number
JPH0637301A
JPH0637301A JP21557992A JP21557992A JPH0637301A JP H0637301 A JPH0637301 A JP H0637301A JP 21557992 A JP21557992 A JP 21557992A JP 21557992 A JP21557992 A JP 21557992A JP H0637301 A JPH0637301 A JP H0637301A
Authority
JP
Japan
Prior art keywords
layer
impurities
gold
substrate
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21557992A
Other languages
Japanese (ja)
Inventor
Yuji Suzuki
雄司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21557992A priority Critical patent/JPH0637301A/en
Publication of JPH0637301A publication Critical patent/JPH0637301A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Die Bonding (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To provide a semiconductor device with a back electrode, whose ohmic characteristic is improved, and a method of fabricating the same. CONSTITUTION:An alloy layer 21 is formed at the back, 12, of a silicon substrate 1 containing an impurity. The alloy layer 21 contains gold, an impurity X of the same type as the impurity of the substrate 1, and silicon. The alloy layer 21 improves the ohmic characteristic between a back electrode 2 and the substrate 1. A gold layer 22 prevents formation of a silicon-nickel alloy layer. A nickel layer 23 improves the wettability of the back electrode 2 with solder. As the alloy layer 21 is formed at the back 12 of the silicon substrate 1 with the gold layer 22 and nickel layer 23 stacked on the alloy layer 21 in order, a nickel-silicon alloy layer is not formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置及びその製
造方法に関するものであり、特にオーミック特性にすぐ
れた裏面電極を有する半導体装置及びその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to a semiconductor device having a back electrode having excellent ohmic characteristics and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、半導体装置の裏面電極形成方法に
おいて、特公平3−2351号(特開昭60−2061
33号)公報、特開昭61−32515号公報及び特開
昭61−220344号公報に開示された技術がある。
前記特公平3−2351号公報には、従来の技術として
シリコン(Si)層、アンチモン(Sb)を含む金(A
u)層、ニッケル(Ni)層及び銀(Ag)層を順次蒸
着した蒸着系が紹介されている。このような蒸着系によ
る製造方法を図7〜図10に示す。なおこの場合前記A
g層の代わりにAu層を使用した場合を図示している。
図7において、図示4はウェーハプロセスの終了したN
型Si基板を示し、その裏面42は研磨されている。な
お41は表面素子領域である。図8は図7の続きを示す
断面図である。図8において前記裏面42にSbを含む
Au層51、Ni層52及びAu層53を順次蒸着形成
している。図9は図8の続きを示す断面図である。図8
の状態で熱処理をすると、図9の状態となる。図9にお
いて、前記裏面42からSi基板4中にSbを含むAu
及びNiが導入され、Sbを含むAuとSiとの合金層
54及びSbを含むAuとSiとNiとの合金層55が
形成されている。また前記裏面42にSbを含むAuと
Niとの合金層56、Ni層52、AuとNiとの合金
層57及びAu層53が積層形成されて裏面電極5とな
る。図10では図9の状態にハンダ付けをして、ハンダ
とNiとAuとの合金層6が形成されている。
2. Description of the Related Art Conventionally, in a method of forming a back surface electrode of a semiconductor device, Japanese Patent Publication No. 3-2351 (JP-A-60-2061).
33), JP-A-61-32515 and JP-A-61-220344.
In Japanese Patent Publication No. 3251/1993, the prior art discloses a silicon (Si) layer and gold (A) containing antimony (Sb).
An evaporation system in which a u) layer, a nickel (Ni) layer, and a silver (Ag) layer are sequentially evaporated is introduced. A manufacturing method using such a vapor deposition system is shown in FIGS. In this case, A
The case where an Au layer is used instead of the g layer is illustrated.
In FIG. 7, FIG. 4 shows N at the end of the wafer process.
A type Si substrate is shown, the back surface 42 of which is polished. Reference numeral 41 is a surface element region. FIG. 8 is a sectional view showing a continuation of FIG. In FIG. 8, an Au layer 51 containing Sb, a Ni layer 52, and an Au layer 53 are sequentially formed on the back surface 42 by vapor deposition. FIG. 9 is a sectional view showing a continuation of FIG. Figure 8
When the heat treatment is performed in this state, the state shown in FIG. 9 is obtained. In FIG. 9, Au containing Sb in the Si substrate 4 from the back surface 42
And Ni are introduced to form an alloy layer 54 of Au and Si containing Sb and an alloy layer 55 of Au, Si and Ni containing Sb. Further, an Au / Ni alloy layer 56 containing Sb, a Ni layer 52, an Au / Ni alloy layer 57, and an Au layer 53 are laminated on the back surface 42 to form the back electrode 5. In FIG. 10, the state of FIG. 9 is soldered to form an alloy layer 6 of solder, Ni, and Au.

