JPH0635399B2 - Method for producing high boiling hydrocarbon oil - Google Patents

Method for producing high boiling hydrocarbon oil

Info

Publication number
JPH0635399B2
JPH0635399B2 JP60180908A JP18090885A JPH0635399B2 JP H0635399 B2 JPH0635399 B2 JP H0635399B2 JP 60180908 A JP60180908 A JP 60180908A JP 18090885 A JP18090885 A JP 18090885A JP H0635399 B2 JPH0635399 B2 JP H0635399B2
Authority
JP
Japan
Prior art keywords
catalyst
styrene
hydrocarbon oil
product
hydrogenated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60180908A
Other languages
Japanese (ja)
Other versions
JPS6242938A (en
Inventor
義弘 成瀬
寿美子 酒井
利英 鈴木
吉久 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60180908A priority Critical patent/JPH0635399B2/en
Publication of JPS6242938A publication Critical patent/JPS6242938A/en
Publication of JPH0635399B2 publication Critical patent/JPH0635399B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭化水素油の製造法に関し、特に水素添加によ
る高沸点炭化水素油の製造法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a hydrocarbon oil, and more particularly to a method for producing a high boiling hydrocarbon oil by hydrogenation.

(従来の技術) 従来、高沸点炭化水素油としてはフェニルキシリルエ
タン、ジフェニルエーテルやアルキルジフェニル、
水素化ターフェニル、アルキルナフタレン、ジベン
ジルトルエン等が知られている。これら炭化水素油は、
常圧での沸点が290 〜380 ℃程度であり、比較的高温の
熱媒体や電気絶縁油、感圧複写紙用溶媒として用いられ
ている。
(Prior Art) Conventionally, as a high-boiling hydrocarbon oil, phenylxylylethane, diphenylether or alkyldiphenyl,
Hydrogenated terphenyl, alkylnaphthalene, dibenzyltoluene and the like are known. These hydrocarbon oils are
It has a boiling point of about 290 to 380 ° C at normal pressure, and is used as a relatively high-temperature heat medium, electrical insulating oil, and solvent for pressure-sensitive copying paper.

しかし、常圧での沸点が400 ℃付近のもので安定に使用
できる炭化水素系の熱媒体は知られていない。例えば、
フェニルキシリルエタンは で表される構造を有し、その沸点は300 ℃程度である。
However, there is no known hydrocarbon-based heat medium having a boiling point of around 400 ° C under normal pressure and which can be stably used. For example,
Phenylxylylethane is It has a structure represented by and its boiling point is about 300 ° C.

また、このフェニルキシリルエタン系の化合物の製造法
としては、1)特開昭48-97858号公報記載の硫酸や、特開
昭55-24144号公報記載のCF3SO3H 系のような均一系酸触
媒を用いる方法、2)特開昭53-135959 号公報記載のシリ
カアルミナ、特開昭55-24145号公報記載のゼオライト等
の固体酸触媒を用いる方法、3)特開昭56-18928号公報記
載のイオン交換樹脂を触媒とする方法が知られており、
アルキルベンゼンを用いてスチレン類をアラルキル化す
ることによりフェニルキシリルエタンを得ることができ
る。
In addition, as a method for producing the phenylxylylethane-based compound, 1) sulfuric acid described in JP-A-48-97858 or CF 3 SO 3 H-based compound described in JP-A-55-24144 is used. Method using homogeneous acid catalyst, 2) Method using solid acid catalyst such as silica alumina described in JP-A-53-135959, zeolite described in JP-A-55-24145, 3) JP-A-56- A method using an ion exchange resin described in Japanese Patent No. 18928 as a catalyst is known,
Phenylxylylethane can be obtained by aralkylating styrenes with alkylbenzene.

