JPH0636312Y2 - Two-stage screw compressor - Google Patents

Two-stage screw compressor

Info

Publication number
JPH0636312Y2
JPH0636312Y2 JP1986171229U JP17122986U JPH0636312Y2 JP H0636312 Y2 JPH0636312 Y2 JP H0636312Y2 JP 1986171229 U JP1986171229 U JP 1986171229U JP 17122986 U JP17122986 U JP 17122986U JP H0636312 Y2 JPH0636312 Y2 JP H0636312Y2
Authority
JP
Japan
Prior art keywords
oil
stage
stage compressor
low
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986171229U
Other languages
Japanese (ja)
Other versions
JPS6278386U (en
Inventor
義雄 池田
英世 浅野
敬介 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP1986171229U priority Critical patent/JPH0636312Y2/en
Publication of JPS6278386U publication Critical patent/JPS6278386U/ja
Application granted granted Critical
Publication of JPH0636312Y2 publication Critical patent/JPH0636312Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔考案の目的〕 (産業上の利用分野) 本考案は二段スクリュー圧縮装置に関し、特にその油噴
射式のスクリュー圧縮機の軸受等の潤滑、冷却を終えた
潤滑油の油戻し孔の位置及びロータケーシング内のシー
ル、冷却用の潤滑油の油噴射孔の位置の選定に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial field of application) The present invention relates to a two-stage screw compressor, and particularly to a lubricating oil that has been lubricated and cooled for bearings of an oil injection type screw compressor. The position of the oil return hole, the seal in the rotor casing, and the position of the oil injection hole of the lubricating oil for cooling.

(従来の技術) 油噴射式のスクリュー圧縮機においては、軸受部等を潤
滑冷却した潤滑油は油戻し孔からロータケーシング内に
導いて内部の潤滑作用に用いるとともにシール作用等を
も行なわせる。一方、油噴射孔からロータケーシング内
に噴射された潤滑油は内部のシール作用と冷却作用等を
行なわせる。このように前記の油戻し孔及び油噴射孔か
らそれぞれ導入された潤滑油はガスとともに圧縮されて
吐出孔から送り出され、油分離器に流入し、ここで潤滑
油は圧縮ガスと分離されて再び潤滑油回路に流入する。
このような構造からなる従来の油噴射式のスクリュー圧
縮機のロータケーシング13の内部の構造を第1図ないし
第3図によって説明する。第1図は鉛直方向に見たもの
であって、雌ロータ1、雄ロータ2、ガス吸入室3と閉
じた歯溝空間を形成するシリンダ内壁4及び吐出口5よ
りなり、ガス吸入室3の吸入口の端縁6,7は雌雄ロータ
1,2の歯すじに沿って形成され、両ロータの歯溝空間が
最大になった時にシリンダ内壁4によって閉じた歯溝空
間になるように形成されている。第2図はロータケーシ
ング13を水平方向に雌ロータ1の側の内面を見た図であ
る。この図から分るように、油戻し孔8は従来はロータ
ケーシング13の雌ロータ1側の吸入口の端縁6に近いと
ころに設けられていた。このような油戻し孔8の設置位
置では第3図に示すように、雌ロータ1の回転によって
ロータ歯先Iが油戻し孔8を通過し、次の歯先IIがまだ
吸入口の端縁6に達しない位置では、ロータ歯先Iとロ
ータ歯先IIによって形成される歯溝の圧縮空間は油戻し
孔8とガス吸入室3の両方に連絡していることになる。
(Prior Art) In an oil-injection type screw compressor, the lubricating oil that has lubricated and cooled the bearing and the like is introduced from the oil return hole into the rotor casing and used for internal lubrication, as well as for sealing. On the other hand, the lubricating oil injected from the oil injection hole into the rotor casing has an internal sealing action and a cooling action. In this way, the lubricating oil respectively introduced from the oil return hole and the oil injection hole is compressed together with the gas and sent out from the discharge hole and flows into the oil separator, where the lubricating oil is separated from the compressed gas and is again separated. It flows into the lubricating oil circuit.
The internal structure of the rotor casing 13 of the conventional oil injection type screw compressor having such a structure will be described with reference to FIGS. FIG. 1 is viewed in the vertical direction, and includes a female rotor 1, a male rotor 2, a gas suction chamber 3, a cylinder inner wall 4 forming a closed tooth space, and a discharge port 5. The inlet edges 6 and 7 are male and female rotors.
It is formed along the tooth traces 1 and 2 so that when the tooth space of both rotors is maximized, the tooth space is closed by the cylinder inner wall 4. FIG. 2 is a view of the rotor casing 13 as viewed in the horizontal direction on the inner surface of the female rotor 1 side. As can be seen from this figure, the oil return hole 8 is conventionally provided near the edge 6 of the inlet of the rotor casing 13 on the female rotor 1 side. At such an installed position of the oil return hole 8, as shown in FIG. 3, the rotor tooth tip I passes through the oil return hole 8 by the rotation of the female rotor 1, and the next tooth tip II is still at the edge of the suction port. At a position that does not reach 6, the compression space of the tooth space formed by the rotor tooth tip I and the rotor tooth tip II communicates with both the oil return hole 8 and the gas suction chamber 3.

