JPH0635968B2 - Method for continuous flow analysis of colloidal charge - Google Patents

Method for continuous flow analysis of colloidal charge

Info

Publication number
JPH0635968B2
JPH0635968B2 JP62273551A JP27355187A JPH0635968B2 JP H0635968 B2 JPH0635968 B2 JP H0635968B2 JP 62273551 A JP62273551 A JP 62273551A JP 27355187 A JP27355187 A JP 27355187A JP H0635968 B2 JPH0635968 B2 JP H0635968B2
Authority
JP
Japan
Prior art keywords
titrant
sample
indicator
titration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62273551A
Other languages
Japanese (ja)
Other versions
JPH01116448A (en
Inventor
千秋 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP62273551A priority Critical patent/JPH0635968B2/en
Publication of JPH01116448A publication Critical patent/JPH01116448A/en
Publication of JPH0635968B2 publication Critical patent/JPH0635968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水処理等で多用されるコロイド滴定法の連続
流れ分析方法に関する。
TECHNICAL FIELD The present invention relates to a continuous flow analysis method of colloid titration method which is frequently used in water treatment and the like.

(従来の技術) コロイド滴定法は、通常高分子陽イオン−高分子陰イオ
ン間の反応を利用して、主として高分子電解質を滴定す
る分析法であり、正コロイドイオンに対しては、ポリビ
ニル硫酸カリウム(PVSK)を、負コロイドイオンに対して
は、Cat-F10C(ポリ塩化ジアリルジメチルアンモニウ
ム)をそれぞれ滴定剤として用いることができるもので
ある。
(Prior Art) The colloid titration method is an analytical method in which a polyelectrolyte is mainly titrated by utilizing a reaction between a high molecular cation and a high molecular anion, and polyvinyl sulfate is used for a positive colloid ion. Potassium (PVSK) and Cat-F10C (diallyldimethylammonium chloride) can be used as titrants for negative colloidal ions.

コロイド滴定法において従来から用いられている滴定終
点の決定法を図3に示す。測定量(図3では、透過光
量)と滴定剤添加量との関係を求めた後、以下に示すい
ずれかの定義に該当する点を演算もしくは作図によって
求めて滴定終点としている。
FIG. 3 shows a conventional method for determining the titration end point in the colloid titration method. After the relationship between the measured amount (the amount of transmitted light in FIG. 3) and the amount of the titrant added, the point corresponding to any of the following definitions is calculated or drawn to be the titration end point.

a)測定値が急激に変化し始める点(以下、変曲点法) b)測定値が急激に変化する点の前後における測定量の
差を二等分割する点(以下、二等分法) c)滴定剤添加量と測定値との関係を微分し、該微分量
が極大となる点(以下、微分法)このような滴定終点の
決め方をする従来のコロイド滴定法においては 1)滴定操作終了後に、滴定終点を演算もしくは作図に
より決定するため、リアルタイムで終点決定ができな
い。
a) A point at which the measured value starts to change rapidly (hereinafter referred to as an inflection point method) b) A point at which the difference between the measured values before and after the point at which the measured value changes rapidly is divided into two equal parts (hereinafter referred to as the bisection method) c) A point at which the relationship between the amount of titrant added and the measured value is differentiated and the differentiated amount is maximized (hereinafter referred to as the differential method) In the conventional colloid titration method for determining the titration end point, 1) Titration operation Since the titration end point is determined by calculation or drawing after the end, the end point cannot be determined in real time.

2)このため、分析操作がバッチ方式となる。2) Therefore, the analysis operation is a batch method.

(発明が解決しようとする問題点) したがって、従来から用いられているコロイド滴定法
は、以下の欠点を持つ。
(Problems to be Solved by the Invention) Therefore, the conventionally used colloid titration method has the following drawbacks.

イ)滴定終点を求める操作が繁雑で、測定に手段と時間
がかかる。
B) The operation for determining the titration end point is complicated, and it takes time and means for measurement.