この種の化合物は沸点が300 ℃程度であり、あまり高温
では使用できない。また、このような方法で合成される
フェニルキシリルエタンにはスチレンは不飽和二量体が
若干量含まれているため、高温で使用すると熱重合等の
起こして粘度が上昇するなど不都合の場合がある。
This type of compound has a boiling point of about 300 ° C and cannot be used at too high temperatures. In addition, since phenylxylylethane synthesized by such a method contains a small amount of unsaturated dimer in styrene, in the case of inconvenience such as thermal polymerization causing viscosity increase when used at high temperature. There is.

(発明が解決しようとする問題点) 前述のように現在まで、400 ℃以上の沸点をもつ熱安定
性の高い炭化水素油は用意に入手することが不可能であ
る。近年、各種の熱処理プロセスや反応プロセスにより
400 ℃近辺で安定に用いられる熱媒が所望されている。
しかし、従来知られている組成物では340 〜 380℃が限
度であった。
(Problems to be Solved by the Invention) As described above, until now, it is impossible to easily obtain a hydrocarbon oil having a boiling point of 400 ° C. or higher and high heat stability. In recent years, due to various heat treatment processes and reaction processes
A heat medium that can be used stably at around 400 ° C is desired.
However, the limit is 340 to 380 ° C. in the conventionally known composition.

また、スチレン-アルキルベンゼン系においては、フェ
ニルキシリルエタンだけでなく、約400 ℃以上の沸点を
有する3〜4核体の生成収量を多くするためには、反応
温度を引下げる、スチレン類の濃度を高める等の操作が
必要である。しかし、反応条件、原料組成等により重合
二重結合を含む不飽和二〜四量体も多く生成する。この
ような不飽和体の存在は場合によっては都合のよいこと
もあるが、これは生成物の色相悪化の原因、熱安定性不
良の原因等となり不都合であることが多い。これを避け
るには、重合性の不飽和二重結合を水素添加する必要が
ある。
In addition, in the styrene-alkylbenzene system, in order to increase the production yield of not only phenylxylylethane but also 3 to 4 nuclides having a boiling point of about 400 ° C or higher, the reaction temperature should be lowered and the concentration of styrenes It is necessary to perform operations such as increasing However, depending on reaction conditions, raw material composition, etc., a large amount of unsaturated di-tetramer containing a polymerized double bond is also produced. The presence of such an unsaturated substance may be convenient in some cases, but it is often inconvenient because it causes deterioration of the hue of the product and poor thermal stability. To avoid this, it is necessary to hydrogenate the polymerizable unsaturated double bond.

(問題点を解決するための手段) 本発明は高沸点炭化水素油を得るために、陽イオン交換
膜を触媒としてアルキルベンゼンとスチレン類を任意の
割合で反応させ、スチレンの二〜四量体のオリゴマーと
スチレン-アルキルベンゼン付加物の混合物を製造す
る。
(Means for Solving Problems) In order to obtain a high boiling point hydrocarbon oil, the present invention reacts alkylbenzene with styrene at an arbitrary ratio using a cation exchange membrane as a catalyst to form a dimer or tetramer of styrene. A mixture of oligomer and styrene-alkylbenzene adduct is prepared.

次いで、混合物中に含まれる重合性の不飽和二重結合を
水素添加するために、これらの混合物を触媒の存在下に
50〜100 ℃において高圧水素により処理し、無色・無臭
の高沸点炭化水素油を製造する。
These mixtures are then added in the presence of a catalyst in order to hydrogenate the polymerizable unsaturated double bonds contained in the mixture.
It is treated with high-pressure hydrogen at 50-100 ℃ to produce colorless and odorless high boiling hydrocarbon oil.

原料のアルキルベンゼンとしては、例えばトルエン、エ
チレンベンゼン、o-キシレン、m-キシレン、p-キシレ
ン、各種トリメチルベンゼン、イソプロピルベンゼンな
どを用いることができる。これらのアルキルベンゼン原
料は単一成分としても混合物としても用いることができ
る。
As the alkylbenzene as a raw material, for example, toluene, ethylenebenzene, o-xylene, m-xylene, p-xylene, various trimethylbenzenes, isopropylbenzene and the like can be used. These alkylbenzene raw materials can be used as a single component or as a mixture.

