JPH0636325B2 - Method for manufacturing conductive material - Google Patents

Method for manufacturing conductive material

Info

Publication number
JPH0636325B2
JPH0636325B2 JP60166665A JP16666585A JPH0636325B2 JP H0636325 B2 JPH0636325 B2 JP H0636325B2 JP 60166665 A JP60166665 A JP 60166665A JP 16666585 A JP16666585 A JP 16666585A JP H0636325 B2 JPH0636325 B2 JP H0636325B2
Authority
JP
Japan
Prior art keywords
conductive material
sulfide
conductivity
present
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60166665A
Other languages
Japanese (ja)
Other versions
JPS6229006A (en
Inventor
政則 中川
修二 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP60166665A priority Critical patent/JPH0636325B2/en
Publication of JPS6229006A publication Critical patent/JPS6229006A/en
Publication of JPH0636325B2 publication Critical patent/JPH0636325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は硫化銅を含有せしめた導電性材料の製造方法に
関するものであり、更に詳しくは高温高湿雰囲気下、耐
候性、耐光性に優れた導電性材料の製造方法に関するも
のである。
TECHNICAL FIELD The present invention relates to a method for producing a conductive material containing copper sulfide, and more specifically, it has excellent weather resistance and light resistance under a high temperature and high humidity atmosphere. And a method for manufacturing a conductive material.

〔従来の技術〕[Conventional technology]

従来、導電性材料は一般に導電性や制電性を必要とする
製品、例えば、ファクシミリ、コンピューター装置等の
ハウジングにプラスチック、樹脂等に混入して使われた
り、エレクトロニクス部品等の包装紙にパルプ等に混入
して使用されている。
Conventionally, conductive materials are generally used in products requiring conductivity or antistatic property, for example, mixed with plastic, resin, etc. in housings of facsimiles, computer devices, etc., or used in packaging paper for electronic parts, etc. It is mixed with and used.

導電性材料としては、 (1)真空蒸着、スパッタリング、金属容射、メッキ等に
より高分子成形体表面に導電性皮膜を形成したもの、又
は (2)導電性フィラーをポリマー中に分散混入したもの、 がある。
As the conductive material, (1) a material in which a conductive film is formed on the surface of the polymer molding by vacuum deposition, sputtering, metal spraying, plating, or (2) a material in which a conductive filler is dispersed and mixed in the polymer , There is.

(1)は高価で、導電層が基材から剥離しやすく、高分子
材料の大きさや形状が限定されるなどの欠点を有するも
のが多い。
In many cases, (1) has drawbacks such that the conductive layer is easily peeled off from the substrate and the size and shape of the polymer material are limited.

(2)は導電化するには多量のフィラーを混入する必要が
あり、フィラーの混入により成形体の強度及び成形性の
低下を招くという問題を有する。
(2) has a problem that it is necessary to mix a large amount of filler to make it conductive, and the mixing of the filler causes a decrease in strength and moldability of the molded body.

一方、高分子材料に銅塩と還元性硫黄化合物を含む水溶
液中で処理することにより、該高分子材料表面上に硫化
第一銅から成る導電層が形成され、高い導電性を持つ高
分子材料が得られることが公知である(特開昭58−2
06636号公報、同58−208350号公報等)。
また、硫化第二銅を含有する導電性材料は、硫化第一銅
に比べ、空気中で非常に酸化されやすく、導電性の低下
が速い事が公知である(特開昭57−35078号公
報)。
On the other hand, when a polymer material is treated in an aqueous solution containing a copper salt and a reducing sulfur compound, a conductive layer made of cuprous sulfide is formed on the surface of the polymer material, and the polymer material has high conductivity. Is known to be obtained (JP-A-58-2).
No. 06636, No. 58-208350, etc.).
Further, it is known that a conductive material containing cupric sulfide is much more easily oxidized in the air and has a lower conductivity than cuprous sulfide (Japanese Patent Application Laid-Open No. 57-35078). ).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は上記の如き従来技術の問題点を解決しようとす
るものである。即ち、本発明者らは、硫化銅を含有する
導電性材料についても、堅牢で安定な高導電性を有する
導電性材料を得るべく鋭意検討の結果、本発明を完成す
るに至った。
The present invention is intended to solve the above-mentioned problems of the prior art. That is, the present inventors have completed the present invention as a result of earnest studies for a conductive material containing copper sulfide to obtain a robust and stable conductive material having high conductivity.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は硫化銅を含有する高分子材料を第4級ア
ンモニウム系化合物あるいはグアニジン系化合物で処理
する事を特徴とする導電性材料の製造方法である。
That is, the present invention is a method for producing a conductive material, which comprises treating a polymer material containing copper sulfide with a quaternary ammonium compound or a guanidine compound.