次に、油噴射式のスクリュー圧縮機の潤滑油中には圧縮
ガスが相当溶解する場合があるが、両者の溶解の割合
を、R−22を冷媒として使用する冷凍機の場合を例にと
り説明する。第4図は冷媒凝縮温度Tc=35℃において15
0SUS(150セイボルトユニバーサル秒・150sabolt unive
rsal second・油の粘度の単位)油中に溶解するフロン
−22の分量と油温度、圧力との関係を示すものである
が、油噴射式のスクリュー圧縮機の特徴として、吐出圧
力14kg/cm2・abs程度の運転では重量%で20%程度のR
−22を溶解した潤滑油と冷媒R−22の溶液で潤滑するこ
とになる。
Next, although the compressed gas may be considerably dissolved in the lubricating oil of the oil injection type screw compressor, the dissolution rate of the two will be described by taking the case of a refrigerator using R-22 as a refrigerant as an example. To do. Fig. 4 shows 15 when the refrigerant condensing temperature Tc = 35 ° C.
0SUS (150 Saybolt universal second, 150sabolt unive
rsal second · Unit of viscosity of oil) It shows the relationship between the amount of Freon-22 dissolved in oil and the oil temperature and pressure.The characteristic of the oil injection type screw compressor is that the discharge pressure is 14 kg / cm. R of about 20% by weight in the operation of about 2 abs
It will be lubricated with a solution of lubricating oil in which -22 is dissolved and a refrigerant R-22.

ところで、従来の油戻し孔8は、前記のようにガス吸入
室3側に通ずるので戻りの潤滑油は低圧部に流入するこ
とになり、次のような欠点がある。
By the way, since the conventional oil return hole 8 communicates with the gas suction chamber 3 side as described above, the returning lubricating oil flows into the low pressure portion, which has the following drawbacks.

(イ)潤滑油に溶解している冷媒が低圧部でガス化して
圧縮機から吸入するガスの量が減少する。
(A) The refrigerant dissolved in the lubricating oil is gasified in the low pressure portion, and the amount of gas sucked from the compressor is reduced.

(ロ)低温の吸入ガス中の湿りガスが暖い戻りの潤滑油
と接触し過熱されて再膨脹して実際の吸入ガス量が減少
する。
(B) The wet gas in the low-temperature intake gas comes into contact with the warm-returning lubricating oil, is overheated, and re-expands to reduce the actual intake gas amount.

また、第5図は出願人会社の二段スクリュー圧縮機1612
C(3,000r/m、押しのけ量低段側=619m3/h、高段側=19
6m3/hコンパウンド二段スクリュー圧縮機)が吸入する
ガス量(Gc)kg/hと溶解して油と一緒に圧縮機へ供給さ
れるガス量(Go)kg/hの比を示すものであって、冷媒蒸
発温度Teが−60℃においては理論吸入ガス量(Gc)の約
54%に相当するガス(Go)が潤滑油に含まれて圧縮機へ
供給されていることになる。したがってこの油が低圧部
へ流入すれば、前記(イ)(ロ)のようにガス化して吸
入ガス量を著しく減少させることになる。
Fig. 5 shows the applicant's two-stage screw compressor 1612.
C (3,000r / m, displacement low side = 619m 3 / h, high side = 19
6m 3 / h compound two-stage screw compressor) shows the ratio of the amount of gas sucked in (Gc) kg / h and the amount of gas that is dissolved and supplied to the compressor together with oil (Go) kg / h. Therefore, when the refrigerant evaporation temperature Te is -60 ° C, it is about the theoretical intake gas amount (Gc).
Gas (Go) equivalent to 54% is contained in the lubricating oil and supplied to the compressor. Therefore, if this oil flows into the low pressure portion, it will be gasified as in the above (a) and (b), and the amount of intake gas will be significantly reduced.

この欠点を解消するため、給油する潤滑油から事前に抽
気する方法もあるが、抽気用の圧力容器の設置とそれに
関わる給油配管等の配置で装置が複雑化する。
In order to eliminate this drawback, there is a method of extracting air from the lubricating oil to be supplied in advance, but the installation becomes complicated due to the installation of a pressure container for extraction and the arrangement of the oil supply pipes and the like related thereto.

そこで、前記のような諸欠点を解消するために、油戻し
孔を雄雌ロータのそれぞれの歯溝の吸入ガスの完全閉じ
込み直後であり、かつ両歯のかみ合い近傍の雄ロータ及
び雌ロータに対応する位置にそれぞれ開口するように設
けるものが開発されている(実開昭55−28714号公
報)。しかし、この例は、単段圧縮の場合であり、二段
圧縮の場合においては、このように油戻し孔の位置を設
けたのみでは未だ十分にはその利点が生かされない。
Therefore, in order to eliminate the above-mentioned various drawbacks, the oil return hole is provided in the male rotor and the female rotor immediately after the intake gas in each tooth groove of the male and female rotor is completely closed and in the vicinity of the meshing of both teeth. A device has been developed which is provided so as to open at corresponding positions (Japanese Utility Model Publication No. 55-28714). However, this example is a case of single-stage compression, and in the case of two-stage compression, the advantage is not sufficiently utilized only by providing the position of the oil return hole in this way.

そもそも、油噴射式のスクリュー圧縮機ではロータ部の
隙間からのガス洩れを防ぎ、効率を良くするために潤滑
油をロータ歯溝空間に噴射しガスシール作用をさせてい
るのであるが、一方では、噴射された潤滑油は高速で回
転しているロータによって撹拌されて吐出口へ運ばなけ
ればならず、この油を撹拌するために動力を費している
訳である。したがって、性能を良くするために噴射して
いる潤滑油が逆に動力損失を生じているという相反する
現象が内在していることになるが、前記の従来技術では
種々に変化する運転条件(冷媒蒸発温度)に対して常に
最適の給油量が流通されていない実情にある。
In the first place, in the oil injection type screw compressor, in order to prevent gas leakage from the gap of the rotor part and to improve the efficiency, the lubricating oil is injected into the rotor tooth space to perform the gas sealing action. The injected lubricating oil must be agitated by the rotor rotating at high speed and carried to the discharge port, and power is consumed to agitate this oil. Therefore, the contradictory phenomenon that the lubricating oil being injected in order to improve the performance causes power loss on the contrary is inherent, but in the above-mentioned conventional technology, the operating conditions (the refrigerant In the actual situation, the optimum amount of oil supply is not always distributed for the evaporation temperature).