他方の原料のスチレン類としては、例えばスチレン、α
-メチルスチレン、p-メチルスチレン等を用いることが
できる。
Examples of the other raw material styrene include styrene and α
-Methylstyrene, p-methylstyrene and the like can be used.

これらの原料のアルキルベンゼンとスチレン類の混合比
は任意であり、目的とする反応生成物の所望の組成に応
じて原料組成を変えることができる。一般に、アルキル
ベンゼンとスチレン類の混合比は99:1〜1:99の重量比に
することができる。
The mixing ratio of alkylbenzene and styrenes of these raw materials is arbitrary, and the raw material composition can be changed according to the desired composition of the desired reaction product. Generally, the mixing ratio of alkylbenzene and styrenes can be a weight ratio of 99: 1 to 1:99.

触媒として用いる陽イオン交換膜はSO3H基を有する陽イ
オン交換膜(例えばデュポン社のナフイオン(Nafion)-1
17,324)または同等のものであり、触媒としての効果を
あげるためには、反応物中のスチレン類に対して0.1 重
量%以上の割合で用いることが好ましい。また、この触
媒系で反応条件を変えることにより、ジアリールアルカ
ン、スチレンの線状および環状の二量体ないし四量体ま
でを含む高沸点の高芳香族性油の所望の組成で得ること
ができる。また、触媒は膜状であるために従来の酸触媒
のような触媒の除去工程が不必要である。
The cation exchange membrane used as a catalyst is a cation exchange membrane having SO 3 H groups (for example, Nafion-1 from DuPont).
17,324) or equivalent, and in order to exert the effect as a catalyst, it is preferably used in a proportion of 0.1% by weight or more based on the styrenes in the reaction product. Also, by changing the reaction conditions with this catalyst system, it is possible to obtain a desired composition of a high-boiling highly aromatic oil containing linear and cyclic dimers and tetramers of diarylalkane and styrene. . Further, since the catalyst is in the form of a film, the step of removing the catalyst such as the conventional acid catalyst is unnecessary.

次に、不飽和二重結合を水素添加する際に使用する触媒
としては、例えばNi/ケイソウ土、ラネーニッケル等が
ある。
Next, examples of the catalyst used for hydrogenating the unsaturated double bond include Ni / diatomaceous earth and Raney nickel.

このようにして得られた高沸点炭化水素油は、必要によ
り蒸留し、沸点300 ±20℃および400 〜430 ℃のものに
二分して、前者は高沸点溶剤、電気絶縁油等に後者は高
温熱媒体に用いることができる。
The high-boiling hydrocarbon oil obtained in this way is distilled, if necessary, and bisected to those with boiling points of 300 ± 20 ° C and 400 to 430 ° C, the former being a high-boiling solvent, electrical insulating oil, etc. It can be used as a heating medium.

(実施例) 以下、本発明の実施例を図面に基づき説明する。(Example) Hereinafter, the Example of this invention is described based on drawing.

第1図に示すように、第1工程は原料のアルキルベンゼ
ンをタンク1に、スチレンをタンク2に収容する。これ
らの原料をポンプ3によりラインミキサー4に送入し混
合した後、予熱機5に送り予熱する。
As shown in FIG. 1, in the first step, raw material alkylbenzene is stored in a tank 1 and styrene is stored in a tank 2. These raw materials are fed into the line mixer 4 by the pump 3 and mixed, and then fed to the preheater 5 for preheating.

予熱した混合物は、触媒をとりつけた反応器6に送入
し、反応温度30〜140 ℃、滞留時間1〜8時間に反応さ
せ、スチレンの二〜四量体のオリゴマーとスチレン-ア
ルキルベンゼン付加物の混合物を得る。
The preheated mixture was fed into a reactor 6 equipped with a catalyst and reacted at a reaction temperature of 30 to 140 ° C. for a residence time of 1 to 8 hours to obtain a distyrene tetramer oligomer and a styrene-alkylbenzene adduct. A mixture is obtained.