以下、本発明の特徴について更に詳しく説明する。従来
技術についてすでに述べたごとく、硫化銅を含有する導
電性材料としては、硫化第1銅及びダイジェナイトを含
有する導電性材料が殆んどであり、硫化第2銅を含有す
る導電性材料は殆んど皆無である。その理由として、硫
化第1銅及びダイジェナイトは硫化第2銅に比べて、空
気中での酸化に対して、やや安定であり、導電性の低下
がやや少ない事に起因するものである。しかしながら、
硫化第1銅及びダイジェナイトにおいても、空気中、特
に高温高湿雰囲気下では徐々に酸化し、導電性は低下す
る。また、硫化第2銅においては、上述の雰囲気下での
導電性の低下は大きい。更に、導電性材料に用いる高分
子材料の中には、硫化銅を含有させた後、空気中での酸
化により、強伸度が低下するものがある。特に、セルロ
ース系ポリマーにおいては強伸度低下が著しい。
Hereinafter, the features of the present invention will be described in more detail. As already described in the prior art, as the conductive material containing copper sulfide, most of the conductive materials containing cuprous sulfide and digenite, and the conductive material containing cupric sulfide is Almost none. The reason for this is that cuprous sulfide and digenite are slightly more stable against oxidation in air and have a slightly lower conductivity than cupric sulfide. However,
Even cuprous sulfide and digenite are gradually oxidized in the air, particularly in a high temperature and high humidity atmosphere, and the conductivity decreases. Further, in the cupric sulfide, the decrease in conductivity under the above-mentioned atmosphere is large. Further, among polymer materials used as the conductive material, there is a polymer material containing copper sulfide and then reduced in strength and elongation by oxidation in air. In particular, the decrease in strength and elongation is remarkable in cellulosic polymers.

本発明者等は、硫化銅を含有せしめた導電性材料の、空
気中での酸化による、導電性の低下及び強伸度の低下に
ついて研究した結果、高温高湿雰囲気にて硫化銅が酸化
され、硫酸銅に変化して導電性が低下する事、酸化によ
り発生する酸により高分子材料の強伸度が低下する事を
見出し、これは硫化第1銅やダイジェナイトでも、硫化
第2銅と程度の差はあれ、起ることを見出した。
The present inventors, as a result of studying the decrease in conductivity and the decrease in strength and elongation due to the oxidation of a conductive material containing copper sulfide in air, copper sulfide is oxidized in a high temperature and high humidity atmosphere. However, it was found that the conductivity changed by changing to copper sulfate, and the strength and elongation of the polymer material decreased due to the acid generated by the oxidation. This was the case with cuprous sulfide and digenite as well as cupric sulfide. I found that it happened to some extent.

上述の酸化現象は、光照射(フェードオメーター)、光
照射及び水(ウェザーオメーター)でも発生し、導電性
の低下及び強伸度の低下がおこる。
The above-mentioned oxidation phenomenon also occurs in light irradiation (fade odometer), light irradiation and water (weather odometer), resulting in a decrease in conductivity and a decrease in strength and elongation.

以上の事より、本発明者等は、硫化銅を、光(主に紫外
線)、酸素、水、熱等による酸化に対して安定化する事
について鋭意検討した結果、本発明に到ったものであ
る。
Based on the above, the inventors of the present invention have made extensive studies on stabilizing copper sulfide against oxidation by light (mainly ultraviolet rays), oxygen, water, heat, etc., and as a result, have reached the present invention. Is.