更に、油噴射式のスクリュー圧縮機では二段形式の場合
でも、低圧段のみでなく高圧段においても漫然と油噴射
孔を設け、高圧低圧両段にそれぞれ潤滑油を噴射してお
り、この点においても運転条件に応じて最適油量を供給
するということが行なわれていない実情にある。前記二
段形式とはコンパウンド形式の二段圧縮の事例である
が、低段、高段を分離形にした二段圧縮の場合も同様で
ある。
Further, even in the case of the two-stage type in the oil injection type screw compressor, the oil injection holes are intentionally provided not only in the low pressure stage but also in the high pressure stage, and the lubricating oil is injected into each of the high pressure and low pressure stages. However, the fact is that the optimum amount of oil is not supplied according to operating conditions. The above-mentioned two-stage type is an example of compound type two-stage compression, but the same applies to the case of two-stage compression in which the low stage and the high stage are separated.

(考案が解決しようとする問題点) 本考案は、潤滑油の油戻し孔と油噴射孔の位置を変更及
び選定するとともに、潤滑油回路を一部変更することに
より前記従来技術の問題点を解消する二段スクリュー圧
縮装置を得ることを目的とするものである。
(Problems to be Solved by the Invention) The present invention solves the above problems of the prior art by changing and selecting the positions of the oil return hole and the oil injection hole of the lubricating oil and by partially changing the lubricating oil circuit. The object is to obtain a two-stage screw compression device that can be resolved.

〔考案の構成〕[Constitution of device]

(問題点を解決するための手段) 本考案の二段スクリュー圧縮装置は、前記の問題点を解
決するために次の構成からなる。
(Means for Solving Problems) The two-stage screw compression device of the present invention has the following constitution in order to solve the above problems.

低段圧縮機の軸受部等の一部を潤滑、冷却した潤滑油を
前記低段圧縮機へ戻すための潤滑油回路と油戻し孔を前
記低段圧縮機に設け、 前記低段圧縮機の軸受部等の残部を潤滑、冷却した潤滑
油と高段圧縮機の軸受部等を潤滑、冷却した潤滑油とを
前記高段圧縮機へ戻すための潤滑油回路と油戻し孔を前
記高段圧縮機に設け、 低段圧縮機と高段圧縮機とに設けられる前記油戻し孔
が、ロータケーシングのシリンダ内壁の閉じ込み線を形
成する端縁よりもロータの歯先1ピッチ相当以上吐出側
におけるシリンダ内部位置にそれぞれ設けられ、 また前記低段圧縮機にのみ油噴射孔が設けられ該油噴射
孔が前記油戻し孔よりも高圧側に位置されていること。
The low-stage compressor is provided with a lubricating oil circuit and an oil return hole for returning lubricating oil that has lubricated and cooled a part of the bearing of the low-stage compressor to the low-stage compressor, A lubricating oil circuit and an oil return hole for returning the lubricating oil that has lubricated and cooled the rest of the bearing portion and the lubricating oil that has lubricated and cooled the bearing portion of the high-stage compressor to the high-stage compressor are provided. The oil return holes provided in the compressor, and provided in the low-stage compressor and the high-stage compressor, the discharge side is equal to or more than one pitch of the tip of the rotor than the end edge forming the closing line of the cylinder inner wall of the rotor casing. In the inside of the cylinder, and the oil injection hole is provided only in the low-stage compressor, and the oil injection hole is located on the higher pressure side than the oil return hole.

(作用) 低段圧縮機及び高段圧縮機の油戻し孔が何れも低圧側に
連通しないシリンダ内部位置に設けられているので、潤
滑油に溶解している冷媒が低圧部でガス化するおそれが
なく、したがって圧縮機の吸入ガス量を減少させること
がない。また、低段圧縮機の軸受部等を潤滑冷却する
「潤滑油の一部」を高段圧縮機の油戻し孔から導入させ
るので、低段圧縮機の油戻し孔から導入させるよりも高
低両段圧縮機を通じて流れる全油量が減少する(油戻し
孔から低段圧縮機及び高段圧縮機のそれぞれのロータケ
ーシング内に流入する潤滑油の量は、オイルヘッダーと
油戻し孔との間の圧力差によってそれぞれ決るのである
が、高段圧縮機の油戻し孔の位置におけるシリンダ内圧
力は、低段圧縮機の油戻し孔の位置におけるシリンダ内
圧力より当然に高くなっているので、オイルヘッダーと
の圧力差が低段圧縮機の場合よりも小さい訳であり、し
たがって前記「潤滑油の一部」は高段圧縮機の油戻し孔
の方に導入させることにより流入油量が少なくなる。そ
してこの全油量の減少は高低両段圧縮機のロータによる
油撹拌動力を減少させることになる。更に油噴射孔が低
段圧縮機のみに設けられているので、高段圧縮機にも油
噴射孔を設けていた従来技術に比べて潤滑油を撹拌する
ために消費されていた動力も節約できる。
(Operation) Since the oil return holes of the low-stage compressor and the high-stage compressor are both provided inside the cylinder where they do not communicate with the low pressure side, the refrigerant dissolved in the lubricating oil may become gasified in the low pressure part. Therefore, the intake gas amount of the compressor is not reduced. In addition, since "a part of the lubricating oil" that lubricates and cools the bearings of the low-stage compressor is introduced through the oil return hole of the high-stage compressor, both high and low levels are better than those introduced through the oil return hole of the low-stage compressor. The total amount of oil flowing through the stage compressor decreases (the amount of lubricating oil flowing into the rotor casing of each of the low stage compressor and the high stage compressor from the oil return hole depends on the amount between the oil header and the oil return hole). Although it depends on the pressure difference, the cylinder internal pressure at the oil return hole position of the high-stage compressor is naturally higher than the cylinder internal pressure at the oil return hole position of the low-stage compressor. Therefore, the pressure difference between and is smaller than that in the case of the low-stage compressor. Therefore, by introducing "a part of the lubricating oil" toward the oil return hole of the high-stage compressor, the amount of inflowing oil is reduced. And this decrease in total oil quantity is high and low It reduces the oil agitation power by the rotor of the high-stage compressor, and because the oil injection holes are provided only in the low-stage compressor, compared to the conventional technology in which the oil injection holes are provided in the high-stage compressor as well. The power consumed for stirring the lubricating oil can also be saved.

