JP2017110517A - Screw fluid machine - Google Patents

Screw fluid machine Download PDF

Info

Publication number
JP2017110517A
JP2017110517A JP2015243732A JP2015243732A JP2017110517A JP 2017110517 A JP2017110517 A JP 2017110517A JP 2015243732 A JP2015243732 A JP 2015243732A JP 2015243732 A JP2015243732 A JP 2015243732A JP 2017110517 A JP2017110517 A JP 2017110517A
Authority
JP
Japan
Prior art keywords
rotor
fluid machine
screw fluid
oil
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015243732A
Other languages
Japanese (ja)
Inventor
土屋 豪
Takeshi Tsuchiya
豪 土屋
小谷 正直
Masanao Kotani
正直 小谷
良二 河井
Ryoji Kawai
良二 河井
紘太郎 千葉
Kotaro Chiba
紘太郎 千葉
西村 仁
Hitoshi Nishimura
仁 西村
正彦 高野
Masahiko Takano
正彦 高野
原島 寿和
Toshikazu Harashima
寿和 原島
康輔 貞方
Kosuke Sadakata
康輔 貞方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2015243732A priority Critical patent/JP2017110517A/en
Publication of JP2017110517A publication Critical patent/JP2017110517A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide proper screw rotor cooling means in an oil cooled screw fluid machine to which oil is injected during a compression process.SOLUTION: As a constitution of cooling means for cooling inside of a male rotor 5 and a female rotor 6, the male rotor 5 has a male rotor internal hole 5a not penetrating through the inside of the male rotor 5. Further in the male rotor internal hole 5a, an internal passage portion 21a of a fixed cooling passage member 21 for the male rotor is disposed. The internal passage portion 21a is a part of the fixed cooling passage member 21 for the male rotor fixed to a motor casing cover 12, and is fixed to the motor casing cover 12, so that it is not rotated with the male rotor 5. A female rotor 6 side has the similar constitution.SELECTED DRAWING: Figure 1

Description

本発明は,圧縮プロセス中に油を注入する油冷式スクリュー流体機械に関し,特にスクリューロータを冷却することによって高いエネルギー効率を実現するに好適なスクリュー流体機械に関するものである。   The present invention relates to an oil-cooled screw fluid machine that injects oil during a compression process, and more particularly to a screw fluid machine suitable for realizing high energy efficiency by cooling a screw rotor.

スクリュー流体機械は,空気圧縮機や冷凍空調用圧縮機として広く普及している。近年,スクリュー流体機械では省エネ化が強く求められるようになっており,高エネルギー効率,高風量(能力)であることが益々重要になっている。   Screw fluid machines are widely used as air compressors and compressors for refrigeration and air conditioning. In recent years, energy saving is strongly demanded in screw fluid machines, and high energy efficiency and high airflow (capacity) are becoming increasingly important.

スクリュー流体機械のエネルギー効率向上においては,作動室を構成するスクリューロータを冷却することが有効であることが知られており,特許文献1に記載のものなどがある。また,2つのロータを備えた真空ポンプにおいてもロータ内を冷却することが有効であることが知られており,特許文献2に記載のものなどがある。   In improving the energy efficiency of a screw fluid machine, it is known that it is effective to cool a screw rotor that constitutes a working chamber. Further, it is known that it is effective to cool the inside of a rotor in a vacuum pump including two rotors.

特許文献1には,無給油式スクリュー圧縮機において,ケーシング内に収納した一対の互いにかみ合う雌,雄ロータおよびその軸に貫通路を軸方向にそれぞれ設け,この両貫通路の反ロータ側開口にノズルをそれぞれ対設させ,この両ノズルを流量制御弁または温度調節弁およびオイルクーラを順次に備える冷却用潤滑油系路に連通させると共に,前記流量制御弁をモータを介して前記両ロータの吐出ポートに設けた温度センサに接続するか,または,前記温度調節弁をオイルクーラの入口側に連通したものであり,ロータ冷却用の潤滑油の流量または温度をコントロールすることにより,両ロータ間のギャップを常に一定に,かつ最小状態に保持し,圧縮機の性能を向上させることができるとした記載がある。   In Patent Document 1, in an oil-free screw compressor, a pair of meshing female and male rotors housed in a casing and a through-passage are respectively provided in the shafts in the axial direction. The nozzles are arranged in pairs, and both nozzles are communicated with a cooling lubricating oil passage that is sequentially provided with a flow rate control valve or a temperature control valve and an oil cooler, and the flow rate control valves are discharged to the rotors via a motor. It is connected to a temperature sensor provided in the port, or the temperature control valve is connected to the inlet side of the oil cooler, and the flow rate or temperature of the lubricating oil for cooling the rotor is controlled so that There is a description that the gap can always be kept constant and in a minimum state, and the performance of the compressor can be improved.

特許文献2には,2つのロータを備えた二軸式真空ポンプにおいて,ロータが軸によって片持ち支承されている形式のものであって,ロータが中空に穿孔されており,軸とロータとの間の嵌合部位の高さに冷却系が配置されており,冷却系が軸受まで延在していて軸受温度を低く保つようになっているものであり,できるだけ高い回転数及びできるだけ少量のギャップ漏れ量で運転できるとした記載がある。   In Patent Document 2, a two-shaft vacuum pump having two rotors is a type in which the rotor is cantilevered by a shaft, and the rotor is perforated hollowly. The cooling system is arranged at the height of the mating part between them, and the cooling system extends to the bearing so as to keep the bearing temperature low. There is a description that it can be operated with the amount of leakage.

特開昭59−115492号公報JP 59-115492 A 特表2004−506140公報Special table 2004-506140 gazette

スクリューロータの冷却構造としては,無給油式スクリュー流体機械にてスクリューロータ内を貫通する孔構造が知られている。無給油式であることから圧縮ガスと油の混合が許されないため,油などの冷却媒体を貫通孔内で流動させるためには,油を昇圧できる給油手段が別途必要となり,システムとして複雑になるといった課題がある。   As a cooling structure of the screw rotor, a hole structure penetrating the screw rotor in an oil-free screw fluid machine is known. Since it is an oil-free type, mixing of compressed gas and oil is not allowed. Therefore, in order to cause a cooling medium such as oil to flow in the through hole, an additional oil supply means that can pressurize the oil is required, which complicates the system. There is a problem.

特許文献1は,無給油式スクリュー流体機械における貫通孔構造の一例であり,前述のように油を昇圧できる給油手段が別途必要であるためシステムが複雑となる。   Patent Document 1 is an example of a through-hole structure in an oil-free screw fluid machine, and requires a separate oil supply means capable of boosting oil as described above, which complicates the system.

特許文献2では,2つのロータを備えた二軸式真空ポンプのロータ内に配設した冷却経路に関する記載がありロータ内に配設した冷却経路は貫通していないが,底部の油溜めから油を供給するために油を昇圧できる給油手段が別途必要であり,システムは複雑となる。なお,前記冷却経路には区分管が配設されているが,当該区分管は,軸と一緒に回転するために固定式ではなく,この点,本発明における固定された冷却通路とは異なっている。   In Patent Document 2, there is a description about a cooling path arranged in a rotor of a twin-shaft vacuum pump having two rotors, and the cooling path arranged in the rotor does not penetrate, but the oil reservoir at the bottom part is not filled with oil. In order to supply oil, a separate oil supply means capable of boosting the oil is necessary, and the system becomes complicated. Although the cooling pipe is provided with a dividing pipe, the dividing pipe is not fixed because it rotates together with the shaft, and this point is different from the fixed cooling passage in the present invention. Yes.