【0003】この蒸着系では、上述のようにSbを含む
AuとSiとNiとの合金層55が形成される。したが
ってNiとSiの合金は高抵抗であるため、裏面電極の
オーミック特性が悪化する。この欠点を解決するために
特公平3−2351号公報では、半導体基板と、この半
導体基板裏面に設けられたAuを主成分としSbを不純
物として含む第一の電極層と、この第一の電極層上に設
けられたタンタル(Ta)を含む第二の電極層と、この
第二の電極層上に設けられたNiを含む第三の電極層と
を有する半導体装置が開示されている。この構造による
と後述するようにNiとSiがTaで分離され、Niと
Siの合金化が防止される。またSi基板の不純物濃度
が1018/cm3 以下の場合、Si基板の裏面に接触させ
るAu層によって不純物を導入しなければ、良好なオー
ム接触は得られないことが知られている。この特公平3
−2351号公報においては、N型Si基板の裏面にS
bを含むAu層、Ta層、Ni層、Ag層を順次蒸着形
成した後、熱処理を行うことによりSi基板中にSbを
導入する。ここではAuがSiと低い温度で共晶するこ
とを利用して、前記Sbを含むAu層によりSbを前記
Si基板に導入している。前記Ta層は、オーム性接触
を得るためにSi層及びAu(Sbを含む)層を積層し
た系とハンダ層との接続に使用するNi層及びAg層を
積層した系を分離するバリア金属層である。また前記T
a層の上に形成されたNi層はハンダとのなじみを向上
させる。さらにNi層が酸化しやすく、酸化したNi層
はハンダとのなじみが悪化するために、前記Ag層は、
Ni層の酸化を防止している。また前記特開昭61−3
2515号公報には、チタン(Ti)層を前記バリア金
属層として使用する半導体装置の製造方法が開示されて
いる。更に前記特開昭61−220344号公報には、
Ti、モリブデン(Mo)、タングステン(W)もしく
はTaの内の1つ又は2つ以上の組み合わされた金属層
を前記バリア金属層として使用することが開示されてい
る。
In this vapor deposition system, the alloy layer 55 of Au, Si and Ni containing Sb is formed as described above. Therefore, since the alloy of Ni and Si has a high resistance, the ohmic characteristics of the back surface electrode are deteriorated. In order to solve this drawback, Japanese Patent Publication No. 3-2351 discloses that a semiconductor substrate, a first electrode layer provided on the back surface of the semiconductor substrate and containing Sb as an impurity as a main component, and the first electrode. A semiconductor device having a second electrode layer containing tantalum (Ta) provided on a layer and a third electrode layer containing Ni provided on the second electrode layer is disclosed. According to this structure, Ni and Si are separated by Ta as described later, and the alloying of Ni and Si is prevented. Further, it is known that when the impurity concentration of the Si substrate is 10 18 / cm 3 or less, good ohmic contact cannot be obtained unless impurities are introduced by the Au layer that contacts the back surface of the Si substrate. This special fair 3
In Japanese Patent No. 2351, S is formed on the back surface of an N-type Si substrate.
After the Au layer, the Ta layer, the Ni layer, and the Ag layer containing b are sequentially formed by vapor deposition, heat treatment is performed to introduce Sb into the Si substrate. Here, utilizing the fact that Au is eutectic with Si at a low temperature, Sb is introduced into the Si substrate by the Au layer containing Sb. The Ta layer is a barrier metal layer that separates a system in which a Si layer and an Au (including Sb) layer are laminated to obtain an ohmic contact from a system in which a Ni layer and an Ag layer used to connect the solder layer are separated. Is. Also, the T
The Ni layer formed on the a layer improves the compatibility with the solder. Further, since the Ni layer is easily oxidized, and the oxidized Ni layer is less compatible with solder, the Ag layer is
The Ni layer is prevented from being oxidized. Further, the above-mentioned JP-A-61-3
Japanese Patent No. 2515 discloses a method for manufacturing a semiconductor device using a titanium (Ti) layer as the barrier metal layer. Further, in the above-mentioned JP-A-61-220344,
The use of one or more combined metal layers of Ti, molybdenum (Mo), tungsten (W) or Ta as the barrier metal layer is disclosed.