(実施例) 本考案の実施の1例を説明する。第6図は冷凍機用の二
段スクリュー圧縮装置の潤滑油の循環回路等を示すもの
である。雌雄ロータ1,2は低段側、雌雄ロータ11,12は高
段側で、雄ロータ2と雄ロータ12とは互いに一体にとな
るように連結されて原動機により駆動され、雌ロータ1
と雌ロータ11はそれぞれかみ合う雄ロータ2と雄ロータ
12によって駆動される。
(Example) An example of the implementation of the present invention will be described. FIG. 6 shows a lubricating oil circulation circuit of a two-stage screw compressor for a refrigerator. The male and female rotors 1 and 2 are on the low stage side, and the male and female rotors 11 and 12 are on the high stage side. The male rotor 2 and the male rotor 12 are integrally connected to each other and are driven by a prime mover to drive the female rotor 1
Male rotor 2 and male rotor 11 mesh with each other
Driven by 12.

低段側の雄ロータ2はその回転軸の一端部をメーンベア
リング28、スラストベアリング29により、またその回転
軸の他端部をサイドベアリング35によりそれぞれ支持さ
れる。また低段側の雌ロータ1はその回転軸の一端部を
メーンベアリング28′、スラストベアリング29′によ
り、またその回転軸の他端部をサイドベアリング35′に
より、それぞれ支持される。30はシールである。
The male rotor 2 on the low stage side has its one end supported by a main bearing 28 and a thrust bearing 29, and the other end supported by a side bearing 35. The female rotor 1 on the low stage side has one end of its rotary shaft supported by a main bearing 28 'and a thrust bearing 29', and the other end of its rotary shaft supported by a side bearing 35 '. 30 is a seal.

一方、高段側の雄ロータ12はその回転軸の一端部をメー
ンベアリング36、スラストベアリング37により、またそ
の回転軸の他端部をサイドベアリング38によりそれぞれ
支持される。また高段側の雌ロータ11はその回転軸の一
端部をメーンベアリング36′、スラストベアリング37′
により、またその回転軸の他端部をサイドベアリング3
8′によりそれぞれ支持される。39はバランスピストン
である。
On the other hand, the male rotor 12 on the high stage side has one end of its rotary shaft supported by the main bearing 36 and the thrust bearing 37, and the other end of its rotary shaft supported by the side bearing 38. Further, the female rotor 11 on the high-stage side has one end of its rotary shaft at a main bearing 36 'and a thrust bearing 37'.
The side bearing 3 on the other end of the rotary shaft.
Each supported by 8 '. 39 is a balance piston.

ガスは蒸発器に連通する経路21から低段側に吸入され、
圧縮後、中間圧経路22,23,24を経て高段側に吸入され、
圧縮後、経路25から吐出され油分離器(図示しない)を
経て凝縮器に流入する。潤滑油は経路25に連結される油
分離器から分離されて経路26を介してオイルヘッダ27に
流入し、ここから複数の経路に分れて圧縮機の各部へ供
給される。
The gas is sucked into the low-stage side from the path 21 communicating with the evaporator,
After compression, it is sucked to the high-stage side through the intermediate pressure path 22, 23, 24,
After compression, it is discharged from the path 25 and flows into the condenser via an oil separator (not shown). The lubricating oil is separated from the oil separator connected to the path 25, flows into the oil header 27 via the path 26, is divided into a plurality of paths from here, and is supplied to each part of the compressor.