ロ)滴定終点をリアルタイムで決定できないため、分析
装置の連続化ができない。本発明は、滴定操作を自動
化、連続化して、上記の欠点を克服する。
B) Since the titration end point cannot be determined in real time, the analyzer cannot be made continuous. The present invention overcomes the above drawbacks by automating and serializing the titration operation.

(問題点を解決するための手段) 本発明は、前記のイ)の問題点を解決するために、アル
カリ度の測定に用いられている流れ分析の連続pH滴定技
術を応用し、かつこの技術を応用するには、コロイド滴
定では終点の決定が困難であるので、ロ)の問題点を解
決するために、出願人が最近開発した、測定開始直前の
測定値にあらかじめ定めた定数を乗じた値を終点として
定めておき、測定値がその値になったときに滴定終点に
達したとする。滴定終点のリアルタイム決定方法を用
い、この両者を組み合せたものである。
(Means for Solving the Problems) In order to solve the above problem (a), the present invention applies the continuous pH titration technique of flow analysis used for the measurement of alkalinity, and In order to solve the problem of (b), it is difficult to determine the end point by colloid titration in order to apply the above method. In order to solve the problem of (b), the applicant's recently developed measurement value was multiplied by a predetermined constant. A value is set as an end point, and the titration end point is reached when the measured value reaches that value. This is a combination of both using a real-time determination method of the end point of titration.

すなわち、本発明は、試料流路中の流れ方向に、B)試料
状態監視部、C)滴定剤混合部、及びD)滴定剤混合状態監
視部をこの順序で設け、B)における試料状態の測定量
(指示薬の変色、イオン活量、濁度あるいは伝導度等)
の値に、あらかじめ定めた定数を乗じた値を滴定終点と
して設定し、D)における滴定剤混合状態の測定量の値が
常時滴定終点になるように、試料もしくは滴定剤の両方
もしくはいずれか一方の流量を制御し、該滴定剤流量と
試料流量とを用いて、試料のコロイド荷電量を求めるこ
とを特徴とする、コロイド荷電量の連続流れ分析方法で
ある。本発明において採用する技術的手段は、例えば次
のとおりである。
That is, the present invention, in the flow direction in the sample flow path, B) sample state monitoring unit, C) titrant mixing unit, and D) titrant mixture state monitoring unit is provided in this order, the sample state in B) Measured amount (discoloration of indicator, ionic activity, turbidity or conductivity, etc.)
Is set as the titration end point, so that the value of the measured amount in the titrant mixed state in D) always becomes the titration end point, either the sample or the titrant, or either one of them. Is a continuous flow analysis method for the amount of colloidal charge, which is characterized in that the amount of colloidal charge of the sample is determined by controlling the flow rate of the sample and the flow rate of the titrant and the sample. The technical means adopted in the present invention are as follows, for example.

1)試料を連続的に流し、該流路中に川上から順番に、
指示薬混合部、指示薬混合状態監視部を設け、次いで、
滴定剤混合部及び滴定剤混合状態監視部を設ける。
1) The sample is continuously flowed, and in the flow path, in order from the river,
An indicator mixing section and an indicator mixing state monitoring section are provided, and then
A titrant mixing section and a titrant mixing state monitoring section are provided.

2)滴定剤混合部が滴定終点となるように、滴定剤もし
くは試料流量の両方もしくはいずれか一方を制御し、系
全体を滴定終了の状態に保つ。
2) Either or both of the titrant and the sample flow rate are controlled so that the titrant mixing section reaches the titration end point, and the entire system is kept in the titration completed state.

3)該状態下における試料流量、及び滴定剤流量の比か
ら、試料中のコロイド荷電量を演算する。
3) The colloidal charge amount in the sample is calculated from the ratio of the sample flow rate and the titrant flow rate under this condition.

4)滴定剤混合部の滴定終点を、指示薬混合部の測定量
にあらかじめ定めた定数を乗じた値とする。
4) The end point of titration in the titrant mixing section is a value obtained by multiplying the measured amount in the indicator mixing section by a predetermined constant.

