JPH0635610B2 - Pig iron manufacturing method - Google Patents

Pig iron manufacturing method

Info

Publication number
JPH0635610B2
JPH0635610B2 JP61071182A JP7118286A JPH0635610B2 JP H0635610 B2 JPH0635610 B2 JP H0635610B2 JP 61071182 A JP61071182 A JP 61071182A JP 7118286 A JP7118286 A JP 7118286A JP H0635610 B2 JPH0635610 B2 JP H0635610B2
Authority
JP
Japan
Prior art keywords
coal
tower
gas
ore
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61071182A
Other languages
Japanese (ja)
Other versions
JPS62228415A (en
Inventor
陽太郎 大野
国弘 近藤
正博 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP61071182A priority Critical patent/JPH0635610B2/en
Publication of JPS62228415A publication Critical patent/JPS62228415A/en
Publication of JPH0635610B2 publication Critical patent/JPH0635610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、予備還元工程を改良した銑鉄の製造方法に関
する。
TECHNICAL FIELD The present invention relates to a method for producing pig iron with an improved preliminary reduction step.

(従来技術) 銑鉄製造方法として、変成した還元ガスを用いたガス還
元工程がすでに工業化されている。他方資源的に豊かな
一般炭を還元剤として使用する方法としてロータリーキ
ルンによる方法が主流を占めている。しかしこの方法
は、設備費、熱効率、還元率等の点で検討の余地を残し
ている。また多段の流動層を形成して還元効率を高める
ことも考えられているが、鉱石粒子を下段に移動させる
機構にトラブルが多く発生し操作が困難であり、しかも
構造が複雑となる。
(Prior Art) As a pig iron manufacturing method, a gas reduction process using a modified reducing gas has already been industrialized. On the other hand, as a method of using resource-rich steaming coal as a reducing agent, a method using a rotary kiln occupies the mainstream. However, this method leaves room for consideration in terms of equipment costs, thermal efficiency, reduction rate, and the like. Further, it has been considered to form a multi-stage fluidized bed to enhance the reduction efficiency, but many troubles occur in the mechanism for moving the ore particles to the lower stage, and the operation is difficult, and the structure is complicated.

(発明が解決する技術的課題) この発明は、熱効率、還元率が高く、溶解炉の負荷を軽
減できるとともに、安定した操業を行なえる予備還元炉
を備えた銑鉄の製造方法を提供することを目的とする。
(Technical problem to be solved by the invention) The present invention provides a method for producing pig iron having a thermal reduction and a high reduction rate, capable of reducing the load of the melting furnace, and having a preliminary reduction furnace capable of performing stable operation. To aim.

(技術的課題を解決する手段) まず本発明は、次のような知見に着目してなされたもの
である。ガス流速を増加させていった場合、その流動化
状態の変化を模式的に第1図に示す。流動化開始流速U
mfをわずかに越えた流速では流動層は、均一に流動化し
ている(第1図(a))。ガス流速が増大すると余剰の
ガスが層内を気泡として通過するようになる(第1図
(b))。なおも流速を大きくすると第1図(c)、
(d)に示すようなスラッギング状態に移行する。この
場合層高が管径に比べ小さいと、スラッギング状態は発
生しない。
(Means for Solving the Technical Problem) First, the present invention was made by paying attention to the following knowledge. FIG. 1 schematically shows the change in the fluidized state when the gas flow rate is increased. Fluidization start flow velocity U
At a flow rate slightly exceeding mf, the fluidized bed is uniformly fluidized (Fig. 1 (a)). When the gas flow velocity increases, the surplus gas will pass through the layer as bubbles (Fig. 1 (b)). When the flow velocity is still increased, as shown in Fig. 1 (c),
The state shifts to the slugging state as shown in (d). In this case, if the bed height is smaller than the pipe diameter, the slugging state does not occur.

これに対して管径に比べ層高の大きな流動層の場合、層
底の分散板付近で発生した気泡が上昇するにつれて合一
し、管径いっぱいに広がり、粒子層と空隙が交互に存在
するような状態となる。このような状態の流動層をスラ
ッギング流動層という。空隙をスラッグ、空隙間の粒子
層の厚みをスラッグスペースといっている。各スラッグ
間の粒子層はピストン流で動き、粒子層内での粒子の混
合も少ないので、全体としての粒子の滞留時間は、流動
層に近くなり、単一の流動層でありながら、多段流動層
のような特性を持つ。その結果粒子の反応率、伝熱効率
が高くなることが期待される。
On the other hand, in the case of a fluidized bed with a bed height larger than the tube diameter, the bubbles generated near the dispersion plate at the bottom of the bed coalesce as they rise, spread to the full tube diameter, and particle layers and voids exist alternately. It becomes such a state. The fluidized bed in such a state is called a slugging fluidized bed. The void is called a slug, and the thickness of the particle layer between the voids is called a slug space. Since the particle layer between each slug moves in a piston flow and the mixing of particles in the particle layer is small, the residence time of the particles as a whole is close to that of a fluidized bed, and although it is a single fluidized bed, it has a multi-stage flow. Has layer-like properties. As a result, it is expected that the reaction rate of particles and the heat transfer efficiency will increase.