経路31からの潤滑油はメーンベアリング28,28′→スラ
ストベアリング29,29′の流れとシール30の流れに分流
後、合流して雌ロータ1の油戻し孔8から低段側の圧縮
機に流入し「潤滑油回路」を形成する。経路32からの潤
滑油は油戻し孔8よりも高圧側の油噴射孔14から低段側
の圧縮機内に直接噴射される。経路33からの潤滑油はサ
イドベアリング35,35′に分流後、低段側の圧縮機に流
入させることなく経路34から分流するメーンベアリング
36,36′→スラストベアリング37,37′の流れと合流して
雌ロータ11の油戻し孔18から高段側の圧縮機に流入する
とともに、経路34からの潤滑油の分流する流れの一部は
サイドベアリング38,38′を流れたのち前記の油戻し孔1
8から高段側の圧縮機に流入し「潤滑油回路」を形成す
る。従来技術ではサイドベアリング35,35′に分流した
潤滑油も漫然と低段側の圧縮機に流入させていたのでこ
の油をロータの回転により撹拌するための動力を要して
いたが本実施例のようにすることによってこの動力分を
節約することができる。また、経路34からの潤滑油の分
流する流れの他部は、バランスピストン39の一側に働
き、バランスピストン39の他側は低段側の圧縮機の油戻
し孔8への経路に連通し、バランスピストン39のラビリ
ンス・シール部からの「漏れ分」を該圧縮機内に流入さ
せる。
Lubricating oil from the path 31 is split into the flow of the main bearings 28, 28 '→ the flow of the thrust bearings 29, 29' and the flow of the seal 30, and then merges to the low-pressure side compressor from the oil return hole 8 of the female rotor 1. Inflow forms a “lubricating oil circuit”. The lubricating oil from the path 32 is directly injected into the compressor on the low stage side from the oil injection hole 14 on the higher pressure side than the oil return hole 8. The main bearing that splits the lubricating oil from the path 33 to the side bearings 35 and 35 ', and then diverts it from the path 34 without flowing into the low-stage compressor.
36, 36 '→ Part of the flow of lubricating oil diverted from the passage 34 while flowing into the compressor on the high stage side from the oil return hole 18 of the female rotor 11 by joining with the flow of the thrust bearings 37, 37' Flows through the side bearings 38, 38 'and then the oil return hole 1
It flows from 8 to the high-stage compressor to form a “lubricating oil circuit”. In the prior art, the lubricating oil shunted to the side bearings 35, 35 'was also intentionally introduced into the low-stage compressor, so power was needed to stir this oil by rotating the rotor. By doing so, this power can be saved. The other part of the branched flow of the lubricating oil from the path 34 acts on one side of the balance piston 39, and the other side of the balance piston 39 communicates with the path to the oil return hole 8 of the low-stage compressor. , "Leakage" from the labyrinth seal portion of the balance piston 39 is caused to flow into the compressor.

低段側の圧縮機の油戻し孔8及び油噴射孔14から内部に
流入した潤滑油の全量は、圧縮機の吐出口から冷媒とと
もに経路22へ吐出され経路23,24を経て高段側の圧縮機
に流入する。
The entire amount of the lubricating oil that has flowed in from the oil return hole 8 and the oil injection hole 14 of the compressor on the low stage side is discharged from the discharge port of the compressor together with the refrigerant to the route 22 and passes through the routes 23 and 24 to the high stage side. Enter the compressor.

前記の油戻し孔8,18は次のように構成される。第7図に
おいて、低段側について、歯数の多い方のロータの歯先
IIが吸入口の端縁6に達した時、すなわち歯先Iと歯先
II及びシリンダ内壁4によって閉歯溝空間が形成された
後に、歯先Iが油戻し孔8を通過するように、油戻し孔
8を吸入口の端縁6より突出端面10の側へ向けて少なく
とも歯数の多い方のロータの歯先1ピッチ以上離れた位
置に設ける。以上の相互関係は第8図により一層明らか
である。すなわち、従来技術においては端縁6に近い位
置に油戻し孔8′が設けられていたため、雌ロータの歯
先I′が油戻し孔8′を通過したとき、歯先II′はまだ
端縁6に達せず、油戻し孔8′は低圧側に連通開口する
ことになる。これに対し本考案の実施例では油戻し孔8
の位置に設けたので、歯先IIが端縁6に達したとき、歯
先Iはいまだ油戻し孔8の直前にあるとになり、歯先I
と歯先II及びシリンダ内壁4によって閉歯溝空間が形成
され、油戻し孔8が低圧部に開口するようなことがな
い。高圧側の油戻し孔18も同様な位置に設ける。
The oil return holes 8 and 18 are configured as follows. In FIG. 7, the tip of the rotor with the larger number of teeth on the lower stage side
When II reaches the edge 6 of the suction port, that is, the tip I and the tip
After the tooth space I is formed by II and the cylinder inner wall 4, the oil return hole 8 is directed from the end edge 6 of the suction port toward the projecting end face 10 so that the tooth tip I passes through the oil return hole 8. It is provided at a position separated by at least one pitch of the tip of the rotor having the larger number of teeth. The above mutual relationship is more apparent from FIG. That is, in the prior art, since the oil return hole 8'is provided at a position close to the edge 6, when the tooth tip I'of the female rotor passes through the oil return hole 8 ', the tooth tip II' is still at the edge. 6 is not reached, and the oil return hole 8'opens to communicate with the low pressure side. On the other hand, in the embodiment of the present invention, the oil return hole 8
Since the tooth tip II reaches the end edge 6, the tooth tip I is still immediately in front of the oil return hole 8.
A closed tooth space is formed by the tooth tip II and the cylinder inner wall 4, and the oil return hole 8 does not open to the low pressure portion. The oil return hole 18 on the high pressure side is also provided at the same position.

前記のような位置に油戻し孔8,18を設けることにより、
従来技術のように油戻し孔8,18が直接にガス吸入室に連
通することがなくなり、潤滑油中に溶解している冷媒が
低圧部でガス化することがない。また低段側について
は、蒸発器から流入する低温の湿り吸入ガスが暖い戻り
の油と接触し過熱再膨脹されたりして、圧縮機への吸入
ガス量が減少するようなことがなくなる。
By providing the oil return holes 8 and 18 at the positions as described above,
The oil return holes 8 and 18 do not directly communicate with the gas suction chamber as in the prior art, and the refrigerant dissolved in the lubricating oil is not gasified in the low pressure portion. On the low-stage side, the low-temperature, wet intake gas flowing from the evaporator does not come into contact with the warm-returning oil and is re-expanded by overheating, so that the intake gas amount to the compressor does not decrease.