5)測定量として、指示薬の呈色もしくは活量変化、試
料の電気伝導度あるいは濁度変化等を用いる。
5) As the measured quantity, the color change or activity change of the indicator, the electric conductivity or turbidity change of the sample, etc. are used.

(作用) 流れ分析法によって、連続的にコロイド滴定を行い、コ
ロイド荷電量を求める分析原理を、バッチ式の滴定法と
比較すると以下のとおりである。
(Operation) The analysis principle for continuously performing colloidal titration by the flow analysis method and obtaining the colloidal charge is compared with the batch type titration method as follows.

1)試料の採取量(Vs)の代わりに、流量(Qs)を用いる。1) Use the flow rate (Qs) instead of the sample collection amount (Vs).

2)滴定終点までに要する滴定剤の添加量(VT*)の代わ
りに、滴定終点とする滴定剤の流量(QT*)を用いる。
2) Instead of the amount of titrant added (VT *) required until the end of titration, the flow rate (QT *) of the titrant used as the end of titration is used.

3)コロイド荷電量(CC)は以下の式で求める。3) The colloidal charge (CC) is calculated by the following formula.

CC=k×VT*/VS(バッチ式滴定法) =k′×QT*/QS(連続滴定法) ここで、k,k′は滴定剤のファクターである。CC = k × VT * / VS (batch titration method) = k ′ × QT * / QS (continuous titration method) where k and k ′ are titrant factors.

4)したがって、コロイド荷電量を連続的に求めるに
は、滴定終点状態におけるQT*及びQSを求めればよい。
4) Therefore, in order to continuously obtain the amount of colloidal charge, QT * and QS at the titration end point state may be obtained.

そのためには、滴定終点をリアルタイムで検知し、滴定
剤混合後の試料が、常に滴定終点の状況となるように、
滴定剤もしくは試料の両方もしくは一方の流量を制御す
ればよい。本発明においては、かかる作業を行うため
に、試料流路中に、B)試料状態監視部、C)滴定剤混合
部、及びD)滴定剤混合状態監視部を設けている。B)にて
必要により事前に指示薬などを混合した試料の状態を監
視して、滴定終点を定義し、C)にて所定流量の滴定剤を
混合した後、D)にて滴定終点を検知する。滴定終点の決
定は、B)における測定値に所定の定数を乗じて行う。D)
において、その滴定終点の設定値と測定値とを比較し、
リアルタイムで滴定終点か否かの判断ができる。
For that purpose, the end point of titration is detected in real time, and the sample after mixing the titrant is always in the state of the end point of titration.
The flow rate of the titrant and / or the sample may be controlled. In the present invention, in order to perform such an operation, a sample state monitoring unit, a C) titrant mixing unit, and a D) titrant mixing state monitoring unit are provided in the sample flow path. If necessary, monitor the condition of the sample mixed with indicators beforehand in B), define the end point of titration, mix the predetermined amount of titrant in C), and detect the end point of titration in D). . The titration end point is determined by multiplying the measured value in B) by a predetermined constant. D)
In, compare the set value of the titration end point with the measured value,
It is possible to judge in real time whether the titration end point or not.