【0004】[0004]

【発明が解決しようとする課題】上述の従来技術では、
Sbを含むAu層、Ti、Ta等のバリア金属層、Ni
層、Ag(又はAu)層を順次積層しているので、T
i、Ta等のバリア金属層が必要不可欠となる。しかし
Ti、Ta等は高価であり、またTi、Ta等を使用す
ると、裏面電極の製造工程が煩雑になる。したがって本
発明の課題は、上述の欠点をなくし、Ti、Ta等の高
価なバリア金属を使用しないで裏面電極の良好なオーム
接触が得られ、かつ裏面電極の接触抵抗を小さくするこ
とができ、更に製造工程が煩雑にならない半導体装置及
びその製造方法を提供することである。
In the above-mentioned prior art,
Au layer containing Sb, barrier metal layer such as Ti and Ta, Ni
Since the layers and the Ag (or Au) layer are sequentially laminated, T
A barrier metal layer such as i or Ta is indispensable. However, Ti, Ta, etc. are expensive, and the use of Ti, Ta, etc. complicates the manufacturing process of the back electrode. Therefore, the object of the present invention is to eliminate the above-mentioned drawbacks, obtain good ohmic contact of the back electrode without using expensive barrier metals such as Ti and Ta, and reduce the contact resistance of the back electrode, It is another object of the present invention to provide a semiconductor device and a method of manufacturing the semiconductor device, the manufacturing process of which is not complicated.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明の構成の第一のものは、不純物を含むシリコ
ン基板の裏面に金、前記不純物と同型の不純物及びシリ
コンを含む合金層、金のみもしくは金及び前記不純物と
同型の不純物を含む層、ニッケル層を順次積層形成した
半導体装置である。さらに本発明の構成の第二のもの
は、不純物を含むシリコン基板の裏面に、前記不純物と
同型の不純物を含む金層を形成した後に、熱処理して前
記不純物と同型の不純物を前記シリコン基板に導入する
とともに、前記シリコン基板の裏面に金、前記不純物と
同型の不純物及びシリコンを含む合金層を形成する第一
の工程と、この合金層の前記シリコン基板と反対側の面
に金のみもしくは金及び前記不純物と同型の不純物を含
む層を形成する第二の工程と、前記金のみもしくは金及
び前記不純物と同型の不純物を含む層の前記合金層と反
対側の面にニッケル層を形成する第三の工程とを含む半
導体装置の製造方法である。
In order to solve the above-mentioned problems, a first aspect of the present invention is to provide an alloy layer containing gold, an impurity of the same type as said impurities and silicon on the back surface of a silicon substrate containing impurities. This is a semiconductor device in which only gold or a layer containing gold and an impurity of the same type as the above impurities, and a nickel layer are sequentially stacked. A second aspect of the present invention is that a gold layer containing impurities of the same type as the impurities is formed on the back surface of the silicon substrate containing impurities, and then heat-treated to form impurities of the same type on the silicon substrate. Along with the introduction, a first step of forming an alloy layer containing gold, impurities of the same type as the impurities and silicon on the back surface of the silicon substrate, and gold alone or gold on the surface of the alloy layer opposite to the silicon substrate. And a second step of forming a layer containing impurities of the same type as the impurities, and a step of forming a nickel layer on the surface of the layer containing only the gold or the layer containing impurities of the same type as the gold and the impurities opposite to the alloy layer. A method of manufacturing a semiconductor device, including the third step.