油戻し孔8,18は歯数の多いロータ側に穿孔されるのであ
るが、本実施例では雄ロータは4枚、雌ロータは6枚で
あるので雌ロータ側に穿孔されている。歯数の多いロー
タ側に油戻し孔を設ければ閉じ込み線に一層近くそれら
を設けることができ冷媒の再膨脹を一層少なくできる。
The oil return holes 8 and 18 are bored on the rotor side having a large number of teeth, but in this embodiment, there are four male rotors and six female rotors, so they are bored on the female rotor side. If the oil return holes are provided on the side of the rotor having a large number of teeth, they can be provided closer to the closing line and the re-expansion of the refrigerant can be further reduced.

また、従来技術では二段圧縮の場合においても高段圧縮
機に漫然と油噴射孔を設けて潤滑油を噴射していたの
で、余剰の油量が導入され、これをロータにより撹拌し
て吐出口へ運ぶため、この油を撹拌する動力を要してい
た。本考案では、高段圧縮機への給油は低段圧縮機から
経路24を経て導入される潤滑油と高段側の軸受部等を流
れて油戻し孔18から導入される潤滑油と和で油量として
十分であり該油量でロータケーシング内のシール、冷却
及び潤滑作用が十分に行なわれ高段圧縮機の性能上何等
支障のないことを見出した。本考案はこの発見に基き高
段圧縮機の油噴射孔を廃止したものであり、これにより
前記の動力を節減することができた。
Further, in the prior art, even in the case of two-stage compression, the lubricating oil was injected aimlessly in the high-stage compressor to inject the lubricating oil, so an excess amount of oil was introduced, and this was agitated by the rotor and the discharge port was agitated. Power was required to stir this oil in order to carry it to. In the present invention, the oil supply to the high-stage compressor is the sum of the lubricating oil introduced from the low-stage compressor via the path 24 and the lubricating oil introduced through the oil return hole 18 flowing through the bearings on the high-stage side. It has been found that the amount of oil is sufficient, and that the amount of oil is sufficient for the sealing, cooling, and lubricating actions in the rotor casing, and there is no hindrance in the performance of the high-stage compressor. Based on this discovery, the present invention abolished the oil injection hole of the high-stage compressor, and the power could be saved.

また潤滑油は冷凍機油を用いるが、合成油または液体に
潤滑剤を混入したものでもよい。次に、第9図に冷凍機
の運転条件の変化に基く給油量と断熱効率との関係を示
す。これは出願人会社の前記二段スクリュー圧縮機(16
12C型)を冷媒R−22、冷媒凝縮温度Tc=35℃、回転数
N=3000r.p.mで、冷媒蒸発温度を変化させた場合に給
油量の大小が断熱効率にどのような影響があるかを示し
ており、最適油量があることが分る。すなわち断熱効率
の最高となる最適給油量は冷媒蒸発温度が低い程小さく
なることが分る。本考案の実施例では、冷凍機の運転条
件(冷媒蒸発温度)に応じ最適給油量となるように、第
6図のオイルヘッダ27から分岐する経路31,32,33,34等
に絞りを設けて給油量を調整する。
Refrigerating machine oil is used as the lubricating oil, but synthetic oil or liquid mixed with a lubricant may be used. Next, FIG. 9 shows the relationship between the amount of oil supply and the adiabatic efficiency based on changes in the operating conditions of the refrigerator. This is the two-stage screw compressor (16
12C type) with refrigerant R-22, refrigerant condensing temperature Tc = 35 ° C, rotation speed N = 3000r.pm, and how the amount of refueling affects the adiabatic efficiency when the refrigerant evaporation temperature is changed. It can be seen that there is an optimum amount of oil. That is, it can be seen that the optimum amount of oil supply that maximizes the adiabatic efficiency decreases as the refrigerant evaporation temperature decreases. In the embodiment of the present invention, the passages 31, 32, 33, 34, etc. branched from the oil header 27 of FIG. 6 are provided with throttles so that the optimum oil supply amount is obtained according to the operating conditions (refrigerant evaporation temperature) of the refrigerator. Adjust the amount of oil supplied.

次に、前記の二段スクリュー圧縮機が前記と同様の条件
すなわち、冷媒R−22、冷媒凝縮温度Tc=35℃、回転数
N=3000r.p.mで冷媒蒸発温度を異にして運転される場
合、本考案の前記実施例によりどのような効果が奏され
るかを第10図により説明する。
Next, when the two-stage screw compressor is operated under the same conditions as above, that is, the refrigerant R-22, the refrigerant condensing temperature Tc = 35 ° C., and the rotation speed N = 3000 rpm, and the refrigerant evaporation temperature is different. The effects of the embodiment of the present invention will be described with reference to FIG.

△印は従来技術による蒸発温度と断熱効率との関係を示
す曲線であるが、これに最適給油量となるような絞りを
設けた後の曲線は◇印のようになり、最適給油量の対策
と油戻し孔の位置調整とを共に実施した後の曲線は○印
のようになる。これによれば、冷媒蒸発温度Tc=35℃、
冷媒凝縮温度Te=−60℃において、最適給油量の調整と
油戻し位置の調整とを行なった場合、断熱効率を約25%
向上させることが分る。
The △ mark is a curve showing the relationship between the evaporation temperature and the adiabatic efficiency according to the conventional technology, but the curve after providing a throttle to obtain the optimum oil supply amount becomes like the ◇ mark, and measures for the optimum oil supply amount The curve after the adjustment of the oil return hole and the position of the oil return hole is shown as a circle. According to this, the refrigerant evaporation temperature Tc = 35 ° C,
When the optimum oil supply amount and oil return position are adjusted at the refrigerant condensing temperature Te = -60 ° C, the adiabatic efficiency is approximately 25%.
I see that it improves.