以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明に言う硫化銅を含有する高分子材料とは、硫化銅
として、Cu/Sの原子比が1〜2の化合物で、例えば、
硫化第1銅、硫化第2銅、ダイジェナイト等が挙げられ
る。
The polymeric material containing copper sulfide referred to in the present invention is a compound having an atomic ratio of Cu / S of 1 to 2 as copper sulfide, for example,
Examples include cuprous sulfide, cupric sulfide, and digenite.

高分子材料としては、ポリアミド系、ポリエステル系、
ポリビニルアルコール系、セルロース系、ポリウレタン
系、ポリアクリルニトリル系、ポリスチレン系、ポリ塩
化ビニル系、フェノール系等のポリマーあるいはコポリ
マーが挙げられるが、これらに限定されるものではな
い。
Polymer materials include polyamide-based, polyester-based,
Examples thereof include, but are not limited to, polyvinyl alcohol-based, cellulose-based, polyurethane-based, polyacrylonitrile-based, polystyrene-based, polyvinyl chloride-based, phenol-based polymers and copolymers.

硫化銅を高分子材料に含有せしめる方法としては、硫化
銅微粉末をポリマー原液に混合して紡糸する方法、二価
の銅イオン、例えば、硫酸銅や塩化第1銅等を高分子材
料に吸着させた後、還元性硫黄化合物、例えば、スルホ
キシル酸塩、亜二チオン酸塩、チオ硫酸塩、アルカリ金
属硫化物等の水溶液で処理し、銅イオンを硫化させる方
法、あるいはセルロース系ポリマーにおいては、水酸化
銅を紡糸原液中に混合し、紡糸後、上述の還元性硫黄化
合物で硫化させる方法等がある。
As a method of incorporating copper sulfide into a polymer material, a method of mixing fine copper sulfide powder with a polymer stock solution and spinning it, or adsorbing divalent copper ions such as copper sulfate or cuprous chloride on the polymer material After that, a reducing sulfur compound, for example, sulfoxylate, dithionite, thiosulfate, a treatment with an aqueous solution of an alkali metal sulfide, etc., a method of sulfiding copper ions, or in a cellulosic polymer, There is a method in which copper hydroxide is mixed with a spinning dope, and after spinning, it is sulfurized with the above-mentioned reducing sulfur compound.

また、硫化銅を含有する高分子材料の形態は、フィル
ム、繊維、粉末、多孔膜、シート、その他各種形状の成
形物であっても良い。
Further, the form of the polymer material containing copper sulfide may be a film, a fiber, a powder, a porous film, a sheet, or a molded article of various shapes.

この様にして得られた硫化銅を含有する高分子材料を第
4級アンモニウム系化合物あるいはグアニジン系化合物
で処理する。
The polymer material containing copper sulfide thus obtained is treated with a quaternary ammonium compound or a guanidine compound.

