JPH063501A - Porous optical material - Google Patents

Porous optical material

Info

Publication number
JPH063501A
JPH063501A JP16324892A JP16324892A JPH063501A JP H063501 A JPH063501 A JP H063501A JP 16324892 A JP16324892 A JP 16324892A JP 16324892 A JP16324892 A JP 16324892A JP H063501 A JPH063501 A JP H063501A
Authority
JP
Japan
Prior art keywords
refractive index
porous optical
microholes
optical material
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16324892A
Other languages
Japanese (ja)
Inventor
Megumi Ishihara
恵 石原
Toshio Yoshihara
吉原俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP16324892A priority Critical patent/JPH063501A/en
Publication of JPH063501A publication Critical patent/JPH063501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To lower the refractive index of the above material than heretofore by dispersing microholes consisting of vacuum, air or gases, such as nitrogen, in place of superfine particle into a matrix material. CONSTITUTION:The microholes are dispersed into a transparent material to lower the refractive index of the transparent material itself to the lower refractive index. The microholes consist of the vacuum or gases and the size of the microholes is preferably from 10Angstrom to about the wavelength to be used. The transparent material may be any of a high-polymer material, inorg. material and inorg. high-polymer composite material. The refractive index may be provided with a distribution as well. This material is usable also as an optical thin-film material and is usable as an optical bulk material as well. Then, the refractive index of a treated surface layer in, for example, an antireflection treatment is approximate more to the refractive index of the air than heretofore and, therefore, a high antireflection effect is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多孔質光学材料に関
し、特に、透明材料の屈折率を低下させてなる多孔質光
学材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous optical material, and more particularly to a porous optical material obtained by reducing the refractive index of a transparent material.

【0002】[0002]

【従来の技術】屈折率の低い光学材料の適用分野には、
反射防止膜、光導波路、レンズ、プリズム等があり、デ
ィスプレイ表面からの反射を抑える防眩処理、光導波路
のクラッド等に用いられる。
2. Description of the Related Art In the field of application of optical materials having a low refractive index,
It has an antireflection film, an optical waveguide, a lens, a prism, etc., and is used for an antiglare treatment for suppressing reflection from the display surface, a cladding of an optical waveguide, and the like.

【0003】ところで、従来、屈折率の低い材料として
は、サイトップ(旭化成(株)製)等のフッ素化合物
(屈折率:1.34)やフッ化マグネシウム(屈折率:
1.38)等の化合物、及び、それらの超微粒子を樹脂
等に分散させて形成したもの等がある。
By the way, conventionally, as a material having a low refractive index, a fluorine compound (refractive index: 1.34) such as Cytop (manufactured by Asahi Kasei Corporation) or magnesium fluoride (refractive index:
1.38) and the like, and those formed by dispersing ultrafine particles thereof in a resin or the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、フッ素
化合物、フッ化マグネシウム等の屈折率は高々1.3程
度であり、これより低いものを得ることはできなかっ
た。
However, the refractive index of fluorine compounds, magnesium fluoride, etc. is at most about 1.3, and it has not been possible to obtain a refractive index lower than this.

【0005】また、超微粒子分散系材料では、その屈折
率は、マトリクス材料の屈折率と超微粒子の屈折率との
中間の値しかとることができず、フッ化マグネシウムの
超微粒子を用いても、1.38以下の値をとることはで
きない。
Further, in the ultrafine particle-dispersed material, its refractive index can take only an intermediate value between the refractive index of the matrix material and the refractive index of the ultrafine particles, and even if the ultrafine particles of magnesium fluoride are used. , 1.38 or less cannot be taken.

【0006】ところで、反射防止処理については、屈折
率の高い材料と低い材料を交互に積層する多層膜による
方法と、屈折率の高いガラスあるいはプラスチック等の
表面に屈折率の低い材料の単層を設ける方法等がある。
後者の場合、屈折率をガラスあるいはプラスチック表面
から徐々に低くし、空気の屈折率(=1)に近づけるほ
どその効果は大きい。そのためには、従来にない低い屈
折率を持つ材料が必要である。
As for the antireflection treatment, a method using a multilayer film in which a material having a high refractive index and a material having a low refractive index are alternately laminated, and a single layer of a material having a low refractive index on a surface of glass or plastic having a high refractive index. There is a method of setting.
In the latter case, the effect is greater as the refractive index is gradually lowered from the glass or plastic surface and the refractive index is closer to that of air (= 1). For that purpose, a material having a low refractive index which has never been obtained is required.