本発明は、この知見に着目してなされたもので、塔高/
塔径が5以上の細長い予備還元塔の下部から石炭を挿入
するとともに石炭燃焼ガスを吹込んで石炭を流動化燃焼
して乾留状態のチャーとし、これらガス及びチャーを上
方へ移動せしめ、かつ上部から鉱石粒子を挿入し上記ガ
スによりスラッギング状態の流動層を形成して鉱石粒子
を順次下段に移動させていき、この状態で鉱石粒子を順
次予熱し、予備還元していく工程と、予備還元した鉱石
粒子を取出して溶解炉にいれ、これを還元溶解する工程
とを具備した銑鉄の製造方法である。
The present invention was made by paying attention to this finding, and
Coal is inserted from the bottom of the elongated pre-reduction tower with a diameter of 5 or more, and coal combustion gas is blown to fluidize and burn coal to form char in the carbonization state, and these gases and char are moved upward, and from the top. Inserting ore particles and forming a fluidized bed in the slugging state by the above gas and moving the ore particles to the lower stage one by one, in this state sequentially preheating the ore particles and pre-reducing, and the pre-reduced ore The method for producing pig iron comprises the steps of taking out particles, putting them in a melting furnace, and reducing and melting the particles.

(実施例) 第2図は、銑鉄の製造装置を示す。この装置は、予備還
元塔11に溶解炉12を組合わせて構成されている。予
備還元塔11は、塔高/塔径を5以上、好ましくは5〜
20とする。予備還元塔11の下部には、石炭装入管1
3、炉頂ガス吹込管14、加熱空気吹込管15が取付け
られている。石炭装入管13には、インジェクショフィ
ーダー17を介して、炉頂ガス吹込管16が装着され、
このフィーダーの上部に石炭供給ホッパー18が装備さ
れている。また予備還元塔11の上部には、粉鉱石装入
管19が取付けられ、この装入管19に粉鉱石供給ホッ
パー20が装着されている。更に予備還元塔11の頂部
には炉頂ガス排気管21が取付けられている。ここに
は、ホットサイクロン22,23及び熱交換器24が装
着されている。ホットサイクロン22で集められた粉鉱
石は還元塔上部に戻される。熱交換器24では空気を加
熱しており、ここで加熱された空気が加熱空気吹込管1
5から還元塔内に供給される。熱交換器通過後の排ガス
の一部は昇圧機25によりインジェクション用としてイ
ンジェクションフィーダー17に供給される。還元塔1
1の下側部には、粉鉱石取出管26が取付けられ、予備
還元された粉鉱石を上記溶解炉12に供給するようにな
っている。溶解炉12では、供給された粉鉱石に酸素噴
出管27から酸素を吹き込んで鉱石粒子を溶解還元し
て、溶鉄とスラグを得る。溶解炉12で発生したCO等
のガスは還元塔頂部からの排ガスとともにインジェクタ
ー28から予備還元塔内に入る。
(Example) FIG. 2 shows an apparatus for producing pig iron. This apparatus is constructed by combining a pre-reduction tower 11 and a melting furnace 12. The preliminary reduction tower 11 has a tower height / tower diameter of 5 or more, preferably 5 to
20. At the lower part of the preliminary reduction tower 11, a coal charging pipe 1
3, a furnace top gas blowing pipe 14 and a heated air blowing pipe 15 are attached. A furnace top gas injection pipe 16 is attached to the coal charging pipe 13 via an injection feeder 17,
A coal supply hopper 18 is equipped on the top of this feeder. Further, a powder ore charging pipe 19 is attached to the upper portion of the preliminary reduction tower 11, and a powder ore supply hopper 20 is mounted on the charging pipe 19. Further, a furnace top gas exhaust pipe 21 is attached to the top of the preliminary reduction tower 11. Here, hot cyclones 22 and 23 and a heat exchanger 24 are mounted. The powdered ore collected by the hot cyclone 22 is returned to the upper part of the reduction tower. The heat exchanger 24 heats the air, and the air heated here is heated by the heated air blowing pipe 1
5 is supplied into the reduction tower. A part of the exhaust gas after passing through the heat exchanger is supplied to the injection feeder 17 for injection by the booster 25. Reduction tower 1
A powder ore take-out pipe 26 is attached to the lower part of the unit 1 to supply the pre-reduced powder ore to the melting furnace 12. In the melting furnace 12, oxygen is blown into the supplied powdered ore from the oxygen ejection pipe 27 to dissolve and reduce the ore particles to obtain molten iron and slag. The gas such as CO generated in the melting furnace 12 enters the preliminary reduction tower from the injector 28 together with the exhaust gas from the top of the reduction tower.