本発明に使用する第4級アンモニウム系化合物は、〔R-
N(CH3)3+Cl-、〔R′-N(CH3)3+Cl-、〔R-COCON(C
H3)3+Cl-、 〔R-COCON(CH3)3+(CH3SO4)-、 〔R-COCON(CH3)2(C2H5)〕+(C2H5SO4)-、 〔R-COCON(CH3)2C6H5CH2+Cl-、 〔R-OCH2N(CH3)2C6H5CH2+Cl-、 〔R-CONH(CH2)nN(CH3)2C6H5CH2+Cl-、 〔R-SO2NH(CH2)nN(CH3)2C6H5CH2+Cl-、 〔R-NHCONHC3H6N(CH3)2C6H5CH2+Cl-、 〔R-CONHCH2CH2N(C2H5)3+Cl-等である(これらの式中、Rはアルキル基、R′はアリ
ール基を表わし、アルキル基及びアリール基の炭素数は
10〜22個である。また、nはメチレン基の個数を表
わし、1〜4個である)。
The quaternary ammonium compound used in the present invention is [R-
N (CH 3) 3] + Cl -, [R'-N (CH 3) 3] + Cl -, [R-COCON (C
H 3) 3] + Cl -, [R-COCON (CH 3) 3] + (CH 3 SO 4) - , [R-COCON (CH 3) 2 (C 2 H 5) ] + (C 2 H 5 SO 4) -, [R-COCON (CH 3) 2 C 6 H 5 CH 2 ] + Cl -, [R-OCH 2 N (CH 3 ) 2 C 6 H 5 CH 2 ] + Cl -, [R- CONH (CH 2) n n ( CH 3) 2 C 6 H 5 CH 2 ] + Cl -, [R-SO 2 NH (CH 2 ) n n (CH 3) 2 C 6 H 5 CH 2 ] + Cl - , [R-NHCONHC 3 H 6 N ( CH 3) 2 C 6 H 5 CH 2 ] + Cl -, [R-CONHCH 2 CH 2 N ( C 2 H 5) 3 ] + Cl -, (In these formulas, R represents an alkyl group, R'represents an aryl group, the alkyl group and the aryl group each have 10 to 22 carbon atoms, and n represents the number of methylene groups. ~ 4).

硫化銅を含有する高分子材料への均一な吸着を得るに
は、アルキル基の炭素数12〜18のものが特に好まし
い。
In order to obtain uniform adsorption on the polymer material containing copper sulfide, an alkyl group having 12 to 18 carbon atoms is particularly preferable.

本発明に使用されるグアニジン系化合物は、グアニジン
及びその誘導体で、例えば、1−メチルグアニジン、N
−メチロールグアニジン、メチロールジシアンジアミド
メチルエーテル、塩酸グアニジン、硫酸グアニジン、N
−アミジノチオウレア、ビグアニド、グアニジノ酢酸、
テトラメチルグアニジン、1−メチルグアニジノ酢酸、
N−シアノグアニジン等がある。
The guanidine compounds used in the present invention include guanidine and its derivatives, such as 1-methylguanidine, N
-Methylol guanidine, methylol dicyandiamide methyl ether, guanidine hydrochloride, guanidine sulfate, N
-Amidinothiourea, biguanide, guanidinoacetic acid,
Tetramethylguanidine, 1-methylguanidinoacetic acid,
There is N-cyanoguanidine and the like.

中でも、N−メチロールグアニジン、N−シアノグアニ
ジン、メチロールジシアンジアミドメチルエーテル、N
−アミジノチオウレアは、処理後の耐久性に優れ、特に
好ましい。
Among them, N-methylolguanidine, N-cyanoguanidine, methylol dicyandiamide methyl ether, N
-Amidinothiourea is particularly preferable because it has excellent durability after treatment.

本発明において、第4級アンモニウム系化合物あるいは
グアニジン系化合物を1種及びそれ以上混合して用いて
も構わない。
In the present invention, one or more quaternary ammonium compounds or guanidine compounds may be mixed and used.

第4級アンモニウム系化合物あるいはグアニジン系化合
物の処理液濃度は、各処理剤により異なり一様ではない
が、概して0.1〜10重量%であり、0.1重量%以下では
充分な経時安定性が得られない。特に高温高湿雰囲気
下、ウェザーオメーター等の長時間暴露において、充分
な安定性が得られない。また、10重量%以上では処理
後の導電性が若干低下する。処理温度は、40℃以下で
は反応に長時間を要するため、40℃以上が好ましい。
The concentration of the quaternary ammonium-based compound or guanidine-based compound in the treatment liquid varies depending on each treatment agent and is not uniform, but is generally 0.1 to 10% by weight, and if 0.1% by weight or less, sufficient temporal stability cannot be obtained. . In particular, in a high temperature and high humidity atmosphere, sufficient stability cannot be obtained even when exposed to a weather ometer for a long time. On the other hand, if it is 10% by weight or more, the conductivity after treatment is slightly lowered. When the treatment temperature is 40 ° C. or lower, the reaction takes a long time, so that the treatment temperature is preferably 40 ° C. or higher.