【0006】[0006]

【作用】上記構成の半導体装置によると、不純物を含む
Si基板の裏面にAu、前記Si基板に含まれる不純物
と同型の不純物及びSiを含む合金層が存在するので、
裏面電極とSi基板とのオーミック特性が良好となる。
また金のみもしくは金及び前記不純物と同型の不純物を
含む層は前記合金層中のSiとNi層中のNiとの合金
層の発生を防止する。さらにNi層は、裏面電極とハン
ダとのなじみを良くする。また上記構成の半導体装置の
製造方法によると、Si基板の裏面に前記合金層を形成
する第一の工程においてSi基板に含まれる不純物と同
型の不純物が前記Si基板中に導入されるので、前記S
i基板中の不純物濃度を高くすることができるため、前
記Si基板と裏面電極とのオーミック特性を良好にする
ことができる。また前記第一の工程の熱処理の後に金の
みもしくは金及び前記不純物と同型の不純物を含む層を
形成し、その後Ni層を形成しているので、熱処理後に
形成した金層がSiとNiの接触を防止し、SiとNi
の合金層の発生を防ぐことができる。
According to the semiconductor device having the above structure, since the back surface of the Si substrate containing impurities is Au, and the alloy layer containing Si and the impurities of the same type as the impurities contained in the Si substrate are present.
The ohmic characteristics of the back surface electrode and the Si substrate are improved.
Further, the layer containing only gold or gold and impurities of the same type as the impurities prevents generation of an alloy layer of Si in the alloy layer and Ni in the Ni layer. Further, the Ni layer improves the compatibility between the back surface electrode and the solder. Further, according to the method for manufacturing a semiconductor device having the above structure, since impurities of the same type as those contained in the Si substrate are introduced into the Si substrate in the first step of forming the alloy layer on the back surface of the Si substrate, S
Since the impurity concentration in the i substrate can be increased, the ohmic characteristics of the Si substrate and the back electrode can be improved. In addition, after the heat treatment in the first step, a layer containing only gold or gold and an impurity of the same type as the above impurities is formed, and then a Ni layer is formed. Therefore, the gold layer formed after the heat treatment makes contact between Si and Ni. Prevent Si and Ni
It is possible to prevent the formation of the alloy layer.

【0007】[0007]

【実施例】本発明の一実施例を図面を参照しながら説明
する。図1〜図5は本発明の一実施例の断面図である。
まず図1に示すように、ウェーハプロセスにおいて、不
純物Xを含むSi基板1の表面素子領域11を形成し
て、次にSi基板1の研磨した裏面12を形成する。そ
の後図2に示すように、この研磨した裏面12に対しS
i基板の不純物と同型の不純物Xを0.1〜5%含有し
たAu層21aを100〜200nm蒸着する。次に図
3に示すように、真空中もしくは不活性ガス(例えばア
ルゴン、チッソ)中にて300〜400℃の熱処理を行
い、Si基板1の前記裏面12に、Auと前記同型の不
純物XとSiを含む合金層21を形成する。このとき前
記同型の不純物XがSi基板1中に導入されるので、S
i基板1中の不純物濃度を高めることができる。更に図
4に示すように、Si基板1の温度を100〜200℃
まで冷却し、前記合金層21上にAu(Xを含むもの又
はXを含まないもの)層22を100〜200nm蒸着
し、その上にNi層23を200〜800nm蒸着し、
更にその上にAu(Xを含むもの又はXを含まないも
の)層24を50〜200nm蒸着し、裏面電極2を形
成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. 1 to 5 are sectional views of an embodiment of the present invention.
First, as shown in FIG. 1, in a wafer process, a surface element region 11 of an Si substrate 1 containing an impurity X is formed, and then a polished back surface 12 of the Si substrate 1 is formed. Then, as shown in FIG. 2, S
An Au layer 21a containing 0.1 to 5% of an impurity X of the same type as that of the i substrate is vapor-deposited to a thickness of 100 to 200 nm. Next, as shown in FIG. 3, heat treatment is performed at 300 to 400 ° C. in a vacuum or in an inert gas (for example, argon, nitrogen), and the back surface 12 of the Si substrate 1 is subjected to Au and the impurity X of the same type. An alloy layer 21 containing Si is formed. At this time, since the impurity X of the same type is introduced into the Si substrate 1, S
The impurity concentration in the i substrate 1 can be increased. Further, as shown in FIG. 4, the temperature of the Si substrate 1 is 100 to 200 ° C.
Cooled to 100 nm to 200 nm of Au (containing X or not containing X) layer 22 on the alloy layer 21, and Ni layer 23 of 200 to 800 nm thereon.
Further, an Au (X-containing or X-free) layer 24 is vapor-deposited thereon with a thickness of 50 to 200 nm to form the back electrode 2.