未反応のアルキルベンゼン等はフラッシュドラム7を用
いて回収し(回収率80〜90%)、残留する低沸点成分
は、蒸発器8で実質的に未反応成分を0.1 %以下にする
ようにする。このようにして得られた生成物は沸点が29
0 〜430 ℃の前記混合物であるので、一部不飽和二重結
合部分を含んでいる。
Unreacted alkylbenzene and the like are recovered by using the flash drum 7 (recovery rate: 80 to 90%), and the remaining low boiling point components are substantially reduced to 0.1% or less in the evaporator 8. The product thus obtained has a boiling point of 29.
Since it is the above mixture at 0 to 430 ° C., it partially contains unsaturated double bond moieties.

第2工程では、第1工程で得られた生成物をサージタン
ク9に溜め、水添反応器10で温和な条件下に水素添加す
る。この場合重要なことは、重合性の二重結合のみを選
択的に部分水素添加することである。
In the second step, the product obtained in the first step is stored in the surge tank 9 and hydrogenated in the hydrogenation reactor 10 under mild conditions. What is important here is the selective partial hydrogenation of only the polymerizable double bonds.

第1工程で得られた生成物中には、フェニル基と不飽和
二重結合部分の両方に被水素化構造が存在している。熱
媒体や高沸点溶剤に使用する場合、不飽和二重結合部分
のみを水素添加すると、十分熱安定性の高い生成物が得
られ、かつ水添生成物は無色無臭となる。このような部
分水素添加について各種検討したところ、Ni/ケイソウ
土系またはラネーニッケル系触媒を用いると好ましい結
果が得られることがわかった。
In the product obtained in the first step, hydrogenated structures are present in both the phenyl group and the unsaturated double bond portion. When used as a heating medium or a high boiling point solvent, hydrogenation of only the unsaturated double bond portion gives a product having sufficiently high thermal stability, and the hydrogenated product becomes colorless and odorless. As a result of various studies on such partial hydrogenation, it was found that favorable results were obtained by using a Ni / diatomaceous earth-based or Raney nickel-based catalyst.

特に50〜100 ℃および水素圧10〜150 kg/cm2(好まし
くは50〜70℃および水素圧50〜100 kg/cm2)にて、原
料に対して0.1 重量%以上の触媒を使用し水素添加する
と、選択的に不飽和二重結合を水素添加することができ
る。この場合、温度が50℃未満では水添反応速度が遅
く、100 ℃を越えると一部フェニル基が水素添加され、
重合性の不飽和二重結合がかえって増加することもあ
る。水素圧に関してそれほど厳格な制限はないが、反応
速度、装置材料、昇圧コスト等から考えると上記範囲が
適当である。
Particularly, at 50 to 100 ° C and hydrogen pressure of 10 to 150 kg / cm 2 (preferably 50 to 70 ° C and hydrogen pressure of 50 to 100 kg / cm 2 ), hydrogen of 0.1% by weight or more based on the raw material is used. Upon addition, unsaturated double bonds can be selectively hydrogenated. In this case, if the temperature is lower than 50 ° C, the hydrogenation reaction rate is slow, and if it exceeds 100 ° C, some phenyl groups are hydrogenated,
The number of polymerizable unsaturated double bonds may increase rather. The hydrogen pressure is not so strict, but the above range is appropriate considering the reaction rate, equipment materials, pressurization cost, and the like.