該処理剤で処理した後、高分子材料に過剰に吸着された
処理剤を水洗により除去し、脱水乾燥する。
After treating with the treating agent, the treating agent excessively adsorbed on the polymer material is removed by washing with water, and dehydrated and dried.

〔発明の効果〕〔The invention's effect〕

本発明による導電性材料は、高温高湿雰囲気下、フェー
ドオメーター、ウェザーオメーター等の長時間暴露に対
して導電性の低下、強伸度の低下が殆んどなく、優れた
経時安定性を有する。
The conductive material according to the present invention has excellent stability over time, with almost no decrease in conductivity or decrease in strength / elongation due to long-term exposure in a high temperature and high humidity atmosphere such as a fade odometer or a weather odometer. Have.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1 ピューロン〔30デニール/15フィラメントアクリル
繊維−旭化成工業(株)〕を硫酸銅(0.05mol/)及
びチオ硫酸ナトリウム(0.5mol/)を含む水溶液中に
浸漬し、浴比1:50の浴中で、温度85℃で30分間
処理した。更にその後水洗を行ない乾燥した(比較例
1)。
Example 1 Puron [30 denier / 15 filament acrylic fiber-Asahi Kasei Co., Ltd.] was immersed in an aqueous solution containing copper sulfate (0.05 mol /) and sodium thiosulfate (0.5 mol /), and the bath ratio was 1:50. It was treated in a bath at a temperature of 85 ° C. for 30 minutes. After that, it was washed with water and dried (Comparative Example 1).

該処理糸をN−シアノグアニジン・ホルマリン縮合物1
重量%水溶液中、浴比1:50で、50℃で20分間処
理し、続いて水洗を行ない、脱水乾燥した(本発明
法)。
The treated yarn was treated with N-cyanoguanidine-formalin condensate 1
The mixture was treated in a wt% aqueous solution at a bath ratio of 1:50 at 50 ° C. for 20 minutes, followed by washing with water and dehydration drying (method of the present invention).

上述の方法により得られた導電性材料の導電性を第1表
に示す。
The conductivity of the conductive material obtained by the above method is shown in Table 1.

第1表の結果より、本発明法は60℃、75%RHで20
0時間処理後も導電性の低下が殆んどなく、X線結晶構
造回折線からもCuSが高温高湿処理により変化していな
い事が判る。
From the results shown in Table 1, the method of the present invention is 20 at 60 ° C. and 75% RH.
Even after the treatment for 0 hour, there was almost no decrease in conductivity, and the X-ray crystal structure diffraction line shows that CuS was not changed by the high temperature and high humidity treatment.

実施例2 ビスコースレーヨン織物〔50/75タフタ……旭化成工業
(株)〕をγ−メルカプトプロピルトリメトキシシラン
の5重量%水溶液に酒石酸0.5重量%を加えた浴中で、
60℃で30分処理し、脱水後80℃で乾燥し、160
℃で2分間熱処理して脱メタノール反応を行ない、次に
水洗により、未反応のγ−メルカプトプロピルトリメト
キシシランを除去し、乾燥した。
Example 2 A viscose rayon fabric [50/75 taffeta ... Asahi Kasei Co., Ltd.] was added to a 5% by weight aqueous solution of γ-mercaptopropyltrimethoxysilane, to which 0.5% by weight of tartaric acid was added, in a bath.
Treated at 60 ℃ for 30 minutes, dehydrated and dried at 80 ℃, 160
The mixture was heat-treated at 0 ° C. for 2 minutes to carry out a demethanol reaction, and then washed with water to remove unreacted γ-mercaptopropyltrimethoxysilane and dried.

該メルカプト基を導入したビスコースレーヨン織物につ
いて実施例1と同様の硫化銅処理を行なった(比較例
2)。
The mercapto group-introduced viscose rayon fabric was treated with copper sulfide as in Example 1 (Comparative Example 2).

次に、該処理織物を第2表に示す各種処理剤で処理し、
水洗後脱水乾燥した(本発明法)。
Next, the treated fabric is treated with various treatment agents shown in Table 2,
After washing with water, it was dehydrated and dried (method of the present invention).