測定値としては、バッチ式の滴定に用いる方法をそのま
ま用いうる。指示薬の色変化、イオン活量の変化、滴定
混合後の試料の濁度あるいは伝導度変化等があげられ
る。B)部及びD)部に同一の測定機能を設ければよい。指
示薬の色変化、或いは試料の濁度変化を計測するには、
流路内に光学的測定部を設けるか、流路を光透過性のフ
ローセルとし、セル外部に光源及び受光素子を設ければ
よい。所定波長を選択することによって変色反応を検出
できる。イオンの活量変化を用いる場合には、B)及びD)
部にイオン電極を設置すればよい。測定量として指示薬
の色変化やイオン活量の変化を用いる場合には、B)部の
前に、A)指示薬混合部あるいは必要によりイオン混合部
を設け、B)部を指示薬混合状態監視部あるいはイオン混
合状態監視部として、試料の状態を監視する。
As the measured value, the method used for batch-type titration can be used as it is. Examples include color change of the indicator, change of ionic activity, change of turbidity or conductivity of the sample after titration and mixing. The same measurement function may be provided in the parts B) and D). To measure the color change of the indicator or the turbidity change of the sample,
An optical measuring unit may be provided in the flow channel, or the flow channel may be a light-transmissive flow cell and a light source and a light receiving element may be provided outside the cell. A color change reaction can be detected by selecting a predetermined wavelength. B) and D) when using the change in ion activity.
An ion electrode may be installed in the part. When a color change or a change in ion activity of the indicator is used as the measured amount, A) an indicator mixing section or an ion mixing section is provided if necessary before B) section, and B) section is an indicator mixing state monitoring section or The ion mixing state monitoring unit monitors the state of the sample.

本発明においては滴定終点として滴定剤の添加開始直前
における測定値(試料状態監視部における測定値)にあ
らかじめ設定した定数を乗じた値を採用する。これは、
従来から用いられている滴定終点の決定法である変曲点
法や二等分法では、作図や演算によって終点を求めるた
め、滴定終了や作図又は演算後でなければ滴定終点が決
定できなかったが、本発明では滴定終点をこのように厳
密に求める必要はなく、測定値は相対的に求められるか
ら、滴定終点をあらかじめ定めておき、測定値がそこに
達したら滴定終点とする簡便な方法を取ると、滴定終点
がリアルタイムで求められるという考え方によるもので
ある。
In the present invention, as the titration end point, a value obtained by multiplying the measurement value (measurement value in the sample state monitoring unit) immediately before the start of addition of the titrant by a preset constant is adopted. this is,
In the inflection point method and the halving method, which are conventionally used to determine the end point of titration, the end point is determined by drawing or calculation, so the end point of titration cannot be determined until the end of titration or after drawing or calculation. However, in the present invention, it is not necessary to strictly determine the titration end point in this way, and the measured value is relatively determined. Therefore, the titration end point is defined in advance, and when the measured value reaches there, a simple method of setting the titration end point. This is because the end point of titration can be obtained in real time.

その定数の取り方としては、滴定剤の添加開始直前にお
ける測定値に、乗じた値が滴定曲線の変曲域の初期にな
るようにするのが好ましい。これはそのようにすると溶
存塩類の影響が少なくてすむ。
As a method of obtaining the constant, it is preferable that the value obtained by multiplying the measured value immediately before the start of addition of the titrant is the initial value of the inflection region of the titration curve. This would reduce the effect of dissolved salts.

また、滴定剤の添加によって測定値が増大する場合には
その定数は1.1〜1.4とし、滴定剤の添加によって測定値
が低下する場合にはその定数は0.9〜0.6とする。定数を
このような範囲とすると、滴定剤の添加直前における測
定値にこれを乗じた値が滴定曲線の変曲域の初期とな
る。
When the addition of the titrant increases the measured value, the constant is set to 1.1 to 1.4, and when the addition of the titrant decreases the measured value, the constant is set to 0.9 to 0.6. When the constant is in such a range, the value obtained by multiplying the measured value immediately before the addition of the titrant by this becomes the initial value of the inflection region of the titration curve.

D)部の出力によって、滴定剤もしくは試料流量を制御す
る方法は、従来から用いられているフィードバック制御
法をそのまま用いうる。
As a method of controlling the titrant or the sample flow rate by the output of the section D), a feedback control method which has been conventionally used can be used as it is.

制御対象としては、滴定剤あるいは試料流量のいずれで
もよい。用いる流量レベル、ポンプの精度等によって選
定できるが、セル内の滞留時間を一定に保つほど反応条
件が一定となり、分析精度が上がる。そのためには、流
量の大きい方を一定にし、流量の少ない方を制御対象と
すると好ましい。
Either the titrant or the sample flow rate may be controlled. It can be selected depending on the flow rate level to be used, the accuracy of the pump, etc., but as the residence time in the cell is kept constant, the reaction conditions become constant and the analysis accuracy increases. For that purpose, it is preferable that the larger flow rate be constant and the smaller flow rate be the control target.