本発明の課題は,圧縮プロセス中に油を注入する油冷式スクリュー流体機械において好適なスクリューロータ冷却手段を実現することである。   An object of the present invention is to realize a screw rotor cooling means suitable for an oil-cooled screw fluid machine that injects oil during a compression process.

上記課題を解決するため,本発明の特徴は,互いに噛合いながら回転する雄ロータ及び雌ロータと,雄ロータ及び雌ロータを回転自在に支持する軸支持手段と,雄ロータ及び雌ロータを収納するケーシングと,雄ロータと雌ロータとケーシングとから構成する複数の作動室と,作動室へ圧縮プロセス中に油を注入する油注入手段と,雄ロータあるいは雌ロータを回転駆動する駆動手段と,雄ロータ及び雌ロータの内部に構成する冷却孔と,圧縮後の被圧縮ガスから油を分離する油分離手段と,圧縮後の被圧縮ガスを冷却するための冷却手段と,を有するスクリュー流体機械において,スクリュー流体機械自身にて生成した高圧と,前記高圧より低い圧力との圧力差によって,雄ロータ及び雌ロータを冷却するための冷却媒体を,雄ロータ及び雌ロータの内部に構成する冷却孔内で流動させるものである。   In order to solve the above-mentioned problems, the present invention is characterized in that a male rotor and a female rotor rotating while meshing with each other, shaft support means for rotatably supporting the male rotor and the female rotor, and a male rotor and a female rotor are accommodated. A plurality of working chambers composed of a casing, a male rotor, a female rotor and a casing; oil injection means for injecting oil into the working chamber during the compression process; drive means for rotationally driving the male rotor or female rotor; In a screw fluid machine having a cooling hole formed inside a rotor and a female rotor, oil separation means for separating oil from compressed compressed gas, and cooling means for cooling the compressed compressed gas , A cooling medium for cooling the male rotor and the female rotor by the pressure difference between the high pressure generated by the screw fluid machine itself and a pressure lower than the high pressure is used as the male rotor and It is intended to flow in the cooling holes constituting the interior of the rotor.

本発明によれば,油冷式スクリュー流体機械におけるスクリューロータ冷却手段を,油を昇圧できる給油手段を別に必要とせずに実現することが可能になるため,高エネルギー効率を有する油冷式スクリュー流体機械を,システムを複雑化することなく実現できる。さらに,アキシャルギャップ回転子を有するモータを用いることでスクリューロータ径を太くすることが可能となり,スクリューロータ内部に設けた冷却孔面積を広く確保できるようになるのでスクリューロータの冷却効果を高めることが可能になる。さらに,当該スクリュー流体機械を縦置型とし,下部に油分離手段を一体配設した場合,スクリューロータの冷却手段が貫通孔によるものに比べて,該油分離手段と該油分離手段に近い側の軸受部を連通空間として構造を簡単化することが可能になるため,高エネルギー効率を有する油冷式スクリュー流体機械を,構造を複雑化することなく実現できる。   According to the present invention, the screw rotor cooling means in the oil-cooled screw fluid machine can be realized without the need for a separate oil supply means capable of boosting the oil, so that the oil-cooled screw fluid having high energy efficiency can be realized. The machine can be realized without complicating the system. Furthermore, by using a motor having an axial gap rotor, the diameter of the screw rotor can be increased, and the cooling hole area provided inside the screw rotor can be secured widely, so that the cooling effect of the screw rotor can be enhanced. It becomes possible. Further, when the screw fluid machine is of a vertical type and the oil separation means is integrally disposed at the lower part, the cooling means of the screw rotor is closer to the oil separation means and the oil separation means than those using through holes. Since the structure can be simplified by using the bearing portion as the communication space, an oil-cooled screw fluid machine having high energy efficiency can be realized without complicating the structure.

実施例1に係るスクリュー流体機械の正面図。1 is a front view of a screw fluid machine according to Embodiment 1. FIG. 従来のスクリュー流体機械の側面図。The side view of the conventional screw fluid machine. 実施例2に係るスクリュー流体機械の正面図。The front view of the screw fluid machine which concerns on Example 2. FIG. 実施例3に係るスクリュー流体機械の正面図。FIG. 6 is a front view of a screw fluid machine according to a third embodiment. 実施例4に係るスクリュー流体機械の正面図。The front view of the screw fluid machine which concerns on Example 4. FIG. 実施例5に係るスクリュー流体機械の正面図。FIG. 10 is a front view of a screw fluid machine according to a fifth embodiment.

以下,本発明のスクリュー流体機械の具体的実施例を図面に基づいて説明する。なお,各図において,同一符号を付した部分は同一或いは相当する部分を示している。   Hereinafter, specific embodiments of the screw fluid machine of the present invention will be described with reference to the drawings. In each figure, the parts denoted by the same reference numerals indicate the same or corresponding parts.

図1と図2を用いて,本発明のスクリュー流体機械の実施例1を説明する。図1は,実施例1のスクリュー流体機械の正面図であり,図2は,従来のスクリュー流体機械の側面図である。   A screw fluid machine according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a front view of the screw fluid machine of the first embodiment, and FIG. 2 is a side view of a conventional screw fluid machine.

実施例1の構造について説明する。図1において,スクリュー流体機械は,圧縮部1と駆動部2から構成される。圧縮部1は,メインケーシング3内に,ケーシングボア4,雄ロータ5,雌ロータ6を基本部材としてなる作動室を構成し,雄ロータ5が駆動部2により回転駆動されると噛み合っている雌ロータ6も共に回転して圧縮動作を行う。スクリュー流体機械に吸込まれる気体は,吸込口(図示せず。図2での7に相当)を通過して作動室へ吸込まれ,圧縮された後は,吐出口(図示せず。図2での8に相当)を経由して吐出する。圧縮部1の吐出口側には,Dケーシング9を配置している。Dケーシング9内には,雄雌ロータの回転軸が突出し,この回転軸を回転自在に支持する雄ロータ5の吐出側軸受部10と雌ロータ6の吐出側軸受部18が配設されている。雄ロータ5の吸込側軸受部15と雌ロータ6の吸込側軸受部19は,メインケーシング3の駆動部2側に配設されており,雄ロータ5と雌ロータ6を回転自在に支持している。また,Dケーシングフタ23にて,Dケーシング9の反圧縮部側を密閉している。   The structure of Example 1 will be described. In FIG. 1, the screw fluid machine includes a compression unit 1 and a drive unit 2. The compression unit 1 constitutes a working chamber having a casing bore 4, a male rotor 5 and a female rotor 6 as basic members in the main casing 3, and is engaged with the male rotor 5 when the male rotor 5 is rotationally driven by the drive unit 2. The rotor 6 also rotates together to perform a compression operation. The gas sucked into the screw fluid machine passes through the suction port (not shown, corresponding to 7 in FIG. 2), is sucked into the working chamber, and after being compressed, the discharge port (not shown. (Equivalent to 8 in the above)). A D casing 9 is disposed on the discharge port side of the compression unit 1. In the D casing 9, the rotating shaft of the male and female rotors protrudes, and the discharge-side bearing portion 10 of the male rotor 5 and the discharge-side bearing portion 18 of the female rotor 6 that rotatably support the rotating shaft are disposed. . The suction-side bearing portion 15 of the male rotor 5 and the suction-side bearing portion 19 of the female rotor 6 are disposed on the drive portion 2 side of the main casing 3 and rotatably support the male rotor 5 and the female rotor 6. Yes. Further, the D casing lid 23 seals the anti-compression portion side of the D casing 9.