〔考案の効果〕[Effect of device]

二段スクリュー圧縮装置において、低段側及び高段側の
油噴射式のスクリュー圧縮機の油戻し孔が何れも低圧側
に連通しないシリンダ内部位置に設けられているので、
潤滑油に溶解している冷媒が低圧部でガス化するおそれ
がなくなる。したがって圧縮機の吸入ガス量を減少させ
ることがなくなる。
In the two-stage screw compression device, since the oil return holes of the low-stage side and high-stage side oil injection type screw compressors are provided at cylinder internal positions that do not communicate with the low pressure side,
There is no possibility that the refrigerant dissolved in the lubricating oil will be gasified in the low pressure part. Therefore, the amount of gas sucked into the compressor is not reduced.

また、低段圧縮機の軸受部等を潤滑冷却する「潤滑油の
一部」を潤滑油回路により高段圧縮機の油戻し孔から導
入させるので、それを低段圧縮機の油戻し孔から導入さ
せる場合に比べて低段圧縮機と高段圧縮機とを通じて流
れる全油量が減少することになる。したがって、この全
油量の減少によりロータによって油を撹拌するために消
費される動力を減少させることができる。
Also, "a part of the lubricating oil" that lubricates and cools the bearings of the low-stage compressor is introduced from the oil return hole of the high-stage compressor by the lubricating oil circuit, so that it is introduced from the oil return hole of the low-stage compressor. Compared with the case where it is introduced, the total amount of oil flowing through the low-stage compressor and the high-stage compressor is reduced. Therefore, this reduction in the total amount of oil can reduce the power consumed by the rotor for stirring the oil.

更に従来技術では二段圧縮の場合においても高段圧縮機
に漫然と油噴射孔を設けて潤滑油を噴射していたが、高
段圧縮機側には低段圧縮機の吐出口から圧縮ガスととも
に送られてくる潤滑油分があるので、その外には油戻し
孔から導入される潤滑油分があれば十分であり、ロータ
ケーシング内のシール、冷却及び潤滑には油噴射孔から
の潤滑油は不要であることが判明した。この理由により
本考案では油噴射孔を低段圧縮機のみに設けることとし
たので、高段圧縮機にも油噴射孔を設けていた従来技術
に比べて余分の潤滑油を撹拌するために消費されていた
動力も節約できる。
Furthermore, in the prior art, even in the case of two-stage compression, the high-stage compressor was purposely provided with oil injection holes to inject the lubricating oil, but on the high-stage compressor side, along with the compressed gas from the discharge port of the low-stage compressor. Since there is lubricating oil that is sent, it is sufficient to have the lubricating oil that is introduced from the oil return hole outside that, and the lubricating oil from the oil injection hole is used for sealing, cooling, and lubricating inside the rotor casing. Turned out to be unnecessary. For this reason, in the present invention, the oil injection hole is provided only in the low-stage compressor, so that it is necessary to stir extra lubricating oil as compared with the prior art in which the oil injection hole is provided in the high-stage compressor as well. The power that was used can also be saved.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の油噴射式のスクリュー圧縮機を吸入口側
から見た平面図、第2図は雌ロータ側から水平方向に見
た吸入口の説明図、第3図は雌ロータ側から見た吸入口
の閉じ込み線を形成する端縁、油戻し孔、雌ロータのネ
ジ山線の位置関係の説明図、第4図は油中に溶解するフ
ロン−22の分量のグラフ、第5図は蒸発温度とGo/Gcの
関係を示すグラフ、第6図は本考案の実施例の給油系統
図、第7図は本考案の実施例において雌ロータ側から見
た吸入口の閉じ込み線を形成する端縁、油戻し孔、雌ロ
ータのネジ山線の位置関係の説明図、第8図は前記実施
例において端縁、油戻し孔と雌ロータの歯先の位置関係
の説明図、第9図は油噴射式のスクリュー圧縮機におけ
る給油量と断熱効率との関係を示すグラフ、第10図は本
考案の実施例による省エネルギ効果を示すグラフであ
る。 1…ロータとしての雌ロータ、2…ロータとしての雄ロ
ータ、4…シリンダ内壁、6,7…吸入口の端縁、8…油
戻し孔、10…吐出端面、11…ロータとしての雌ロータ、
12…ロータとしての雄ロータ、13…ロータケーシング、
14…油噴射孔、18…油戻し孔。
FIG. 1 is a plan view of a conventional oil injection type screw compressor as seen from the suction port side, FIG. 2 is an explanatory diagram of the suction port as seen in the horizontal direction from the female rotor side, and FIG. 3 is from the female rotor side. FIG. 4 is an explanatory view of the positional relationship among the edge forming the closing line of the suction port, the oil return hole, and the thread line of the female rotor as seen, FIG. 4 is a graph of the amount of CFC-22 dissolved in oil, and FIG. Fig. 6 is a graph showing the relationship between evaporation temperature and Go / Gc, Fig. 6 is a diagram of the oil supply system of the embodiment of the present invention, and Fig. 7 is a confinement line of the intake port seen from the female rotor side in the embodiment of the present invention. 8 is an explanatory view of the positional relationship between the edge, the oil return hole, and the screw thread line of the female rotor, and FIG. 8 is an explanatory view of the positional relationship between the edge, the oil return hole, and the addendum of the female rotor in the above embodiment, FIG. 9 is a graph showing the relationship between oil supply amount and adiabatic efficiency in an oil injection type screw compressor, and FIG. Is a graph showing the Nerugi effect. DESCRIPTION OF SYMBOLS 1 ... Female rotor as a rotor, 2 ... Male rotor as a rotor, 4 ... Cylinder inner wall, 6, 7 ... Suction port edge, 8 ... Oil return hole, 10 ... Discharge end face, 11 ... Female rotor as a rotor,
12 ... Male rotor as rotor, 13 ... Rotor casing,
14 ... Oil injection hole, 18 ... Oil return hole.