(実施例) 以下実施例により本発明を具体的に説明する。本発明は
これらの実施例のみに限定されるものではない。
(Example) Hereinafter, the present invention will be specifically described with reference to examples. The invention is not limited to these examples only.

実施例1 B)部及びD)部に、内径20mm長さ50mmのガラス製フローセ
ルを用い、試料流量を50ml/minとし、指示薬として0.1
%トルイジンブルーを2.5ml/minで流し、滴定剤としてN
/800ポリビニル硫酸カリウム(PVSK)を用いる流れ分析計
を作成した。
Example 1 A glass flow cell having an inner diameter of 20 mm and a length of 50 mm was used in the parts B) and D), the sample flow rate was 50 ml / min, and the indicator was 0.1
% Toluidine blue at 2.5 ml / min, N as titrant
A flow analyzer was made using / 800 polyvinyl potassium sulfate (PVSK).

測定対象として、トルイジンブルーの変色反応を用い、
セル外部に光源(タングステンランプ及び干渉フィル
タ)及び受光素子(フォトダイオード)を設けて、波長
635nmにおける透過率を測定した。滴定終点を求めるさ
いにあらかじめ定めた定数は0.8とした。
As a measurement target, using the color change reaction of toluidine blue,
A light source (tungsten lamp and interference filter) and a light receiving element (photodiode) are provided outside the cell to
The transmittance at 635 nm was measured. A predetermined constant for determining the titration end point was 0.8.

試料として、溶解濃度既知のカチオンポリマー溶液(エ
バグロースC014G)を用い、滴定終点状態における滴定
剤流量から求めたコロイド荷電量とポリマー濃度との関
係を求めた。結果を図1に示す。両者の関係は、良好な
直線となった。
Using a cationic polymer solution with a known dissolution concentration (Ebagrose C014G) as a sample, the relationship between the amount of colloidal charge and the polymer concentration determined from the flow rate of the titrant at the end point of the titration was determined. The results are shown in Fig. 1. The relationship between the two became a good straight line.

実施例2 B)部及びD)部として、よう素イオン電極を設置し、指示
薬として0.1規定よう素溶液を試料流量(50ml/min)の1/1
00の流量で流し、滴定剤として1/1000規定CATFLOC溶液
を用いた。濃度既知のアニオンポリマー溶液(エバーグ
ロースA110)を用いて、滴定剤流量から求めたコロイド
荷電量と溶解濃度との関係を求めた。結果を図2に示
す。両者の関係は、良好な直線となった。
Example 2 An iodine ion electrode was installed as part B) and part D), and 0.1N iodine solution was used as an indicator at 1/1 of the sample flow rate (50 ml / min).
Flowing at a flow rate of 00, 1/1000 normal CATFLOC solution was used as a titrant. The relationship between the amount of colloidal charge obtained from the flow rate of the titrant and the dissolved concentration was obtained using an anionic polymer solution (Evergulose A110) of known concentration. The results are shown in Figure 2. The relationship between the two became a good straight line.

実施例3 下水汚泥にカチオンポリマーを添加し、ベルトプレスに
よって脱水して得た分離液を、実施例1の装置及び手分
析法によってコロイド荷電量を求めた。結果を表1に示
す。両者の相関性は良好で、本発明によれば、分析に要
する時間を短縮できる。
Example 3 The amount of colloidal charge of the separated liquid obtained by adding a cationic polymer to sewage sludge and dehydrating it with a belt press was measured by the apparatus of Example 1 and a manual analysis method. The results are shown in Table 1. The correlation between the two is good, and according to the present invention, the time required for analysis can be shortened.