駆動部2は,モータケーシング11とモータケーシングフタ12からなる空間内に,軸方向にギャップを構成するアキシャルギャップ回転子を有するモータ13と雄ロータ5のモータ側回転軸5bが配設される。アキシャルギャップ回転子を有するモータ13は,アキシャルギャップ回転子13a,13bとステータ13eからなり,アキシャルギャップ回転子13a,13bは,磁石13c,13dが配設され,また,ステータ13eを挟むようにモータ側回転軸5bへ系合されている。なお,アキシャルギャップ回転子13a,13bは,片側だけで構成しても良い。   In the drive unit 2, a motor 13 having an axial gap rotor that forms a gap in the axial direction and a motor-side rotary shaft 5 b of the male rotor 5 are disposed in a space formed by the motor casing 11 and the motor casing lid 12. The motor 13 having an axial gap rotor is composed of axial gap rotors 13a and 13b and a stator 13e. The axial gap rotors 13a and 13b are provided with magnets 13c and 13d, and the motor is arranged so as to sandwich the stator 13e. It is coupled to the side rotating shaft 5b. The axial gap rotors 13a and 13b may be configured on only one side.

雄ロータ5,雌ロータ6の内部を冷却する冷却手段の構成について説明する。雄ロータ5は,雄ロータ5内部に貫通していない雄ロータ内部孔5aを有する。さらに,雄ロータ内部孔5a内には,雄ロータ用固定式冷却通路部材21の内部通路部21aを配置する。内部通路部21aは,モータケーシングフタ12に固定される雄ロータ用固定式冷却通路部材21の一部であり,モータケーシングフタ12に固定されることから雄ロータ5と共に回転することはない。なお,内部通路部21aは,雄ロータ用固定式冷却通路部材21と一体でも別体とした組立構造でも良い。同様に雌ロータ6にも,雌ロータ6内部に貫通していない雌ロータ内部孔6a,モータケーシング11に配設された内部通路部22aを有する雌ロータ用固定式冷却通路部材22にて冷却手段を構成する。なお,雌ロータ用固定式冷却通路部材22は,モータケーシング11でなくて,メインケーシング3に配設されても良く,さらに,モータケーシング11や,メインケーシング3に固定されなくとも,雌ロータ6に接触しないように配設されれば良い。   The configuration of the cooling means for cooling the inside of the male rotor 5 and the female rotor 6 will be described. The male rotor 5 has a male rotor inner hole 5 a that does not penetrate into the male rotor 5. Further, the internal passage portion 21a of the male rotor fixed cooling passage member 21 is disposed in the male rotor internal hole 5a. The internal passage portion 21 a is a part of the fixed cooling passage member 21 for the male rotor that is fixed to the motor casing lid 12, and is not rotated with the male rotor 5 because it is fixed to the motor casing lid 12. The internal passage portion 21a may be integrated with the male rotor fixed cooling passage member 21 or may be a separate assembly structure. Similarly, the female rotor 6 is also cooled by a female rotor fixed cooling passage member 22 having a female rotor inner hole 6a not penetrating into the female rotor 6 and an internal passage portion 22a disposed in the motor casing 11. Configure. The female rotor fixed cooling passage member 22 may be disposed not in the motor casing 11 but in the main casing 3, and even if not fixed to the motor casing 11 or the main casing 3, the female rotor 6 What is necessary is just to arrange | position so that it may not contact.

実施例1では,雄ロータ5,雌ロータ6を冷却させる冷却媒体に,吐出後の圧縮ガスから油分離手段32にて分離した油を用いる。ここで,冷却媒体である油の流動について説明する。吸込口(図示せず。図2での7に相当)から吸込まれるガス30は,メインケーシング3内に構成した,ケーシングボア4,雄ロータ5,雌ロータ6を基本部材としてなる作動室で圧縮される。圧縮完了後には,圧縮プロセス中に注入された油と混合した圧縮ガス31が吐出される。なお,圧縮ガスに混合する油は,圧縮プロセス中に注入する油の他に,吸込側軸受部15,19や,吐出側軸受部10,18を潤滑した油が混合する場合もある。油と混合した圧縮ガス31は,油分離手段32を経て,油と圧縮ガスに分離される。油は,油冷却手段44を経て,雄ロータ用固定式冷却通路部材21への供給流路45aと,雌ロータ用固定式冷却通路部材22への供給流路45bから,各ロータの内部通路部21a,22aに流入する。油は,各ロータの内部孔5a,6aの端部で折り返し,各ロータの内部通路部21a,22aの外壁と各ロータの内部孔5a,6aの内壁の間を流動して,雄ロータ5,雌ロータ6から排出される。雄ロータ5,雌ロータ6から排出された油は,モータケーシングフタ12,モータケーシング11内に設けた排出流路24,26を経て,各ロータ用固定式冷却通路部材21,22の排出流路45c,45dに到達して,流路45eを通過し,吸込側軸受部15,19,吐出側軸受部10,18を潤滑する流路45f,45gと,作動室への油注入流路45hへと分配される。なお,ここで示した油冷却手段の配置は一例であって,油冷却が不要であれば無くても良いし,作動室へ注入する油の温度管理を行う必要がある場合は,作動室への油注入流路45hに油温制御手段を配置しても良い。また,固定式冷却通路部材21,22から排出後の油を,必ずしも軸受部の潤滑や,作動室への注入に用いる必要はなく,別の油経路で各々構成しても構わない。また,冷却媒体である油の流動方向は,図1に示した45a→45c,45b→45dの逆方向でも構わない。なお,実施例1では,油と分離した圧縮ガスは,ガス冷却手段34,除湿手段35を経て吐出流路36より,圧縮ガスを排出する例を記載している。   In the first embodiment, oil separated from the compressed gas after discharge by the oil separation means 32 is used as a cooling medium for cooling the male rotor 5 and the female rotor 6. Here, the flow of oil as a cooling medium will be described. A gas 30 sucked from a suction port (not shown; corresponding to 7 in FIG. 2) is a working chamber formed in the main casing 3 and having a casing bore 4, a male rotor 5 and a female rotor 6 as basic members. Compressed. After completion of the compression, the compressed gas 31 mixed with the oil injected during the compression process is discharged. In addition to the oil injected during the compression process, the oil mixed with the compressed gas may be mixed with the oil that has lubricated the suction side bearing portions 15 and 19 and the discharge side bearing portions 10 and 18. The compressed gas 31 mixed with oil is separated into oil and compressed gas through the oil separation means 32. The oil passes through the oil cooling means 44 and is supplied from the supply passage 45a to the male rotor fixed cooling passage member 21 and the supply passage 45b to the female rotor fixed cooling passage member 22 to the internal passage portion of each rotor. It flows into 21a, 22a. The oil turns back at the ends of the inner holes 5a, 6a of each rotor and flows between the outer walls of the inner passage portions 21a, 22a of the rotors and the inner walls of the inner holes 5a, 6a of the rotors. It is discharged from the female rotor 6. The oil discharged from the male rotor 5 and the female rotor 6 passes through the motor casing lid 12 and the discharge passages 24 and 26 provided in the motor casing 11, and the discharge passages of the fixed cooling passage members 21 and 22 for each rotor. 45c and 45d, passing through the flow path 45e, and to the flow paths 45f and 45g for lubricating the suction side bearing portions 15 and 19 and the discharge side bearing portions 10 and 18, and the oil injection flow path 45h to the working chamber And distributed. The arrangement of the oil cooling means shown here is only an example, and it may be omitted if oil cooling is not necessary. Oil temperature control means may be disposed in the oil injection flow path 45h. Further, it is not always necessary to use the oil discharged from the fixed cooling passage members 21 and 22 for the lubrication of the bearing portion and the injection into the working chamber, and they may be constituted by different oil paths. Further, the flow direction of the oil as the cooling medium may be the reverse direction of 45a → 45c and 45b → 45d shown in FIG. In the first embodiment, the compressed gas separated from the oil is discharged from the discharge passage 36 through the gas cooling means 34 and the dehumidifying means 35.