上述の方法により得られた導電性材料の導電性及び強力
を第3表に示す。
Table 3 shows the conductivity and strength of the conductive material obtained by the above method.

第3表より、本発明法では60℃、75%RHで200時
間処理後の導電性低下が殆んどなく、強力保持率も90
%以上であり、X線結晶構造回折線からもCuSが高温高
湿処理により変化していない事が判る。
From Table 3, in the method of the present invention, there is almost no decrease in conductivity after treatment at 60 ° C. and 75% RH for 200 hours, and the strength retention is 90%.
% Or more, and it can be seen from the X-ray crystal structure diffraction line that CuS is not changed by the high temperature and high humidity treatment.

実施例3 公知の方法で調整したセルロース濃度10重量%、アン
モニア濃度7重量%、銅濃度3.6重量%の組成を有する
銅アンモニアセルロース溶液を直径0.5mmの孔を45個
有する紡口より、紡糸水を満たした紡糸ロート中に5.8
c.c./分の吐出量で押出し、ロート間で流下緊張させな
がら充分凝固させた。該繊維を充分に水洗した後、硫化
ナトリウム濃度5重量%で、温度80℃の水溶液に20
分間浸漬し、硫化処理を行ない、その後水洗、脱水、乾
燥を行った(比較例3)。
Example 3 A copper ammonia cellulose solution having a composition of cellulose concentration of 10% by weight, ammonia concentration of 7% by weight and copper concentration of 3.6% by weight, which was prepared by a known method, was spun from a spinneret having 45 holes of 0.5 mm in diameter. In the spinning funnel filled with 5.8
It was extruded at a discharge rate of cc / min, and was sufficiently solidified while flowing down tension between the funnels. After thoroughly washing the fibers with water, the concentration of sodium sulfide in the solution is 5% by weight, and the fibers are immersed in an aqueous solution at a temperature of 80.
It was dipped for a minute, subjected to sulfurization treatment, and then washed with water, dehydrated and dried (Comparative Example 3).

該硫化銅再生セルロース繊維を実施例2の第2表記載の
処理剤Aの2.0重量%水溶液により、浴比1:50で、
50℃で20分間処理し、続いて水洗を行ない、脱水乾
燥した(本発明法)。
The copper sulfide regenerated cellulose fiber was treated with a 2.0% by weight aqueous solution of the treating agent A described in Table 2 of Example 2 at a bath ratio of 1:50,
It was treated at 50 ° C. for 20 minutes, followed by washing with water and dehydration drying (method of the present invention).

上述の方法にて得られた導電性材料の性能を第4表に示
す。
The performance of the conductive material obtained by the above method is shown in Table 4.

第4表より、本発明法では、60℃、75%RHで200
時間処理、フェードオメーター照射100時間、ウェザ
ーオメーター照射100時間において、導電性の低下も
少なく、強力保持率も90%以上であり、X線結晶構造
回折線からもCuSの変化がない事が判る。
From Table 4, according to the method of the present invention, 200 at 60 ° C. and 75% RH.
After time treatment, 100 hours of fade odometer irradiation, and 100 hours of weather odometer irradiation, there is little decrease in conductivity, the strength retention is 90% or more, and there is no change in CuS from the X-ray crystal structure diffraction line. I understand.

実施例4 ピューロン〔30デニール/15フィラメントアクリル
繊維−旭化成工業(株)〕を硫酸銅(0.05mol/)、
チオ硫酸ナトリウム(0.5mol/)を含む水溶液中に浸
漬し、浴比1:50の浴中で、温度80℃で30分間処
理した。更にその後水洗を行ない乾燥した(比較例
4)。
Example 4 Pulon [30 denier / 15 filament acrylic fiber-Asahi Chemical Industry Co., Ltd.] was added with copper sulfate (0.05 mol /),
It was immersed in an aqueous solution containing sodium thiosulfate (0.5 mol /) and treated at a temperature of 80 ° C. for 30 minutes in a bath having a bath ratio of 1:50. After that, it was washed with water and dried (Comparative Example 4).