しかして予備還元塔では、下部から挿入された石炭が下
部からの空気により流動化燃焼され、乾燥状態のチャー
はガスとともに上方へ移動する。一方上部から挿入され
た鉱石粒子は、下部からのガスにより還元塔内で流動層
を形成する。この場合、予備還元塔が先に述べた様な細
長い形状のためガス層31を介して複数段の粒子層32
が形成される。本発明で塔高/塔径の比を5以上と限定
した理由は、この比未満では、複数段の粒子層32を形
成することができないためである。粒子層32を構成す
る固体粒子は、下部からのガスにより加熱、還元されな
がら順次下法に移動していく。そして粉鉱石取出管26
から溶解炉12に投入される。この予備還元塔11によ
れば、粒子の滞留時間が移動層に近くなっているので、
還元塔下部からのガスとの熱交換を順次行ない、その効
率がよい。また石炭の流動化燃焼により発生する熱の多
くは還元塔上部の還元帯に与えられ、かつ還元帯の排ガ
スの一部が途中に吹き込まれ残存するチャーにより還元
ガス中のCOとHの割合を増加させて還元力が再生さ
れ、これが鉱石の還元に利用される。なお実施例のよう
に、熱量補償のために酸素富化、予熱空気の吹込みを行
なうのが好ましい。
However, in the pre-reduction tower, the coal inserted from the lower part is fluidized and burned by the air from the lower part, and the dry char moves upward together with the gas. On the other hand, the ore particles inserted from the upper part form a fluidized bed in the reduction tower by the gas from the lower part. In this case, since the preliminary reduction tower has an elongated shape as described above, a plurality of particle layers 32 are provided through the gas layer 31.
Is formed. The reason why the tower height / tower diameter ratio is limited to 5 or more in the present invention is that if the ratio is less than this, it is not possible to form a plurality of stages of particle layers 32. The solid particles composing the particle layer 32 sequentially move to the lower method while being heated and reduced by the gas from the lower part. And powder ore take-out pipe 26
Is charged into the melting furnace 12. According to this pre-reduction tower 11, since the residence time of particles is close to the moving bed,
Heat exchange with the gas from the lower part of the reduction tower is carried out sequentially, and its efficiency is good. Most of the heat generated by fluidized combustion of coal is given to the reduction zone in the upper part of the reduction tower, and part of the exhaust gas in the reduction zone is blown in the middle of the coal and the residual char causes the proportion of CO and H 2 in the reduction gas. And the reducing power is regenerated, which is used for ore reduction. As in the embodiment, it is preferable to perform oxygen enrichment and blowing of preheated air for compensating the heat quantity.

下部の還元ガス発生帯と上部の還元帯との境界領域で
は、還元された鉱石粒子と下部から上昇してきたチャー
とが混合しており、このチャーにより鉱石粒子の付着を
防止することができる。この結果鉱石粒子の温度をかな
り上げることができる。例えば通常流動層による還元で
は粒子の場合700〜800℃程度、ペレットの場合1
000℃程度が上限であり、シャフト炉の場合は、90
0℃程度であるが、この方法では、チャーの混在により
上限温度を100〜200℃程度上昇することが可能で
ある。
In the boundary region between the lower reducing gas generation zone and the upper reducing zone, the reduced ore particles and the char rising from the lower portion are mixed, and this char can prevent the ore particles from adhering. As a result, the temperature of the ore particles can be increased considerably. For example, in the case of reduction in a normal fluidized bed, about 700 to 800 ° C. for particles and 1 for pellets
The upper limit is about 000 ° C, and in the case of a shaft furnace, 90
Although it is about 0 ° C., in this method, it is possible to raise the upper limit temperature by about 100 to 200 ° C. by mixing char.