【0008】このようにして形成した裏面電極2の構造
は、第一層目にAuとSi基板1の不純物と同型の不純
物XとSiを含む合金層21、第二層目にAu(Xを含
むもの又はXを含まないもの)層22、第三層目にNi
層23及び第四層目にAu(Xを含むもの又はXを含ま
ないもの)層24で構成されている。なおXは、Auに
含まれるP型もしくはN型不純物であり、Si基板1が
N型のときはN型の不純物例えばリン(P)、砒素(A
s)、Sb等であり、P型のときはP型の不純物例えば
ホウ素(B)、ガリウム(Ga)、インジウム(In)
等となる。この場合、上述の従来例で存在していたSb
を含むAuとSiとNiとの合金層55及びSbを含む
AuとNiとの合金層56と同様のものは存在しない。
また前記Au(Xを含むもの又はXを含まないもの)層
22は、SiとNiの合金層が生ずることを防ぐため
に、前記合金層21とNi層23との間に形成されてい
る。更に前記Au(Xを含むもの又はXを含まないも
の)層24はAg(Xを含むもの又はXを含まないも
の)層で置き換えてもよい。図5は裏面電極2をハンダ
付けした後の状態の断面図である。図5において、3は
ハンダとNiとAuとの合金層である。ハンダ付け後も
図4と同様に上述の従来例で存在していたSbを含むA
uとSiとNiとの合金層55及びSbを含むAuとN
iとの合金層56と同様のものは存在しない。
The structure of the back electrode 2 thus formed is such that the first layer is an alloy layer 21 containing Au and the impurities X and Si of the same type as the impurities of the Si substrate 1, and the second layer is Au (X. (Containing or not containing X) layer 22, Ni as the third layer
The layer 23 and the fourth layer are Au (those containing X or not X) layers 24. X is a P-type or N-type impurity contained in Au, and when the Si substrate 1 is N-type, N-type impurities such as phosphorus (P) and arsenic (A
s), Sb, etc., and when P type, P type impurities such as boron (B), gallium (Ga), indium (In)
And so on. In this case, Sb that was present in the above-mentioned conventional example
There is no similar one to the alloy layer 55 of Au, Si and Ni containing Si and the alloy layer 56 of Au and Ni containing Sb.
The Au (X-containing or X-free) layer 22 is formed between the alloy layer 21 and the Ni layer 23 in order to prevent the formation of an alloy layer of Si and Ni. Further, the Au (X-containing or X-free) layer 24 may be replaced with an Ag (X-containing or X-free) layer. FIG. 5 is a sectional view showing a state after the back surface electrode 2 is soldered. In FIG. 5, 3 is an alloy layer of solder, Ni, and Au. Even after soldering, as in FIG. 4, A including Sb, which was present in the above-described conventional example, is included.
An alloy layer 55 of u, Si and Ni and Au and N containing Sb
There is no similar alloy layer 56 with i.