第3工程では、第2工程で得られた生成物を減圧蒸留塔
11にて蒸留し、沸点300 ±20℃の留分12(ベンゼン核2
個を含む二核体、例えばフェニルキシリルエタン、スチ
レンの二重体)および沸点400 〜430 ℃の留分13(ベン
ゼン核3〜4個を含む三〜四核体、例えばスチレンの四
量体、スチレン-アルキルイベンゼンの三核体)に分離
する。この工程は高温熱媒体の精製に有用である。用途
によっては、水添生成物14を二〜四核体の混合物として
用いることもできる。
In the third step, the product obtained in the second step is converted into a vacuum distillation column.
Distilled at 11 and distilled at a boiling point of 300 ± 20 ° C 12 (benzene core 2
A binuclear body containing 3 to 4 nuclei such as phenylxylylethane, a dimer of styrene) and a fraction 13 having a boiling point of 400 to 430 ° C. (3 to 4 nuclei containing 3 to 4 benzene nuclei, eg, a tetramer of styrene, Styrene-alkyl ibenzene trinuclear)). This step is useful for refining high temperature heat transfer media. Depending on the application, the hydrogenated product 14 can also be used as a mixture of di- to tetra-nuclear bodies.

実施例1 冷却器と温度計挿入口を有する容積2の三つ口フラス
コに、スチレン200 g、コークス炉軽油を精製して得ら
れるC8留分(混合キシレン)800 gを入れ、触媒として
ナフィオン(Nafion)-117をスチレンに対し1%添加し、
約100 ℃で2時間反応させた。未反応成分を蒸留回収し
た結果、このときのスチレンの反応率は98.1%でありGP
C (ゲルパーミエーションクロマトグラフィによる平均
分子量は267.5 であった。また、ヨウ素価は19.3でっ
た。
Example 1 200 g of styrene and 800 g of C 8 fraction (mixed xylene) obtained by refining coke oven gas oil were placed in a three-necked flask having a capacity of 2 and having a condenser and a thermometer inlet, and Nafion was used as a catalyst. (Nafion) -117 added to styrene 1%,
The reaction was carried out at about 100 ° C for 2 hours. As a result of distilling and collecting unreacted components, the reaction rate of styrene at this time was 98.1%.
C (The average molecular weight by gel permeation chromatography was 267.5. The iodine value was 19.3.

この精製物100 部に対し、2部のNi/ ケイソウ土触媒を
添加し、オートクレーブ中で水素初圧100kg/cm2、100
℃で50分反応させ、触媒をろ別して水添精製物95部を得
た。この水添精製物のヨウ素価は3.08であった。
To 100 parts of this refined product, 2 parts of Ni / diatomaceous earth catalyst was added, and the initial hydrogen pressure in the autoclave was 100 kg / cm 2 , 100
The reaction was carried out at 50 ° C for 50 minutes, and the catalyst was filtered off to obtain 95 parts of a hydrogenated product. The iodine value of this hydrogenated purified product was 3.08.

得られた水添精製物および原料についてガスクロマトグ
ラフや核磁気共鳴スペクトルを測定し決定した。第2図
に示したように、核磁気共鳴スペクトルから、水添前
(a) に比較して、水添後(b) の生成物では末端二重結合
部の成分のピーク(δ6.2 〜6.5ppm)が消失しているこ
とが確認された。
Gas chromatographs and nuclear magnetic resonance spectra of the obtained hydrogenated products and raw materials were measured and determined. As shown in FIG. 2, from the nuclear magnetic resonance spectrum, before hydrogenation
It was confirmed that the peak of the component of the terminal double bond (δ 6.2 to 6.5 ppm) disappeared in the product of (b) after hydrogenation as compared with (a).

実施例2,3 水添条件を第1表に示すように変更した点を除いて、実
施例1と同様に反応させて水点生成物を得た。このとき
の水素の消費量(水素モル/100 g試料)および生成物
のヨウ素価を第1表に示す。
Examples 2 and 3 Water point products were obtained by the same reaction as in Example 1 except that the hydrogenation conditions were changed as shown in Table 1. Table 1 shows the hydrogen consumption (mol of hydrogen / 100 g sample) and the iodine value of the product.

なお、水素添加前のヨウ素価は19.3であった。The iodine value before hydrogenation was 19.3.