冷却媒体である油の流動に対する軸封手段の配設について説明する。ここで,軸封手段は,冷却媒体である油の侵入を防ぐシール手段を示す。図1に図示した軸封手段は,雄ロータ5とモータケーシング11との間の軸封手段17,モータケーシングフタ12と雄ロータ用固定式冷却通路部材21との間の軸封手段16,雌ロータ6とモータケーシング11との間の軸封手段20,の3ヶ所であるが,本発明では,軸封手段16,20の2ヶ所が必要である。モータケーシングフタ12と雄ロータ用固定式冷却通路部材21との間の軸封手段16は,雄ロータ5を冷却し終えた油がモータ13の空間に流入することを防ぐためのものであり,モータ空間に油が流入すると撹拌抵抗による動力の上昇が発生する不具合が生じる。油量が少なかったり,モータ室に流入した油がモータ内での撹拌を生じないよう排出する手段をモータ空間内に別に設けている場合は,必ずしも必要ではない。なお,モータ空間内に油撹拌を防ぐ流路が設けられている場合は,モータケーシングフタ12内の排油流路24を別に前記油撹拌防止通路に合わせて設ける。雌ロータ6とモータケーシング11との間の軸封手段20は,雌ロータ6を冷却し終えた油が吸込側軸受部19の空間に流入することを防ぐためのものである。雌ロータ6を冷却し終えた油を,排油流路45dを通過させずに,直接に吸込側軸受部19の潤滑に用いても良く,この場合は,軸封手段20は不要となる。   The arrangement of the shaft sealing means for the flow of oil as the cooling medium will be described. Here, the shaft seal means indicates a seal means for preventing intrusion of oil as a cooling medium. The shaft sealing means shown in FIG. 1 includes shaft sealing means 17 between the male rotor 5 and the motor casing 11, shaft sealing means 16 between the motor casing lid 12 and the male rotor fixed cooling passage member 21, and female sealing. Although there are three places of the shaft sealing means 20 between the rotor 6 and the motor casing 11, in the present invention, two places of the shaft sealing means 16 and 20 are necessary. The shaft sealing means 16 between the motor casing lid 12 and the male rotor fixed cooling passage member 21 is for preventing the oil that has cooled the male rotor 5 from flowing into the space of the motor 13. When oil flows into the motor space, there arises a problem that power increases due to stirring resistance. This is not always necessary if the amount of oil is small or a means for discharging the oil flowing into the motor chamber so as not to cause agitation in the motor is provided in the motor space. When a flow path for preventing oil agitation is provided in the motor space, a drain oil flow path 24 in the motor casing lid 12 is provided separately to the oil agitation prevention passage. The shaft sealing means 20 between the female rotor 6 and the motor casing 11 is for preventing the oil that has cooled the female rotor 6 from flowing into the space of the suction side bearing portion 19. The oil that has cooled the female rotor 6 may be directly used for lubricating the suction-side bearing portion 19 without passing through the oil discharge passage 45d. In this case, the shaft seal means 20 is not necessary.

図1に図示した構成の他に,モータ13の反圧縮部側にモータ側回転軸5bを回転自在に支持する軸受部をモータケーシングフタ12に設けても良い。また,モータ13は,アキシャルギャップ回転子を有する構成で図示したが,ラジアルギャップ回転子を有するモータであっても良い。   In addition to the configuration illustrated in FIG. 1, a motor casing lid 12 may be provided with a bearing portion that rotatably supports the motor-side rotating shaft 5 b on the side opposite to the compression portion of the motor 13. Further, although the motor 13 is illustrated as having a configuration having an axial gap rotor, it may be a motor having a radial gap rotor.

続いて,図2を用いて,従来構造と比較する。図2には,従来構造として無給油式スクリュー流体機械の側面図を,圧縮部101のみで示した。圧縮部101は,メインケーシング103内に,ケーシングボア104,雄ロータ105,雌ロータ(図示せず)を基本部材としてなる作動室を構成し,雄ロータ105がモータの回転力を伝達する増速ギア132により回転駆動されると,雌ロータを雄ロータ5と非接触で回転させるためのタイミングギア131も共に回転すると共に雌ロータも回転して圧縮動作を行う。スクリュー流体機械に吸込まれる気体は,吸込口7を通過して作動室へ吸込まれ,圧縮された後は,吐出口8を経由して吐出する。圧縮部101の吐出口側には,Dケーシング109を配置している。Dケーシング109内には,雄雌ロータの回転軸が突出し,この回転軸を回転自在に支持する雄ロータ105の吐出側軸受部110と雌ロータの吐出側軸受部(図示せず)が配設されている。雄ロータ105の吸込側軸受部115と雌ロータの吸込側軸受部(図示せず)は,メインケーシング103の増速ギア132側に配設されており,雄ロータ105と雌ロータを回転自在に支持している。また,Dケーシングフタ123にて,Dケーシング109の反圧縮部側を密閉しているが,ロータの冷却媒体である油を供給するための通路140を設けてある。ロータの冷却に当っては,ロータ内に貫通孔105aを配設し,外部に給油ポンプ141を設ける。冷却媒体である油は,外部の給油ポンプ141により昇圧され,Dケーシングフタ123に設けた通路140を通ってロータ内部貫通孔105aに流入する。ロータ内部貫通孔105aに流入した油は,ロータを突き抜けて増速ギア132側から排出する。油の軸封手段としては,ロータと増速ギア132との間の軸封手段120,ロータとタイミングギア131との間の軸封手段121を設けている。無給油式スクリュー流体機械であることから,圧縮プロセス中に作動室へ油を注入することは無いし,軸受部110,115を潤滑した油が作動室へ入ることもないため,圧縮ガスに油は含まれないことから,油を冷却媒体として流動させる場合には,別に昇圧手段が必要となる。   Next, a comparison with the conventional structure will be made with reference to FIG. FIG. 2 shows a side view of an oil-free screw fluid machine as a conventional structure with only the compression unit 101. The compression unit 101 forms a working chamber having a casing bore 104, a male rotor 105, and a female rotor (not shown) as basic members in the main casing 103, and the male rotor 105 transmits the rotational force of the motor. When driven to rotate by the gear 132, the timing gear 131 for rotating the female rotor in a non-contact manner with the male rotor 5 also rotates, and the female rotor also rotates to perform the compression operation. The gas sucked into the screw fluid machine passes through the suction port 7 and is sucked into the working chamber. After being compressed, the gas is discharged through the discharge port 8. A D casing 109 is arranged on the discharge port side of the compression unit 101. A rotating shaft of the male and female rotors protrudes in the D casing 109, and a discharge-side bearing portion 110 of the male rotor 105 and a discharge-side bearing portion (not shown) of the female rotor that rotatably support the rotating shaft are disposed. Has been. The suction-side bearing portion 115 of the male rotor 105 and the suction-side bearing portion (not shown) of the female rotor are disposed on the speed increasing gear 132 side of the main casing 103 so that the male rotor 105 and the female rotor can rotate freely. I support it. Further, the D casing lid 123 seals the anti-compression portion side of the D casing 109, but a passage 140 for supplying oil that is a cooling medium for the rotor is provided. In cooling the rotor, a through hole 105a is provided in the rotor, and an oil supply pump 141 is provided outside. Oil as a cooling medium is pressurized by an external oil supply pump 141 and flows into the rotor internal through hole 105 a through the passage 140 provided in the D casing lid 123. The oil flowing into the rotor internal through hole 105a penetrates the rotor and is discharged from the speed increasing gear 132 side. As the oil shaft sealing means, a shaft sealing means 120 between the rotor and the speed increasing gear 132 and a shaft sealing means 121 between the rotor and the timing gear 131 are provided. Since it is an oil-free screw fluid machine, oil is not injected into the working chamber during the compression process, and oil that has lubricated the bearings 110 and 115 does not enter the working chamber. Therefore, when oil is allowed to flow as a cooling medium, a separate pressurizing means is required.