【0009】以上の構成により、裏面電極2の特長は次
のようになる。上記構成の半導体装置において、合金層
21及びAu層22は、裏面電極2とSi基板1とのオ
ーミック特性を良好にする。またNi層23は、裏面電
極2とハンダとのなじみを良くする。更にAu層24
は、Ni層23の酸化を防いでいる。また前記合金層2
1形成の過程において、上述のようにSi基板1中にS
i基板1の不純物と同型の不純物Xが導入されるので、
Si基板1の不純物濃度を高めてSi基板1と裏面電極
2とのオーミック特性を良好にすることができる。さら
にSi基板1の裏面12に、このSi基板1の不純物と
同型の不純物Xを含むAu層21a蒸着後上述のように
熱処理を行うことにより、前記合金層21を形成し、そ
の後Au(Xを含むもの又はXを含まないもの)層2
2、Ni層23及びAu(Xを含むもの又はXを含まな
いもの)層24を順次蒸着積層しているので、Ni層2
3のNiとSi基板1のSiとの合金層が形成されるこ
とが防止される。したがって良好なオーミック特性を妨
げるSiとNiとの合金層の形成を防止できる。この場
合使用されるSi基板1は、N型でもP型でもよい。ま
た上述のようにAuに含まれる不純物Xの選択範囲が広
い。図6は、上述の一実施例の裏面電極2の電圧V−電
流I特性を示す。図6において、前記各Au層のよう
に、Sbを含むAuのときは良好なオーミック特性を示
している。一方Sbを含まないAuのときは電圧V−電
流I特性が非線形である。また上述の一実施例の裏面電
極2は前記従来例の各公報に開示されたSbを含むAu
層、Ti、Ta、W、Mo等のバリア金属層、Ni層、
Au(又はAg)層の金属系のうち前記Ti、Ta、
W、Mo等のバリア金属層を省いても同様な効果及び信
頼性が得られるため、材料費と工程数の削減となる。な
お、上述の本発明の一実施例は、パワートランジスタ等
の半導体装置の裏面を電極とするものに応用できる。
With the above structure, the features of the back electrode 2 are as follows. In the semiconductor device having the above structure, the alloy layer 21 and the Au layer 22 improve the ohmic characteristics of the back electrode 2 and the Si substrate 1. Further, the Ni layer 23 improves the compatibility between the back surface electrode 2 and the solder. Further, the Au layer 24
Protects the Ni layer 23 from oxidation. Also, the alloy layer 2
In the process of forming 1, the S in the Si substrate 1 is formed as described above.
Since the impurity X of the same type as that of the i-substrate 1 is introduced,
By increasing the impurity concentration of the Si substrate 1, the ohmic characteristics of the Si substrate 1 and the back surface electrode 2 can be improved. Further, the alloy layer 21 is formed on the back surface 12 of the Si substrate 1 by depositing the Au layer 21a containing the impurity X of the same type as that of the Si substrate 1 and then performing the heat treatment as described above. Containing or not containing X) Layer 2
2. Since the Ni layer 23 and the Au (containing X or not containing X) layer 24 are sequentially deposited by vapor deposition, the Ni layer 2
The formation of an alloy layer of Ni of No. 3 and Si of the Si substrate 1 is prevented. Therefore, it is possible to prevent the formation of an alloy layer of Si and Ni that hinders good ohmic characteristics. The Si substrate 1 used in this case may be N type or P type. Further, as described above, the selection range of the impurity X contained in Au is wide. FIG. 6 shows the voltage V-current I characteristic of the back surface electrode 2 of the above-described embodiment. In FIG. 6, as in the Au layers, Au containing Sb exhibits good ohmic characteristics. On the other hand, when Au does not contain Sb, the voltage V-current I characteristic is non-linear. Further, the back surface electrode 2 of the above-described embodiment includes Au containing Sb disclosed in each of the prior art publications.
Layer, barrier metal layer such as Ti, Ta, W, Mo, Ni layer,
Of the metal systems of the Au (or Ag) layer, Ti, Ta,
Even if the barrier metal layer such as W or Mo is omitted, the same effect and reliability can be obtained, so that the material cost and the number of steps can be reduced. The above-described embodiment of the present invention can be applied to a semiconductor device such as a power transistor having a back surface as an electrode.