またシャフト炉の場合は、粒子を切出す操作を機械的に
おこなわなければならず、ある程度冷却が必要となる
が、本発明方法では還元された粒子は、還元塔内で流動
化しているので高温のまま定期的に排出できる。従って
本発明方法では溶解炉に高温のまま鉱石粒子を供給でき
る利点がある。またこの発明では鉱石粒子の滞留時間を
一定に保つことができるので、安定した反応率を得るこ
とができる。溶解炉に鉱石粒子とともに挿入されるチャ
ーは、溶解炉における燃料となり有効に利用される。
Further, in the case of a shaft furnace, the operation of cutting out the particles must be performed mechanically and requires some cooling, but in the method of the present invention, the reduced particles are fluidized in the reduction tower, so that the temperature is high. It can be discharged as is. Therefore, the method of the present invention has an advantage that ore particles can be supplied to the melting furnace at a high temperature. Further, in the present invention, the residence time of the ore particles can be kept constant, so that a stable reaction rate can be obtained. The char that is inserted into the melting furnace together with the ore particles is effectively used as fuel in the melting furnace.

次に本発明方法の物質及び熱収支の計算例を第1図に併
記する。
Next, an example of calculation of the material and heat balance of the method of the present invention is also shown in FIG.

鉱石は、酸化度1.5、脈石分200Kgである。The ore has an oxidation degree of 1.5 and a gangue content of 200 kg.

石炭の工業分析結果は、固体酸素40%、揮発分50
%、灰分5%、水分5%であり、その元素分析結果
(d.a.f)は、C78%、H6%、O16%であ
る。
Industrial analysis results for coal show that solid oxygen is 40% and volatile matter is 50
%, Ash content 5%, water content 5%, and the elemental analysis results (daf) are C78%, H6%, and O16%.

原単位は、空気1130Nm、酸素52Nm、石炭
580Kgである。
Basic unit, the air 1130 nm 3, oxygen 52 nm 3, a coal 580 kg.

炉頂ガスの組成は、N43.8%、CO18.6%、
CO18.6%、H9.5%、HO9.5%であ
る。その熱量(燃焼熱)は、800Kcal/Nm
ある。
The composition of the furnace top gas is N 2 43.8%, CO 18.6%,
CO 2 is 18.6%, H 2 is 9.5%, and H 2 O is 9.5%. The amount of heat (heat of combustion) is 800 Kcal / Nm 3 .

取出管26には、95%還元された銑鉄1021Kg、ス
ラグ222Kg、チャー70Kgが取出され、溶解炉に供給
される。溶解炉では、1000Kgの溶鉄が得られる。
In the extraction pipe 26, 95% reduced pig iron 1021 kg, slag 222 kg, and char 70 kg are extracted and supplied to the melting furnace. In the melting furnace, 1000 kg of molten iron can be obtained.