実施例1の効果について説明する。実施例1であれば,スクリューロータを冷却するに当たって,冷却媒体である油を昇圧できる給油手段を別に必要とせずに実現することが可能になるため,高エネルギー効率を有する油冷式スクリュー流体機械を,システムを複雑にすることなく実現することが可能になる。また,モータにアキシャルギャップ回転子を有するモータを用いることで,ラジアルギャップ回転子を有するモータに比べて雄ロータ内部孔の通路面積を大きく取ることができるため冷却作用を大きくすることが可能になって,さらなる高エネルギー効率を実現することが可能になる。また,雌ロータを冷却し終えた油を直接に吸込側軸受部に排出することで,ロータ冷却部構造の簡単化を図ることができる。さらに,当該スクリュー流体機械を縦置型とし,下部に油分離手段を一体配設した場合,スクリューロータの冷却手段が貫通孔によるものに比べて,該油分離手段と該油分離手段に近い側の軸受部を連通空間として構造を簡単化することが可能になるため,高エネルギー効率を有する油冷式スクリュー流体機械を,構造を複雑化することなく実現できる   The effect of Example 1 is demonstrated. In the first embodiment, when the screw rotor is cooled, it is possible to realize without oiling means that can pressurize the oil that is the cooling medium, so that an oil-cooled screw fluid machine having high energy efficiency can be realized. Can be realized without complicating the system. Further, by using a motor having an axial gap rotor as the motor, the passage area of the male rotor inner hole can be made larger than that of a motor having a radial gap rotor, so that the cooling action can be increased. This makes it possible to achieve even higher energy efficiency. Further, the oil that has finished cooling the female rotor is discharged directly to the suction-side bearing portion, whereby the rotor cooling portion structure can be simplified. Further, when the screw fluid machine is of a vertical type and the oil separation means is integrally disposed at the lower part, the cooling means of the screw rotor is closer to the oil separation means and the oil separation means than those using through holes. Since it is possible to simplify the structure by using the bearing as a communication space, an oil-cooled screw fluid machine with high energy efficiency can be realized without complicating the structure.

図3を用いて,スクリュー流体機械の実施例2を説明する。実施例2の説明に当たっては,実施例1と異なる点を中心に説明し,同一部分については説明を省略する。   Embodiment 2 of the screw fluid machine will be described with reference to FIG. In the description of the second embodiment, points different from the first embodiment will be mainly described, and the description of the same parts will be omitted.

実施例1との相違は,雄ロータ5,雌ロータ6を冷却させる冷却媒体に,吐出後に油を分離した圧縮ガスであって,ガス冷却手段34通過後の圧縮ガスを用いることにある。ここで,冷却媒体であるガス冷却手段34通過後の圧縮ガスの流動について説明する。油と混合した圧縮ガス31は,油分離手段32を経て,油と圧縮ガスに分離される。圧縮ガスは,ガス冷却手段34を経て,雄ロータ用固定式冷却通路部材51への供給流路50aと,雌ロータ用固定式冷却通路部材22への供給流路50bから,各ロータの内部通路部51a,22aに流入する。圧縮ガスは,各ロータの内部孔5a,6aの端部で折り返し,各ロータの内部通路部51a,22aの外壁と各ロータの内部孔5a,6aの内壁の間を流動して,雄ロータ5,雌ロータ6から排出される。雄ロータ5,雌ロータ6から排出された圧縮ガスは,雄ロータ用固定式冷却通路部材51,モータケーシング11内に設けた排出流路54,26を経て,各ロータ用固定式冷却通路部材51,22の排出流路50c,50dに到達して,流路50eを通過し,圧縮ガス流路50fへと戻る。なお,ガス冷却手段34通過後の圧縮ガスは,全量をロータ冷却のために流動させる必要はなく,冷却に必要な量だけ流動させればよい。また,冷却媒体である圧縮ガスの流動方向は,図3に示した50a→50c,50b→50dの逆方向でも構わない。実施例2では,実施例1にて図示したモータケーシングフタ12と雄ロータ用固定式冷却通路部材51との間の軸封手段が不要となる。雄ロータ5とモータケーシング11との間の軸封手段17があることから,モータ空間への油侵入を防ぐ必要が無いためである。   The difference from the first embodiment is that a compressed gas from which oil has been separated after discharge and that has passed through the gas cooling means 34 is used as a cooling medium for cooling the male rotor 5 and the female rotor 6. Here, the flow of the compressed gas after passing through the gas cooling means 34 as the cooling medium will be described. The compressed gas 31 mixed with oil is separated into oil and compressed gas through the oil separation means 32. The compressed gas passes through the gas cooling means 34, and is supplied from the supply flow path 50a to the fixed cooling passage member 51 for the male rotor and the supply flow path 50b to the fixed cooling passage member 22 for the female rotor. It flows into the parts 51a and 22a. The compressed gas is folded at the ends of the inner holes 5a, 6a of the rotors, flows between the outer walls of the inner passage portions 51a, 22a of the rotors and the inner walls of the inner holes 5a, 6a of the rotors. , Discharged from the female rotor 6. The compressed gas discharged from the male rotor 5 and the female rotor 6 passes through the fixed cooling passage member 51 for the male rotor and the discharge passages 54 and 26 provided in the motor casing 11, and then the fixed cooling passage member 51 for each rotor. , 22 reach the discharge flow paths 50c, 50d, pass through the flow path 50e, and return to the compressed gas flow path 50f. The compressed gas that has passed through the gas cooling means 34 does not need to flow in its entirety for cooling the rotor, but only needs to flow in the amount necessary for cooling. Further, the flow direction of the compressed gas as the cooling medium may be the reverse direction of 50a → 50c and 50b → 50d shown in FIG. In the second embodiment, the shaft sealing means between the motor casing lid 12 and the male rotor fixed cooling passage member 51 shown in the first embodiment is not necessary. This is because the shaft sealing means 17 between the male rotor 5 and the motor casing 11 is present, so that it is not necessary to prevent oil from entering the motor space.