【0010】[0010]

【発明の効果】以上詳細に説明したように、本発明の半
導体装置及びその製造方法によれば、Ti、Ta、W、
Mo等を使用しないで、半導体装置の裏面電極のオーミ
ック特性を著しく改良することができ、またこの裏面電
極の接触抵抗を小さくできる。そのため半導体装置の製
造工程において、材料費及び工程数を削減することがで
きる。更に上述のように裏面電極の接触抵抗を小さくで
きるので、Ti、Ta、W、Mo等を使用しないで電力
用半導体装置の特性の低下を防ぐことができる。
As described in detail above, according to the semiconductor device and the method of manufacturing the same of the present invention, Ti, Ta, W,
By not using Mo or the like, the ohmic characteristics of the back surface electrode of the semiconductor device can be remarkably improved, and the contact resistance of the back surface electrode can be reduced. Therefore, the material cost and the number of steps can be reduced in the manufacturing process of the semiconductor device. Further, since the contact resistance of the back electrode can be reduced as described above, it is possible to prevent deterioration of the characteristics of the power semiconductor device without using Ti, Ta, W, Mo or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】前記本発明の一実施例の製造方法を示す断面図
である。
FIG. 1 is a cross-sectional view showing the manufacturing method of the embodiment of the present invention.

【図2】前記本発明の一実施例の製造方法を示す断面図
であり、図1の続きを示すものである。
FIG. 2 is a cross-sectional view showing the manufacturing method of the embodiment of the present invention, which is a continuation of FIG.

【図3】前記本発明の一実施例の製造方法を示す断面図
であり、図2の続きを示すものである。
3 is a cross-sectional view showing the manufacturing method of the embodiment of the present invention, which is a continuation of FIG.

【図4】前記本発明の一実施例の製造方法を示す断面図
であり、図3の続きを示すものである。
FIG. 4 is a cross-sectional view showing the manufacturing method of the embodiment of the present invention, which is a continuation of FIG.

【図5】前記本発明の一実施例の裏面電極をハンダ付け
した状態を示す断面図である。
FIG. 5 is a cross-sectional view showing a state where the back surface electrode of the embodiment of the present invention is soldered.

【図6】前記本発明の一実施例の特性を示す図である。FIG. 6 is a diagram showing characteristics of the embodiment of the present invention.

【図7】従来例の製造方法を示す断面図である。FIG. 7 is a cross-sectional view showing a manufacturing method of a conventional example.

【図8】前記従来例の製造方法を示す断面図であり、図
7の続きを示すものである。
FIG. 8 is a cross-sectional view showing the manufacturing method of the conventional example, which is a continuation of FIG.

【図9】前記従来例の製造方法を示す断面図であり、図
8の続きを示すものである。
9 is a cross-sectional view showing the manufacturing method of the conventional example, which is a continuation of FIG.

【図10】前記従来例の裏面電極をハンダ付けした状態
を示す断面図である。
FIG. 10 is a cross-sectional view showing a state in which the back surface electrode of the conventional example is soldered.

【符号の説明】[Explanation of symbols]

1 シリコン基板 12 シリコン基板の裏面 2 裏面電極 21 合金層 21a 不純物を含む金層 22 金層 23 ニッケル層 1 Silicon Substrate 12 Back Side of Silicon Substrate 2 Back Side Electrode 21 Alloy Layer 21a Gold Layer Containing Impurities 22 Gold Layer 23 Nickel Layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 不純物を含むシリコン基板の裏面に金、
前記不純物と同型の不純物及びシリコンを含む合金層、
金のみもしくは金及び前記不純物と同型の不純物を含む
層、ニッケル層を順次積層形成したことを特徴とする半
導体装置。
1. Gold on the back surface of a silicon substrate containing impurities,
An alloy layer containing impurities of the same type as the impurities and silicon,
A semiconductor device characterized in that only gold or a layer containing gold and an impurity of the same type as the above impurities, and a nickel layer are sequentially formed.
【請求項2】 不純物を含むシリコン基板の裏面に、前
記不純物と同型の不純物を含む金層を形成した後に、熱
処理して前記不純物と同型の不純物を前記シリコン基板
中に導入するとともに、前記シリコン基板の裏面に金、
前記不純物と同型の不純物及びシリコンを含む合金層を
形成する第一の工程と、 この合金層の前記シリコン基板と反対側の面に金のみも
しくは金及び前記不純物と同型の不純物を含む層を形成
する第二の工程と、 前記金のみもしくは金及び前記不純物と同型の不純物を
含む層の前記合金層と反対側の面にニッケル層を形成す
る第三の工程とを含むことを特徴とする半導体装置の製
造方法。
2. A gold layer containing impurities of the same type as the impurities is formed on the back surface of the silicon substrate containing impurities, and then heat treated to introduce impurities of the same type as the impurities into the silicon substrate. Gold on the back of the board,
First step of forming an alloy layer containing impurities and silicon of the same type as the impurities, and forming a layer containing only gold or gold and impurities of the same type as the impurities on the surface of the alloy layer opposite to the silicon substrate. And a third step of forming a nickel layer on the surface opposite to the alloy layer of the layer containing only gold or the same type of impurities as gold and the impurities. Device manufacturing method.
JP21557992A 1992-07-20 1992-07-20 Semiconductor device and fabrication of the same Pending JPH0637301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21557992A JPH0637301A (en) 1992-07-20 1992-07-20 Semiconductor device and fabrication of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21557992A JPH0637301A (en) 1992-07-20 1992-07-20 Semiconductor device and fabrication of the same