(発明の効果) この発明によれば、予備還元塔内の鉱石を高還元率でホ
ットチャージすることができるので溶解炉の負荷を軽減
することができる。石炭を直接溶解炉にいれると、燃焼
が急激に起り、操業が不安定となるが、この発明ではチ
ャーとして入ってくるので、操業が安定する。
(Effect of the Invention) According to the present invention, the ore in the preliminary reduction tower can be hot-charged at a high reduction rate, so that the load on the melting furnace can be reduced. When coal is put directly into the melting furnace, combustion suddenly occurs and the operation becomes unstable. However, in the present invention, since it enters as char, the operation becomes stable.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)ないし同図(d)は流動化状態を分類して
示す説明図、第2図は本発明の銑鉄の製造方法の一例を
示す説明図である。 11……予備還元塔、12……溶解炉、13……石炭装
入管、14……炉頂ガス吹込管、15……加熱空気吹込
管、16……炉頂ガス吹込管、17……インジェクショ
ンフィダー、18……石炭供給ホッパー、19……粉鉱
石装入管、20……鉱石供給ホッパー、21……炉頂ガ
ス排気管、22,23……ホットサイクロン、24……
熱交換器、25……昇圧機、26……粉鉱石取出管、2
7……酸素噴出管、28……インジェクター
1 (a) to 1 (d) are explanatory views showing classified fluidized states, and FIG. 2 is an explanatory view showing an example of the method for producing pig iron of the present invention. 11 ... Preliminary reduction tower, 12 ... Melting furnace, 13 ... Coal charging pipe, 14 ... Furnace top gas blowing pipe, 15 ... Heating air blowing pipe, 16 ... Furnace top gas blowing pipe, 17 ... Injection feeder, 18 …… Coal supply hopper, 19 …… Powder ore charging pipe, 20 …… Ore supply hopper, 21 …… Top gas exhaust pipe, 22,23 …… Hot cyclone, 24 ……
Heat exchanger, 25 ... Booster, 26 ... Powder ore take-out pipe, 2
7 ... Oxygen ejection tube, 28 ... Injector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】塔高/塔径が5以上の細長い予備還元塔の
下部から石炭を挿入するとともに石炭燃焼ガスを吹込ん
で石炭を流動化燃焼して乾留状態のチャーとし、これら
ガス及びチャーを上方へ移動せしめ、かつ上部から鉱石
粒子を挿入し上記ガスによりスラッギング状態の流動層
を形成して鉱石粒子を順次下段に移動させていき、この
状態で鉱石粒子を順次予熱し、予備還元していく工程
と、予備還元した鉱石粒子を取出して溶解炉に入れ、こ
れを還元溶解する工程とを具備した銑鉄の製造方法。
1. A coal is inserted from the lower part of an elongated pre-reduction tower having a tower height / tower diameter of 5 or more, and coal combustion gas is blown to fluidize and burn coal to obtain char in a carbonization state. Move upward, and insert ore particles from the top, form a fluidized bed in the slugging state with the above gas and move the ore particles sequentially to the lower stage, preheat the ore particles sequentially in this state and pre-reduce A method for producing pig iron, comprising the steps of: going out, and taking out the pre-reduced ore particles, putting them in a melting furnace, and reducing and melting them.
JP61071182A 1986-03-31 1986-03-31 Pig iron manufacturing method Expired - Lifetime JPH0635610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61071182A JPH0635610B2 (en) 1986-03-31 1986-03-31 Pig iron manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61071182A JPH0635610B2 (en) 1986-03-31 1986-03-31 Pig iron manufacturing method

Publications (2)

Publication Number Publication Date
JPS62228415A JPS62228415A (en) 1987-10-07
JPH0635610B2 true JPH0635610B2 (en) 1994-05-11

Family

ID=13453256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61071182A Expired - Lifetime JPH0635610B2 (en) 1986-03-31 1986-03-31 Pig iron manufacturing method

Country Status (1)

Country Link
JP (1) JPH0635610B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938815A (en) * 1997-03-13 1999-08-17 The Boc Company, Inc. Iron ore refining method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129707A (en) * 1983-01-17 1984-07-26 Kawasaki Steel Corp Method and device for direct refining of metallic oxide

Also Published As

Publication number Publication date
JPS62228415A (en) 1987-10-07

Similar Documents

Publication Publication Date Title
AU612028B2 (en) Method and apparatus for reduction of material containing metal oxide
CN1036471C (en) A smelting reduction method with high productivity
US4530101A (en) Electric arc fired cupola for remelting of metal chips
JPS5913644B2 (en) How to carry out the exothermic process
US5613997A (en) Metallurgical process
CN1027289C (en) Improvements in or relating to pre-reduced iron oxide
US3928021A (en) Process of reducing iron ores
RU2299245C2 (en) Plant for producing melt iron provided with reducing apparatus operating in modified mode and having fluidized bed, production method with use of such plant
JP2732522B2 (en) Equipment for producing iron or non-ferrous metals from self-soluble or non-self-soluble, self-reducing ores ores
AU679662B2 (en) Reduction of iron oxide-containing materials with solid carbonaceous reducing agents
CN101445850A (en) Suspended secondary fast reduction process for iron-containing materials and device therefor
JP3057576B2 (en) Method and apparatus for heat treatment of particulate material
CN102002546B (en) Iron-containing material suspending and reducing device and process
US3585023A (en) Method and apparatus for reduction of iron ore
JPH0635610B2 (en) Pig iron manufacturing method
CN101445851A (en) Suspended reduction process for iron-containing materials and device therefor
JPH10506682A (en) Method for producing liquid pig iron or liquid pre-product and sponge and plant for carrying out this method
EP0618302A1 (en) Metallurgical processes and appartus
US1841602A (en) Treatment of iron ores and the like
CN201762356U (en) Iron-containing material suspension and reduction device
JPS6311609A (en) Prereduction device for iron ore
JPS58174512A (en) Method and apparatus for manufacting molten pig iron
JPH0130888B2 (en)
JP3083810B2 (en) Shaft furnace
JPS63140019A (en) Fluidized bed reduction device for iron ore