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】低段圧縮機の軸受部等の一部を潤滑、冷却
した潤滑油を前記低段圧縮機へ戻すための潤滑油回路と
油戻し孔を前記低段圧縮機に設け、前記低段圧縮機の軸
受部等の残部を潤滑、冷却した潤滑油と高段圧縮機の軸
受部等を潤滑、冷却した潤滑油とを前記高段圧縮機へ戻
すための潤滑油回路と油戻し孔を前記高段圧縮機に設
け、低段圧縮機と高段圧縮機とに設けられる前記油戻し
孔が、ロータケーシングのシリンダ内壁の閉じ込み線を
形成する端縁よりもロータの歯先1ピッチ相当以上吐出
側におけるシリンダ内部位置にそれぞれ設けられ、また
前記低段圧縮機にのみ油噴射孔が設けられ該油噴射孔が
前記油戻し孔よりも高圧側に位置している二段スクリュ
ー圧縮装置。
1. A low-stage compressor is provided with a lubricating oil circuit and an oil return hole for returning a lubricating oil, which is obtained by lubricating and cooling a part of a bearing of the low-stage compressor, to the low-stage compressor, Lubricating oil circuit and oil return for lubricating the rest of the bearing of the low-stage compressor and lubricating the cooled lubricant and for lubricating the bearing of the high-stage compressor and returning the cooled lubricant to the high-stage compressor. A hole is provided in the high-stage compressor, and the oil return hole provided in each of the low-stage compressor and the high-stage compressor has a tip 1 of the rotor more than an end edge of the cylinder inner wall of the rotor casing that forms a closing line. Two-stage screw compression, which is provided at each cylinder internal position on the discharge side corresponding to the pitch or more, and has an oil injection hole only in the low-stage compressor, and the oil injection hole is located on the higher pressure side than the oil return hole. apparatus.
【請求項2】油戻し孔及び油噴射孔に給油する各経路に
は冷媒蒸発温度に対して断熱効率が最高となるように給
油量を調整するための絞りが設けられている実用新案登
録請求の範囲第1項記載の二段スクリュー圧縮装置。
2. A utility model registration request wherein each passage for supplying oil to the oil return hole and the oil injection hole is provided with a throttle for adjusting the amount of oil supply so that the adiabatic efficiency becomes maximum with respect to the refrigerant evaporation temperature. A two-stage screw compression device according to claim 1.
【請求項3】油戻し孔が歯数の多い方のロータ側のシリ
ンダ内部位置に設けられている実用新案登録請求の範囲
第1項又は第2項記載の二段スクリュー圧縮装置。
3. The two-stage screw compressor according to claim 1 or 2, wherein the oil return hole is provided at a position inside the cylinder on the rotor side having the larger number of teeth.
JP1986171229U 1986-11-07 1986-11-07 Two-stage screw compressor Expired - Lifetime JPH0636312Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986171229U JPH0636312Y2 (en) 1986-11-07 1986-11-07 Two-stage screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986171229U JPH0636312Y2 (en) 1986-11-07 1986-11-07 Two-stage screw compressor

Publications (2)

Publication Number Publication Date
JPS6278386U JPS6278386U (en) 1987-05-19
JPH0636312Y2 true JPH0636312Y2 (en) 1994-09-21

Family

ID=31106668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986171229U Expired - Lifetime JPH0636312Y2 (en) 1986-11-07 1986-11-07 Two-stage screw compressor

Country Status (1)

Country Link
JP (1) JPH0636312Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000815A1 (en) 2005-06-29 2007-01-04 Mayekawa Mfg. Co., Ltd Oil supply method and device for two-stage screw compressor, and method of operating refrigeration device
JP5714479B2 (en) * 2011-12-26 2015-05-07 株式会社神戸製鋼所 Oil-cooled two-stage compressor and heat pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638868Y2 (en) * 1978-08-12 1988-03-16

Also Published As

Publication number Publication date
JPS6278386U (en) 1987-05-19

Similar Documents

Publication Publication Date Title
KR100339797B1 (en) Lubrication system for screw compressors using an oil still
US6494696B2 (en) Scroll compressor
US5221191A (en) Horizontal rotary compressor
JP2004531665A (en) Water injection screw compressor
CN102032177B (en) Fully-closed horizontal oil-injection scroll compressor
US6422844B2 (en) Screw compressor
US3838581A (en) Refrigerator apparatus including motor cooling means
JPH10159764A (en) Screw compressor
JP2017110517A (en) Screw fluid machine
JPH0636312Y2 (en) Two-stage screw compressor
US11965510B2 (en) Compressor body and compressor to supply liquid into working chambers and whose downstream portion reaches a suction bearing chamber
JP4258132B2 (en) Rotary multistage compressor
JPS59500572A (en) Sealed compressor
JP2016200058A (en) Oil supply type displacement compressor
JPH08543Y2 (en) Oil-cooled screw compressor
US20210381510A1 (en) Screw Compressor
JPS59215985A (en) Screw compressor
JPH0128233B2 (en)
US11933306B2 (en) Scroll compressor and refrigeration cycle apparatus
CN109268272B (en) Spiral fluid device
JPH04370384A (en) Scroll compressor
JP3601067B2 (en) Hermetic compressor
JP4486224B2 (en) Scroll compressor
JPH04334701A (en) Scroll fluid machine
JPS59160092A (en) Oil injection type screw compressor