(発明の効果) 本発明によれば、コロイド荷電量を精度よく、連続的に
測定できる。この方法は、ベルトプレスにおけるポリマ
ーの添加量の制御、あるいは浄水場における原水の凝集
剤の制御等に利用できる。
(Effects of the Invention) According to the present invention, the amount of colloidal charge can be measured accurately and continuously. This method can be used for controlling the amount of polymer added in a belt press, controlling the coagulant of raw water in a water purification plant, and the like.

【図面の簡単な説明】[Brief description of drawings]

図1は、エバグロースC014G溶液を試料とする場合の、
本発明の分析法により求められたコロイド荷電量はポリ
マー溶解濃度との関係を示し、 図2は、エバグロースA110溶液を試料とする場合の、本
発明の分析法により求められたコロイド荷電量とポリマ
ー溶解濃度との関係を示し、 図3は、コロイド滴定法において従来から用いられてい
る滴定終点の決定法を示す。
Figure 1 shows the case of using Ebagrose C014G solution as a sample.
The colloidal charge amount obtained by the analysis method of the present invention shows the relationship with the polymer dissolution concentration, and FIG. 2 shows the colloidal charge amount obtained by the analysis method of the present invention and the polymer when the ebagrose A110 solution is used as a sample. FIG. 3 shows the relationship with the dissolved concentration, and FIG. 3 shows a method for determining the titration end point that has been conventionally used in the colloid titration method.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】試料流路中の流れ方向に、B)試料状態監視
部、C)滴定剤混合部、及びD)滴定剤混合状態監視部をこ
の順序で設け、B)における試料状態の測定量(指示薬の
変色、イオン活量、濁度あるいは伝導度等)の値に、あ
らかじめ定めた定数を乗じた値を滴定終点として設定
し、D)における滴定剤混合状態の測定量の値が常時滴定
終点になるように、試料もしくは滴定剤の両方もしくは
いずれか一方の流量を制御し、該滴定剤流量と試料流量
とを用いて、試料のコロイド荷電量を求めることを特徴
とする、コロイド荷電量の連続流れ分析方法。
1. A method for measuring a sample state in B), wherein B) a sample state monitoring section, C) a titrant mixing section, and D) a titrant mixing state monitoring section are provided in this order in a flow direction in a sample flow path. A value obtained by multiplying the amount (discoloration of indicator, ionic activity, turbidity or conductivity, etc.) by a predetermined constant is set as the titration end point, and the value of the measured amount of the titrant mixed state in D) is always Colloidal charging, characterized in that the flow rate of the sample and / or the titrant is controlled so as to reach the end point of titration, and the colloidal charge of the sample is determined using the flow rate of the titrant and the sample. Method of continuous flow analysis of quantity.
【請求項2】試料流路中の流れ方向に、A)指示薬混合部
B)指示薬混合状態監視部、C)滴定剤混合部、及びD)滴定
剤混合状態監視部をこの順序で設けることを特徴とする
特許請求の範囲第1項記載のコロイド荷電量の連続流れ
分析方法。
2. A) indicator mixing section in the flow direction in the sample flow channel.
The continuous flow analysis of the amount of colloidal charge according to claim 1, wherein B) an indicator mixed state monitoring unit, C) a titrant mixing unit, and D) a titrant mixed state monitoring unit are provided in this order. Method.
【請求項3】指示薬として、トルイジンブルー、カルコ
ン等の変色指示薬を用い、B)指示薬混合状態監視部及び
D)滴定剤混合状態監視部における指示薬の変色状況を、
光源及び受光素子を用いて測定することを特徴とする特
許請求の範囲第2項記載のコロイド荷電量の連続流れ分
析方法。
3. A color change indicator such as toluidine blue or chalcone is used as the indicator, and B) an indicator mixed state monitoring unit and
D) The color change status of the indicator in the titrant mixed state monitor,
The continuous flow analysis method for the amount of colloidal charge according to claim 2, characterized in that the measurement is performed using a light source and a light receiving element.
【請求項4】イオンとして、滴定剤と反応し、その活量
を変化させるイオン種を用い、B)イオン混合状態監視部
及びD)滴定剤混合状態監視部においてイオン活量をイオ
ン電極によって測定することを特徴とする特許請求の範
囲第1項記載のコロイド荷電量の連続流れ分析方法。
4. An ion species that reacts with a titrant and changes its activity is used as an ion, and the ion activity is measured by an ion electrode in B) ion mixing state monitoring section and D) titrant mixing state monitoring section. The continuous flow analysis method for the amount of colloidal charge according to claim 1, wherein
JP62273551A 1987-10-30 1987-10-30 Method for continuous flow analysis of colloidal charge Expired - Lifetime JPH0635968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62273551A JPH0635968B2 (en) 1987-10-30 1987-10-30 Method for continuous flow analysis of colloidal charge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62273551A JPH0635968B2 (en) 1987-10-30 1987-10-30 Method for continuous flow analysis of colloidal charge