実施例2の特有の効果について説明する。実施例2であれば,冷却媒体に圧縮ガスを用いることで軸封の数を減らすことが可能になり,部品点数減,レイアウト簡単化により,安価でスクリューロータの冷却手段を構成することが可能になる。   A specific effect of the second embodiment will be described. In Example 2, the number of shaft seals can be reduced by using compressed gas as the cooling medium, and the screw rotor cooling means can be configured at low cost by reducing the number of parts and simplifying the layout. become.

図4を用いて,スクリュー流体機械の実施例3を説明する。実施例3の説明に当たっては,実施例2と異なる点を中心に説明し,同一部分については説明を省略する。   Example 3 of the screw fluid machine will be described with reference to FIG. In the description of the third embodiment, the points different from the second embodiment will be mainly described, and the description of the same parts will be omitted.

実施例2との相違は,雄ロータ5,雌ロータ6を冷却させる冷却媒体に,吐出後に油を分離した圧縮ガスであって,除湿手段35通過後の圧縮ガスを用いることにある。除湿手段35通過後の圧縮ガスを用いる点以外,実施例2の供給,排出流路の基本的な構成は同じである。圧縮ガスは,除湿手段35を経て,雄ロータ用固定式冷却通路部材51への供給流路60aと,雌ロータ用固定式冷却通路部材22への供給流路60bから,各ロータの内部通路部51a,22aに流入する。圧縮ガスは,各ロータの内部孔5a,6aの端部で折り返し,各ロータの内部通路部51a,22aの外壁と各ロータの内部孔5a,6aの内壁の間を流動して,雄ロータ5,雌ロータ6から排出される。雄ロータ5,雌ロータ6から排出された圧縮ガスは,雄ロータ用固定式冷却通路部材51,モータケーシング11内に設けた排出流路54,26を経て,各ロータ用固定式冷却通路部材51,22の排出流路60c,60dに到達して,流路60eを通過し,圧縮ガス流路60fへと戻る。なお,除湿手段35通過後の圧縮ガスは,全量をロータ冷却のために流動させる必要はなく,冷却に必要な量だけ流動させればよい。また,冷却媒体である圧縮ガスの流動方向は,図4に示した60a→60c,60b→60dの逆方向でも構わない。   The difference from the second embodiment is that a compressed gas obtained by separating oil after discharge and used after passing through the dehumidifying means 35 is used as a cooling medium for cooling the male rotor 5 and the female rotor 6. The basic configuration of the supply and discharge flow paths in Example 2 is the same except that the compressed gas after passing through the dehumidifying means 35 is used. The compressed gas passes through the dehumidifying means 35 and is supplied from the supply flow path 60a to the fixed cooling passage member 51 for the male rotor and the supply flow path 60b to the fixed cooling passage member 22 for the female rotor. It flows into 51a, 22a. The compressed gas is folded at the ends of the inner holes 5a, 6a of the rotors, flows between the outer walls of the inner passage portions 51a, 22a of the rotors and the inner walls of the inner holes 5a, 6a of the rotors. , Discharged from the female rotor 6. The compressed gas discharged from the male rotor 5 and the female rotor 6 passes through the fixed cooling passage member 51 for the male rotor and the discharge passages 54 and 26 provided in the motor casing 11, and then the fixed cooling passage member 51 for each rotor. , 22 reach the discharge channels 60c, 60d, pass through the channel 60e, and return to the compressed gas channel 60f. Note that the compressed gas after passing through the dehumidifying means 35 does not need to be flowed for cooling the rotor, but may be flowed only for the amount required for cooling. Further, the flow direction of the compressed gas as the cooling medium may be the reverse direction of 60a → 60c and 60b → 60d shown in FIG.

実施例3の特有の効果について説明する。実施例3では,実施例2に比べて,除湿手段35後流の圧縮ガスを用いることで,より低温に圧縮ガスを冷却することが可能であるため,スクリューロータの冷却効果が高く,安価かつ高エネルギー効率なスクリューロータの冷却手段を構成することが可能になる。   A specific effect of the third embodiment will be described. In the third embodiment, compared with the second embodiment, the compressed gas can be cooled to a lower temperature by using the compressed gas downstream of the dehumidifying means 35. Therefore, the cooling effect of the screw rotor is high, inexpensive, and It is possible to configure a high energy efficient screw rotor cooling means.

図5を用いて,スクリュー流体機械の実施例4を説明する。実施例4の説明に当たっては,実施例1〜3と異なる点を中心に説明し,同一部分については説明を省略する。   Embodiment 4 of the screw fluid machine will be described with reference to FIG. In the description of the fourth embodiment, the points different from the first to third embodiments will be mainly described, and the description of the same parts will be omitted.

実施例1〜3との相違は,作動室の高圧側と低圧側の配置が逆な点である。実施例4では,作動室の高圧側を,駆動部2側に配設しており,吸込まれるガス73は,作動室の反駆動部側から吸込まれ,圧縮されたガス74は,作動室の駆動部側から吐出される。よって,スクリューロータの高温部は,高圧作動室側に発生することから,雄ロータ内部孔75c,雌ロータ内部孔76cと,雄ロータ用固定式冷却通路部材71の内部通路71a,雌ロータ用固定式冷却通路部材72の内部通路72aとを,スクリューロータの高温部である高圧側付近までで構成すれば,スクリューロータの冷却を効率よく行え,かつ,構造を簡単化できる点が実施例4の特有の効果である。なお,図5では,実施例4と異なる部分の構造として実施例1を代表として図示した。   The difference from the first to third embodiments is that the arrangement of the high pressure side and the low pressure side of the working chamber is reversed. In the fourth embodiment, the high pressure side of the working chamber is disposed on the drive unit 2 side, and the sucked gas 73 is sucked from the counter driving portion side of the working chamber, and the compressed gas 74 is compressed into the working chamber. It is discharged from the drive unit side. Therefore, since the high temperature portion of the screw rotor is generated on the high pressure working chamber side, the male rotor internal hole 75c, the female rotor internal hole 76c, the internal passage 71a of the male rotor fixed cooling passage member 71, and the female rotor fixed In the fourth embodiment, if the internal passage 72a of the type cooling passage member 72 is configured up to the vicinity of the high pressure side, which is the high temperature portion of the screw rotor, the screw rotor can be cooled efficiently and the structure can be simplified. This is a unique effect. In FIG. 5, the first embodiment is shown as a representative example of the structure different from the fourth embodiment.