比較例1,2 水添条件を第1表に示すように変更した点を除いて、実
施例1と同様に反応させて水添生成物を得た。このとき
の水素の消費量(水素モル/100 g試料)および生成物
のヨウ素価を第1表に示す。
Comparative Examples 1 and 2 Hydrogenated products were obtained by the same reaction as in Example 1 except that the hydrogenation conditions were changed as shown in Table 1. Table 1 shows the hydrogen consumption (mol of hydrogen / 100 g sample) and the iodine value of the product.

実施例4 流通式反応装置に、スチレン20%および混合キシレン80
%の混合物を200 ml/時間の割合で流通し、実施例1
と同じ触媒を触媒/原料=0.01の割合で用い、滞留時間
3時間にて反応させた。得られた反応物を70℃にて1時
間、実施例1と同じ触媒を0.2 重量%用いて水素初圧10
0 kg/cm2で水素添加した。得られた水添生成物のヨウ
素価は3.5であった。
Example 4 20% styrene and 80 mixed xylenes were placed in a flow reactor.
% Mixture at a rate of 200 ml / hour, Example 1
The same catalyst was used in the ratio of catalyst / raw material = 0.01, and the reaction was carried out for a residence time of 3 hours. The resulting reaction product was heated at 70 ° C. for 1 hour and the same catalyst as in Example 1 was used at 0.2% by weight to obtain an initial hydrogen pressure of 10%.
Hydrogenated at 0 kg / cm 2 . The iodine value of the obtained hydrogenated product was 3.5.

実施例5 10の反応装置にスチレン2kg、混合キシレン3kgを入
れ、実施例1と同じ触媒をスチレンに対し1%添加し、
約120 ℃で3時間反応させた。同様にしてくり返し3回
反応させて15kg(内スチレン6kg)の原料から減圧蒸留
によりオリゴマー油7.7 kgを得た。この中から7kgをと
り20のオートクレーブ内で水素初圧100 kg/cm2、70
℃でNi/ケイソウ土触媒70g 用いて水素添加した。触媒
粒子を分離して得られた水添生成物は無色透明であっ
た。この水添生成物全量を10の蒸留装置に仕込み、減
圧蒸留し、10mmHgで約100 ℃までに留出した軽質分約40
0 gを除き、130 〜140 ℃で10〜5 mmHgで留出する二核
体を中心とする生成物3.2 kg及び釜残3.3 kgを得た。水
添精製物及び二核体、釜残(三〜四核体)の平均分子量
はそれぞれ、285.7,194.2,375,2 であった。
Example 5 2 kg of styrene and 3 kg of mixed xylene were placed in the reactor of 10 and the same catalyst as in Example 1 was added to 1% of styrene.
The reaction was carried out at about 120 ° C for 3 hours. In the same manner, the reaction was repeated 3 times to obtain 7.7 kg of oligomer oil from 15 kg of raw material (6 kg of styrene) by vacuum distillation. Take 7 kg from this and put it in 20 autoclaves at an initial hydrogen pressure of 100 kg / cm 2 , 70
Hydrogenated at 70 ° C with 70 g of Ni / diatomaceous earth catalyst. The hydrogenated product obtained by separating the catalyst particles was colorless and transparent. The total amount of this hydrogenated product was charged into a distillation device of 10 and distilled under reduced pressure, and about 40 mm of light fraction distilled up to about 100 ° C at 10 mmHg.
With the exception of 0 g, 3.2 kg of a product centered on a binuclear distillate at 10 to 5 mmHg at 130 to 140 ° C and 3.3 kg of a bottom residue were obtained. The average molecular weights of the hydrogenated refined product, the binuclear body and the kettle residue (3 to tetranuclear body) were 285.7, 194.2, 375 and 2, respectively.

(発明の効果) 以上、本発明によれば、従来にない高沸点炭化水素油、
特に高温熱媒体や高沸点溶剤、電気絶縁油として有用な
合成炭化水素油を極めて効率的に製造することができ
る。
(Effects of the Invention) As described above, according to the present invention, a high-boiling hydrocarbon oil which has never been obtained,
Particularly, a synthetic hydrocarbon oil useful as a high temperature heat medium, a high boiling point solvent, and an electric insulating oil can be produced very efficiently.