Publications (2)

Publication Number Publication Date
JPH01116448A JPH01116448A (en) 1989-05-09
JPH0635968B2 true JPH0635968B2 (en) 1994-05-11

Family

ID=17529392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62273551A Expired - Lifetime JPH0635968B2 (en) 1987-10-30 1987-10-30 Method for continuous flow analysis of colloidal charge

Country Status (1)

Country Link
JP (1) JPH0635968B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325904C (en) * 2002-11-28 2007-07-11 华南理工大学 Photometry of paper pulp suspension liquid colloid dissolving electric charge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910371B2 (en) * 2005-01-20 2011-03-22 Nalco Company Method of monitoring treating agent residuals in water treatment processes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2447960A1 (en) * 1973-10-09 1975-04-17 Oxford Lab TITRATION PROCEDURE AND DEVICE
JPS543395A (en) * 1977-06-10 1979-01-11 Canon Kk Nonnmydriasis eyeeground camera
JPS5526413A (en) * 1978-08-15 1980-02-25 Toshiba Corp Waveform analyzing unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325904C (en) * 2002-11-28 2007-07-11 华南理工大学 Photometry of paper pulp suspension liquid colloid dissolving electric charge

Also Published As

Publication number Publication date
JPH01116448A (en) 1989-05-09

Similar Documents

Publication Publication Date Title
US3723062A (en) Photoelectric endpoint detection
CN112041675A (en) Method and multiple analyte titration system for colorimetric endpoint detection
US5160439A (en) System for controlling coagulant treatment based on monitoring of plural parameters
JPH0529484B2 (en)
US3186799A (en) Apparatus for automatic analyzing
US5246590A (en) Water treatment to reduce fog levels controlled with streaming current detector
JPH0635968B2 (en) Method for continuous flow analysis of colloidal charge
CA2440852A1 (en) Continuous flow titration
Laitinen et al. Amperometric Titration of Calcium
Miller et al. Automated iodometric method for determination of trace chlorate ion using flow injection analysis
US3674370A (en) Chemical oxygen demand water analyzer
Gumbi et al. Direct spectrophotometric detection of the endpoint in metachromatic titration of polydiallyldimethylammonium chloride in water
US5531905A (en) System and method to control laundry waste water treatment
Nagy et al. Evaluation of acid—base titration curves obtained by the triangle-programmed titration technique in flowing solutions
JPH0368500A (en) Method for controlling rate of addition of polymer flocculant
JPS60114579A (en) Method for controlling etching solution
CN112945953B (en) Flow path system of continuous flow turbidimetry analyzer
GB2294038A (en) A fluid treatment system
JPH1099887A (en) Apparatus for controlling addition amount of flocculant
JPH0711487B2 (en) Real-time determination method of colloid titration end point
JPH10160668A (en) Method and device for measuring nitric acid concentration by continuous flow analysis method
JPS595857B2 (en) Oil concentration measuring device
CN220671363U (en) Analytical equipment of direct titration nitric acid concentration by acid-base indicator method
SU1604749A1 (en) Method of automatic control of process of cleaning of effluents from hexavalent chromium
SU514774A1 (en) Device for automatic control of wastewater treatment process