図6を用いて,スクリュー流体機械の実施例5を説明する。実施例5の説明に当たっては,実施例1〜4と異なる点を中心に説明し,同一部分については説明を省略する。   Embodiment 5 of the screw fluid machine will be described with reference to FIG. In the description of the fifth embodiment, the differences from the first to fourth embodiments will be mainly described, and the description of the same parts will be omitted.

実施例1〜4との相違は,縦置型のスクリュー流体機械である点である。圧縮後の吐出ガスから油を分離する油分離手段83をスクリュー流体機械の下部に一体構造とし,スクリュー流体機械下部に分離後の油84が貯えられる。スクリューロータ冷却手段に貫通しない孔構造を用いることで,貫通孔構造に対して油分離手段83内をスクリューロータの冷却媒体が通過する必要無く構成できるため,構造の簡単化を図ることが可能になる。実施例5の特有の効果としては,縦置型でスクリュー流体機械の下部に油分離手段を1体構造で構成する場合に簡単な構成でスクリューロータ冷却手段を構成できる点にある。   The difference from the first to fourth embodiments is a vertical screw fluid machine. The oil separation means 83 for separating oil from the compressed discharge gas is integrated in the lower part of the screw fluid machine, and the separated oil 84 is stored in the lower part of the screw fluid machine. By using a hole structure that does not penetrate the screw rotor cooling means, the structure can be simplified because the cooling medium of the screw rotor does not need to pass through the oil separation means 83 with respect to the through hole structure. Become. A characteristic effect of the fifth embodiment is that the screw rotor cooling means can be configured with a simple configuration when the oil separating means is configured as a single body in the vertical type and below the screw fluid machine.

1:圧縮部,2:駆動部,3:メインケーシング,4:ケーシングボア,
5,75,105:雄ロータ,5a:雄ロータ内部孔,
6,76:雌ロータ,6a:雌ロータ内部孔,
7:吸込口,8:吐出口,9:Dケーシング,
10:雄ロータの吐出側軸受部,11:モータケーシング,12:モータケーシングフタ,
13:アキシャルギャップ回転子を有するモータ,
13a,13b:アキシャルギャップ回転子,13c,13d:磁石,13e:ステータ
15:雄ロータの吸込側軸受部,
16:モータケーシングフタ12と雄ロータ用固定式冷却通路部材21との間の軸封手段,
17:雄ロータ5とモータケーシング11との間の軸封手段,
18:雌ロータの吐出側軸受部,19:雌ロータの吸込側軸受部,
20:雌ロータ6とモータケーシング11との間の軸封手段,
21:雄ロータ用固定式冷却通路部材,
21a:雄ロータ用固定式冷却通路部材の内部通路部
22:雌ロータ用固定式冷却通路部材,
22a:雌ロータ用固定式冷却通路部材の内部通路部
23:Dケーシングフタ,24,26:排出流路,30:吸込まれるガス,
31:吐出後の油と混合した圧縮ガス,32:油分離手段,34:ガス冷却手段,
35:除湿手段,44:油冷却手段,45a,45b:供給流路,
45c,45d:排出流路,45e,45f,45g,45h:流路,
105a:ロータ内部貫通孔,131:タイミングギア,132:増速ギア,
140:油流路,141:外部給油ポンプ
1: compression part, 2: drive part, 3: main casing, 4: casing bore,
5, 75, 105: male rotor, 5a: male rotor internal hole,
6, 76: female rotor, 6a: female rotor internal hole,
7: suction port, 8: discharge port, 9: D casing,
10: discharge side bearing of male rotor, 11: motor casing, 12: motor casing lid,
13: Motor having an axial gap rotor,
13a, 13b: axial gap rotor, 13c, 13d: magnets, 13e: stator 15: suction side bearing portion of male rotor,
16: Shaft sealing means between the motor casing lid 12 and the fixed cooling passage member 21 for the male rotor,
17: Shaft sealing means between the male rotor 5 and the motor casing 11
18: discharge side bearing portion of female rotor, 19: suction side bearing portion of female rotor,
20: shaft sealing means between the female rotor 6 and the motor casing 11,
21: Fixed cooling passage member for male rotor,
21a: Internal passage portion of fixed cooling passage member for male rotor 22: Fixed cooling passage member for female rotor,
22a: Internal passage portion of fixed cooling passage member for female rotor 23: D casing lid, 24, 26: discharge passage, 30: gas to be sucked,
31: Compressed gas mixed with discharged oil, 32: Oil separation means, 34: Gas cooling means,
35: Dehumidifying means, 44: Oil cooling means, 45a, 45b: Supply flow path,
45c, 45d: discharge flow path, 45e, 45f, 45g, 45h: flow path,
105a: Rotor internal through hole, 131: Timing gear, 132: Speed increasing gear,
140: Oil passage, 141: External oil pump

Claims (12)