該処理糸を実施例1と同条件にてN−シアノグアニジン
・ホルマリン縮合物で処理した(本発明法)。
The treated yarn was treated with N-cyanoguanidine / formalin condensate under the same conditions as in Example 1 (method of the present invention).

上述の方法により得られた導電性材料の導電性を第5表
に示す。
Table 5 shows the conductivity of the conductive material obtained by the above method.

第5表より、本発明法では、60℃、75%RH、200
時間において導電性の低下が殆んどなく、X線結晶回折
線より、Cu2Sが高温高湿により変化していない事が判
る。
From Table 5, according to the method of the present invention, 60 ° C., 75% RH, 200
There is almost no decrease in conductivity over time, and it can be seen from the X-ray crystal diffraction line that Cu 2 S has not changed due to high temperature and high humidity.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】硫化銅を含有する高分子材料を第4級アン
モニウム系化合物あるいはグアニジン系化合物で処理す
る事を特徴とする導電性材料の製造方法。
1. A method for producing a conductive material, which comprises treating a polymer material containing copper sulfide with a quaternary ammonium compound or a guanidine compound.
JP60166665A 1985-07-30 1985-07-30 Method for manufacturing conductive material Expired - Lifetime JPH0636325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60166665A JPH0636325B2 (en) 1985-07-30 1985-07-30 Method for manufacturing conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60166665A JPH0636325B2 (en) 1985-07-30 1985-07-30 Method for manufacturing conductive material

Publications (2)

Publication Number Publication Date
JPS6229006A JPS6229006A (en) 1987-02-07
JPH0636325B2 true JPH0636325B2 (en) 1994-05-11

Family

ID=15835458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60166665A Expired - Lifetime JPH0636325B2 (en) 1985-07-30 1985-07-30 Method for manufacturing conductive material

Country Status (1)

Country Link
JP (1) JPH0636325B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215005A (en) * 1984-04-10 1985-10-28 Nippon Sanmou Senshoku Kk Electroconductive material

Also Published As

Publication number Publication date
JPS6229006A (en) 1987-02-07

Similar Documents

Publication Publication Date Title
US5411795A (en) Electroless deposition of metal employing thermally stable carrier polymers
CA2496072C (en) Conductive polyvinyl alcohol fiber
CA1215802A (en) Procedure for dissolving cellulose carbamate
EP0086072B1 (en) Electrically conducting material and process of preparing same
US5549972A (en) Silver-plated fibers of poly(p-phenylene terephthalamide) and a process for making them
EP0217987B1 (en) Electrically conducting material and method of preparing same
KR100470367B1 (en) Dispersion Spinning Process for Poly(tetrafluoroethylene) and Related Polymers
US5186984A (en) Silver coatings
JPH0636325B2 (en) Method for manufacturing conductive material
KR100772056B1 (en) Conductive acrylic fiber comprising amideoxime group, and method of preparing the same
JPH09228241A (en) Antibacterial and antifungal fiber and its production
US4755394A (en) Electroconductive articles and a method of producing the same
JPH09241970A (en) Metal fine particle-containing fiber and its production
JPS6215235A (en) Production of electrically conductive high polymer material
CN114873572A (en) Inorganic antibacterial agent with sodium zirconium phosphate as carrier and preparation method thereof
JPS6139311A (en) Making of conductive fiber and film
US3060141A (en) Solution of polypyrrolidone in aqueous formic acid and method of preparing same
JPS60173024A (en) Production of electroconductive molding
JPH0229691B2 (en) KINZOKUDOOGANJUSURUSERUROOSUSEIKEITAIOYOBISONOSEIZOHOHO
EP0552211A1 (en) Improvements in and relating to conductive fibres.
JPS6099071A (en) Metal coated polyester fiber and its production
JPS6297911A (en) Electrically conductive cellulosic fiber
JPS59132508A (en) Conductive highly molecular material and method of producingsame
JPS60254515A (en) Conductive polymer material
JP4576519B2 (en) Antibacterial powder, antibacterial laminate and production method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term