殊に本発明で得られる三〜四核体からなる組成物は沸点
が400 〜430 ℃の成分の混合物であり高温熱媒体として
秀れたものである。また、同時に得られる二核体成分も
比較的低温での熱媒体、高沸点溶剤、電気絶縁油として
用いられる。さらに、蒸留分離しない精製物である二〜
四核体混合物は誘電率が高く、コンデンサー用絶縁油と
して秀れている。
In particular, the composition comprising trinuclear to tetranuclear compounds obtained in the present invention is a mixture of components having a boiling point of 400 to 430 ° C. and is excellent as a high temperature heat medium. Further, the binuclear component obtained at the same time is also used as a heat medium at a relatively low temperature, a high boiling point solvent, and an electric insulating oil. Furthermore, it is a purified product that is not separated by distillation.
The tetranuclear mixture has a high dielectric constant and is excellent as an insulating oil for capacitors.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例による製造工程を示す線図、 第2図は実施例1において、水素添加前後の炭化水素油
の核磁気共鳴スペクトルを示すグラフであり、(a) は水
素添加前、(b) は水素添加後を示す。 1,2 ……原料タンク、3……ポンプ 4……ラインミキサー 5……予熱機、6……反応器 7……フラッシュドラム 8……蒸留器、9……サージタンク 10……水添反応器、11……減圧蒸留塔 12……沸点300 ±20℃留分 13……沸点400 〜430 ℃留分 14……水添生成物
FIG. 1 is a diagram showing a manufacturing process according to an example of the present invention, and FIG. 2 is a graph showing a nuclear magnetic resonance spectrum of a hydrocarbon oil before and after hydrogenation in Example 1, where (a) is before hydrogenation , (B) shows after hydrogenation. 1,2 …… Raw material tank, 3 …… Pump 4 …… Line mixer 5 …… Preheater, 6 …… Reactor 7 …… Flash drum 8 …… Distiller, 9 …… Surge tank 10 …… Hydrogenation reaction Vessel, 11 …… Vacuum distillation column 12 …… Boiling point 300 ± 20 ℃ fraction 13 …… Boiling point 400-430 ℃ fraction 14 …… Hydrogenated product

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C10G 45/32 2115−4H (72)発明者 河野 吉久 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location C10G 45/32 2115-4H (72) Inventor Yoshihisa Kono 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Stock Corporate Technology Research Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】陽イオン交換膜を触媒としてアルキルベン
ゼンとスチレン類を反応させ、スチレンの二〜四量体の
オリゴマーとスチレン-アルキルベンゼン付加物を含む
混合物を得、この混合物中に含まれる不飽和二重結合
を、触媒の存在下に50〜100 ℃にて高圧水素により水素
添加する高沸点炭化水素油の製造法。
1. A cation-exchange membrane is used as a catalyst to react alkylbenzene with styrenes to obtain a mixture containing a styrene di-tetramer oligomer and a styrene-alkylbenzene adduct, and the unsaturated disulfide contained in the mixture. A process for producing a high-boiling hydrocarbon oil in which heavy bonds are hydrogenated with high-pressure hydrogen at 50 to 100 ° C in the presence of a catalyst.
JP60180908A 1985-08-20 1985-08-20 Method for producing high boiling hydrocarbon oil Expired - Lifetime JPH0635399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60180908A JPH0635399B2 (en) 1985-08-20 1985-08-20 Method for producing high boiling hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60180908A JPH0635399B2 (en) 1985-08-20 1985-08-20 Method for producing high boiling hydrocarbon oil

Publications (2)

Publication Number Publication Date
JPS6242938A JPS6242938A (en) 1987-02-24
JPH0635399B2 true JPH0635399B2 (en) 1994-05-11