互いに噛合いながら回転する雄ロータ及び雌ロータと,前記雄ロータ及び前記雌ロータを回転自在に支持する軸支持手段と,前記雄ロータ及び前記雌ロータを収納するケーシングと,前記雄ロータと前記雌ロータと前記ケーシングとから構成する複数の作動室と,前記作動室へ圧縮プロセス中に油を注入する油注入手段と,前記雄ロータあるいは前記雌ロータを回転駆動する駆動手段と,前記雄ロータ及び前記雌ロータの内部に構成する冷却手段と,圧縮後の被圧縮ガスから油を分離する油分離手段と,圧縮後の被圧縮ガスを冷却するための冷却手段と,を有するスクリュー流体機械において,
スクリュー流体機械自身にて生成した高圧と,前記高圧より低い圧力との圧力差によって,雄ロータ及び雌ロータを冷却するための冷却媒体を,前記雄ロータ及び前記雌ロータの内部に構成する前記冷却手段内で流動させることを特徴とするスクリュー流体機械。
A male rotor and a female rotor that rotate while meshing with each other, shaft support means for rotatably supporting the male rotor and the female rotor, a casing that houses the male rotor and the female rotor, the male rotor, and the female rotor A plurality of working chambers comprising a rotor and the casing; oil injection means for injecting oil into the working chamber during a compression process; drive means for rotationally driving the male rotor or the female rotor; the male rotor; In a screw fluid machine having cooling means configured inside the female rotor, oil separation means for separating oil from compressed gas after compression, and cooling means for cooling the compressed gas after compression,
The cooling medium configured to cool the male rotor and the female rotor inside the male rotor and the female rotor by a pressure difference between a high pressure generated by the screw fluid machine itself and a pressure lower than the high pressure. A screw fluid machine, characterized by being caused to flow in the means.
請求項1記載のスクリュー機械であって,
前記雄ロータ及び前記雌ロータの内部に構成した前記冷却手段を,前記雄ロータ及び前記雌ロータ内を貫通しない孔と,前記貫通しない孔内部に配設して前記雄ロータ及び前記雌ロータと共に回転せずに固定された冷却通路とで構成することを特徴とするスクリュー流体機械。
The screw machine according to claim 1,
The cooling means configured inside the male rotor and the female rotor is disposed in a hole that does not pass through the male rotor and the female rotor and inside the hole that does not pass through, and rotates together with the male rotor and the female rotor. A screw fluid machine characterized by comprising a cooling passage fixed without being fixed.
請求項1又は2のいずれか1項に記載のスクリュー流体機械であって,
前記雄ロータ及び前記雌ロータ内を貫通しない孔を,前記雄ロータ及び雌ロータの軸中心に設けたことを特徴とするスクリュー流体機械。
A screw fluid machine according to claim 1 or 2,
A screw fluid machine, wherein a hole that does not penetrate through the male rotor and the female rotor is provided at the axial center of the male rotor and the female rotor.
請求項1〜3のいずれか1項に記載のスクリュー流体機械であって,
前記雄ロータ及び前記雌ロータ内を前記冷却媒体が往復流動することを特徴とするスクリュー流体機械。
The screw fluid machine according to any one of claims 1 to 3,
The screw fluid machine, wherein the cooling medium reciprocates in the male rotor and the female rotor.
請求項1〜4記載のいずれか1項にスクリュー流体機械であって,
前記油分離手段からスクリュー流体機械へ返油される油を,前記冷却媒体に用いることを特徴とするスクリュー流体機械。
A screw fluid machine according to any one of claims 1 to 4,
A screw fluid machine characterized in that oil returned to the screw fluid machine from the oil separating means is used as the cooling medium.
請求項5記載のスクリュー流体機械であって,
前記冷却媒体である前記油分離手段からスクリュー流体機械へ返油される油を,油冷却手段により冷却した後に前記雄ロータ及び前記雌ロータ内を流動させることを特徴とするスクリュー流体機械。
A screw fluid machine according to claim 5,
The screw fluid machine, wherein the oil returned to the screw fluid machine from the oil separation means, which is the cooling medium, is cooled by the oil cooling means and then flows in the male rotor and the female rotor.
請求項5又は6のいずれか1項に記載のスクリュー流体機械であって,
前記冷却媒体である前記油分離手段からスクリュー流体機械へ返油される油を,前記雄ロータ及び前記雌ロータ内を冷却後に前記軸支持手段へ供給することを特徴とするスクリュー流体機械。
A screw fluid machine according to any one of claims 5 or 6,
A screw fluid machine, wherein oil returned to the screw fluid machine from the oil separating means as the cooling medium is supplied to the shaft support means after cooling the inside of the male rotor and the female rotor.
請求項1〜4のいずれか1項に記載のスクリュー流体機械であって,
前記圧縮後の被圧縮ガスを冷却するための冷却手段後流の低温ガスを,前記冷却媒体に用いることを特徴とするスクリュー流体機械。
The screw fluid machine according to any one of claims 1 to 4,
A screw fluid machine using a low-temperature gas downstream of cooling means for cooling the compressed gas after compression as the cooling medium.
請求項1〜4記載のいずれか1項にスクリュー流体機械であって,
圧縮後の被圧縮ガスを除湿するための除湿手段を備え,かつ,前記除湿手段後流の低温ガスを前記冷却媒体に用いることを特徴とするスクリュー流体機械。
A screw fluid machine according to any one of claims 1 to 4,
A screw fluid machine comprising a dehumidifying means for dehumidifying a compressed gas after compression, and using a low-temperature gas downstream from the dehumidifying means as the cooling medium.
請求項1〜9記載のいずれか1項にスクリュー流体機械であって,
前記駆動手段に扁平磁石モータを用いることを特徴とするスクリュー流体機械。
A screw fluid machine according to any one of claims 1 to 9,
A screw fluid machine using a flat magnet motor as the driving means.
請求項10記載のスクリュー流体機械であって,
前記扁平磁石モータに,軸方向にギャップを構成するアキシャルギャップ回転子を有するモータを用いることを特徴とするスクリュー流体機械。
A screw fluid machine according to claim 10,
A screw fluid machine using a motor having an axial gap rotor that forms a gap in the axial direction as the flat magnet motor.
請求項1〜11のいずれか1項に記載のスクリュー流体機械であって,
スクリュー流体機械自身を縦置型として,上部に前記雄ロータあるいは前記雌ロータを回転駆動する前記駆動手段を,下部に前記油分離手段をスクリュー流体機械自身と一体配設し,前記油分離手段と前記油分離手段に近い側の軸受部とを連通空間として構成したことを特徴とするスクリュー流体機械。
The screw fluid machine according to any one of claims 1 to 11,
The screw fluid machine itself is of a vertical type, the driving means for rotationally driving the male rotor or the female rotor at the upper part, and the oil separating means at the lower part are arranged integrally with the screw fluid machine itself, and the oil separating means and the A screw fluid machine comprising a bearing portion close to an oil separating means as a communication space.
JP2015243732A 2015-12-15 2015-12-15 Screw fluid machine Pending JP2017110517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015243732A JP2017110517A (en) 2015-12-15 2015-12-15 Screw fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015243732A JP2017110517A (en) 2015-12-15 2015-12-15 Screw fluid machine

Publications (1)

Publication Number Publication Date
JP2017110517A true JP2017110517A (en) 2017-06-22

Family

ID=59080479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015243732A Pending JP2017110517A (en) 2015-12-15 2015-12-15 Screw fluid machine

Country Status (1)

Country Link
JP (1) JP2017110517A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111677663A (en) * 2020-06-23 2020-09-18 朱克龙 High-pressure efficient vacuum energy-saving pump
CN115853780A (en) * 2022-11-10 2023-03-28 江阴华西节能技术有限公司 Variable-pitch screw vacuum pump
WO2023084938A1 (en) * 2021-11-09 2023-05-19 株式会社日立産機システム Screw compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111677663A (en) * 2020-06-23 2020-09-18 朱克龙 High-pressure efficient vacuum energy-saving pump
WO2023084938A1 (en) * 2021-11-09 2023-05-19 株式会社日立産機システム Screw compressor
CN115853780A (en) * 2022-11-10 2023-03-28 江阴华西节能技术有限公司 Variable-pitch screw vacuum pump
CN115853780B (en) * 2022-11-10 2023-09-12 江阴华西节能技术有限公司 Variable pitch screw vacuum pump

Similar Documents

Publication Publication Date Title
JP6428434B2 (en) Compressor
US8215933B2 (en) Scroll compressor and refrigerating machine having the same
CN103807166B (en) Scroll compressor having a plurality of scroll members
JP2013167168A (en) Scroll compressor
US20150285249A1 (en) Scroll compressor
JP2014177887A (en) Screw compressor
JP5433604B2 (en) Scroll compressor
JP6126512B2 (en) Compressor
JP2017110517A (en) Screw fluid machine
WO2019044867A1 (en) Scroll-type compressor
JPH0826865B2 (en) 2-cylinder rotary compressor
JP7350876B2 (en) Compressor body and compressor
JP2011163205A (en) Compression device
JP2003148366A (en) Multiple stage gas compressor
JP2011174453A (en) Scroll compressor
CN105392996A (en) Screw compressor
JPH056037B2 (en)
JP6511321B2 (en) Refueling displacement compressor
WO2018012411A1 (en) Open-type refrigerant compressor
CN116710655A (en) Screw compressor
US10082140B2 (en) Scroll compressor having compression chamber communicating with discharge port via a gap between recessed part formed on front face of movable-side plate and tip of fixed-side lap
CN114651128B (en) Scroll compressor having a scroll compressor with a suction chamber
US11719241B2 (en) Screw compressor having a lubrication path for a plurality of suction side bearings
CN108934174B (en) Screw fluid machine
WO2016121021A1 (en) Screw compressor