Publications (1)

Publication Number Publication Date
JPH0637301A true JPH0637301A (en) 1994-02-10

Family

ID=16674779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21557992A Pending JPH0637301A (en) 1992-07-20 1992-07-20 Semiconductor device and fabrication of the same

Country Status (1)

Country Link
JP (1) JPH0637301A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120384A (en) * 1989-05-25 1992-06-09 Matsushita Electric Works, Ltd. Method of manufacturing multilayer laminate
JP2007194514A (en) * 2006-01-23 2007-08-02 Mitsubishi Electric Corp Method for manufacturing semiconductor device
JP2010021171A (en) * 2008-07-08 2010-01-28 Renesas Technology Corp Method for manufacturing semiconductor device, and semiconductor manufacturing apparatus used for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120384A (en) * 1989-05-25 1992-06-09 Matsushita Electric Works, Ltd. Method of manufacturing multilayer laminate
JP2007194514A (en) * 2006-01-23 2007-08-02 Mitsubishi Electric Corp Method for manufacturing semiconductor device
US8183144B2 (en) 2006-01-23 2012-05-22 Mitsubishi Electric Corporation Method of manufacturing semiconductor device
JP2010021171A (en) * 2008-07-08 2010-01-28 Renesas Technology Corp Method for manufacturing semiconductor device, and semiconductor manufacturing apparatus used for the same

Similar Documents

Publication Publication Date Title
US4283439A (en) Method of manufacturing a semiconductor device by forming a tungsten silicide or molybdenum silicide electrode
US9478604B2 (en) Semiconductor device and method of manufacturing the same
JP3462720B2 (en) N-type nitride semiconductor electrode, semiconductor element having the electrode, and method of manufacturing the same
JPH03133176A (en) Silicon carbide semiconductor device and manufacture thereof
JPH0832115A (en) Electrode structure and its manufacture
JP2878887B2 (en) Semiconductor electrode structure
US5731635A (en) Semiconductor device having a carrier and a multilayer metallization
JPH0864800A (en) Silicon carbide semiconductor device
JP4091931B2 (en) SiC semiconductor device and method of manufacturing SiC semiconductor device
JPH0637301A (en) Semiconductor device and fabrication of the same
JPH06252091A (en) Semiconductor device and its manufacture
US3436614A (en) Nonrectifying laminated ohmic contact for semiconductors consisting of chromium and 80% nickel
JP3360945B2 (en) Electrode structure and manufacturing method thereof
JPS61220344A (en) Manufacture of semiconductor device
JPH10335259A (en) Semiconductor device and manufacture thereof
JP2687017B2 (en) Schottky barrier semiconductor device
JP2942452B2 (en) Ohmic electrode of n-type semiconductor cubic boron nitride and method of forming the same
JP3970142B2 (en) Silicon carbide ohmic electrode structure and semiconductor device
JP2708798B2 (en) Method of forming electrode of silicon carbide
JP3519950B2 (en) Electrode structure
JPH0472764A (en) Rear electrode of semiconductor device
JP3823826B2 (en) Manufacturing method of semiconductor device
JP2950285B2 (en) Semiconductor element and method for forming electrode thereof
JP3096133B2 (en) Compound semiconductor device
JPH07115185A (en) Electrode of semiconductor