Family

ID=16091399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60180908A Expired - Lifetime JPH0635399B2 (en) 1985-08-20 1985-08-20 Method for producing high boiling hydrocarbon oil

Country Status (1)

Country Link
JP (1) JPH0635399B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350930B1 (en) 1998-08-25 2002-02-26 Nippon Petrochemicals Company, Limited Method for producing aromatic compound

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100290720B1 (en) 1998-01-15 2001-06-01 남창우 Method for preparing 1,1-diarylethane
DE69907132T2 (en) 1998-08-25 2004-03-18 Nippon Petrochemicals Co., Ltd. METHOD FOR PRODUCING LOW-FROM FRACTIONS
WO2005090796A1 (en) 2004-03-24 2005-09-29 Koganei Corporation Fluid pressure cylinder
JP2008025594A (en) * 2006-07-18 2008-02-07 Shimizu Gokin Seisakusho:Kk Actuator of emergency cut-off valve
PL2158233T3 (en) * 2007-06-07 2019-04-30 Albemarle Corp Adducts, adducts and oligomers, or adducts, oligomers and low molecular weight polymers, and their preparation
US8993684B2 (en) 2008-06-06 2015-03-31 Albemarle Corporation Low molecular weight brominated polymers, processes for their manufacture and their use in thermoplastic formulations
JO3423B1 (en) 2008-12-02 2019-10-20 Albemarle Corp Brominated Flame Retardants And Precursors Therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618928A (en) * 1979-07-24 1981-02-23 Nippon Petrochem Co Ltd Aralkylation of alkylbenzene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618928A (en) * 1979-07-24 1981-02-23 Nippon Petrochem Co Ltd Aralkylation of alkylbenzene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350930B1 (en) 1998-08-25 2002-02-26 Nippon Petrochemicals Company, Limited Method for producing aromatic compound

Also Published As

Publication number Publication date
JPS6242938A (en) 1987-02-24

Similar Documents

Publication Publication Date Title
JP4514839B2 (en) Process for producing pure aromatic compounds from reformed gasoline and apparatus for carrying out this process
US3786107A (en) Method of producing alkyl aromatics
JPH0635399B2 (en) Method for producing high boiling hydrocarbon oil
JPS5931560B2 (en) Synthesis of low viscosity, low pour point hydrocarbon lubricating oil
WO1999019278A1 (en) Process for preparing 2,6-dialkylnaphthalene
EP0098677A2 (en) Process for preparing dinitrobenzophenones
EP0191120B1 (en) Isomerization of cresols
US3772186A (en) Use of 1,3-bis(2-pyrrolidonyl) butane as a selective solvent for the recovery of aromatic hydrocarbons
US2560373A (en) Recovery and purification of durene
US4691063A (en) Isomerization of cresols
US2636909A (en) Production of akomatic
DE3141645A1 (en) METHOD FOR THE PRODUCTION OF FLUORENONE AND BIPHENYL PRODUCTS FROM A MULTI-NUCLEAR HYDROCARBON SUBSTRATE
US2734930A (en) Separation of ethylbenzene from crude
US4289918A (en) Aralkylation
CA1234841A (en) Process for the synthesis and purification of diisopropenylbenzene
JP2676053B2 (en) Liquid petroleum resin and method for producing the same
US4368343A (en) Process for producing high-vacuum oils
US3208974A (en) Process for preparing formaldehydearomatic hydrocarbon resin
US5004851A (en) Process to produce aromatics of low acid-wash color
WO2019118331A1 (en) Scalable synthesis of hydrogenated alpha styrene dimer
EP0282013B1 (en) Novel method for refining electrical insulating oil
CA1310987C (en) Process to produce aromatics of low acid-wash color
JPH0532574A (en) Production of m-cresol
SU891606A1 (en) Method of isolating aromatic hydrocarbons from their mixtures with nanoramotius
SU1116048A1 (en) Method of obtaining aromatic hydrocarbons