【0007】本発明はこのような状況に鑑みてなされた
ものであり、その目的は、従来にない低屈折率を可能に
する光学材料を提供することである。
The present invention has been made in view of such a situation, and an object thereof is to provide an optical material which enables a low refractive index which has never been obtained.

【0008】[0008]

【課題を解決するための手段】上記目的を達成すべく研
究の結果、マトリクス材料中に上記超微粒子の代わり
に、真空、空気あるいは窒素等のガスからなる微小な空
孔を分散させることにより、マトリクス材料より低い屈
折率の光学材料が得られることを見出して本発明を完成
したものである。この場合、この多孔質体の空孔は、連
続して繋がっている場合とそれぞれが独立した泡状の場
合とがある。
As a result of research to achieve the above object, as a substitute for the ultrafine particles in the matrix material, fine pores made of gas such as vacuum, air or nitrogen are dispersed, The present invention has been completed by finding that an optical material having a lower refractive index than a matrix material can be obtained. In this case, the pores of the porous body may be continuously connected or may be independent bubbles.

【0009】このような多孔質光学材料を作製する方法
としては、多くの方法が考えられるが、以下にいくつか
の例を示す。ただし、これらに限定されるものではな
い。
Many methods are conceivable for producing such a porous optical material, but some examples are shown below. However, it is not limited to these.

【0010】加熱、光あるいは電子線の照射により分
解して窒素等のガスを発生する物質をマトリクスとなる
樹脂のワニスに分散あるいは溶解させ、乾燥後、加熱、
光あるいは電子線照射により気泡を発生させ、多孔質体
を得る。マトリクス樹脂としては、アクリル樹脂、ポリ
エステル樹脂、ウレタン樹脂、ポリカーボネート樹脂
等、及び、それらの混合物、共重合体等があり、発泡物
質としては、ジアゾ化合物、過酸化物等、及び、それら
の混合物がある。
A substance that decomposes to generate a gas such as nitrogen by being heated, irradiated with light or an electron beam is dispersed or dissolved in a resin varnish serving as a matrix, dried, and then heated,
Bubbles are generated by light or electron beam irradiation to obtain a porous body. Examples of the matrix resin include acrylic resin, polyester resin, urethane resin, polycarbonate resin and the like, and a mixture thereof, a copolymer and the like, and examples of the foaming substance include a diazo compound, a peroxide and the like, and a mixture thereof. is there.

【0011】樹脂モノマーに発泡物質を分散あるいは
溶解させ、重合後あるいはその前又は同時に、加熱、光
照射、電子線照射により発泡させて多孔質体を作る。
A foaming substance is dispersed or dissolved in a resin monomer and foamed by heating, light irradiation or electron beam irradiation after, before or at the same time as polymerization to form a porous body.

【0012】重合による体積収縮率の大きい樹脂モノ
マーの重合により空孔を作り、多孔質体を得る。
Pores are formed by the polymerization of a resin monomer having a large volume shrinkage by polymerization to obtain a porous body.

【0013】重合する際に体積の膨張率が極端に異な
る2種以上のモノマーからの共重合体を合成する際に発
生する局部的な体積の収縮から微小な空孔を発生させて
多孔質体を得る。
Porous materials are produced by producing minute pores from local volume contraction that occurs when synthesizing a copolymer from two or more kinds of monomers having extremely different volume expansion coefficients during polymerization. To get

【0014】樹脂モノマーと相分離状態を示す材料と
シリコンオイル、液晶等とを混合して樹脂モノマーを重
合させた後、シリコンオイル、液晶等を取り除き多孔質
体を作る。
A resin monomer and a material exhibiting a phase separation state are mixed with silicone oil, liquid crystal or the like to polymerize the resin monomer, and then silicone oil, liquid crystal or the like is removed to form a porous body.

【0015】空気等のガスを含むマイクロカプセル
(マイクロバルーン)をのワニスに分散させ、乾燥し
て多孔質体を作る。
Microcapsules (microballoons) containing a gas such as air are dispersed in the varnish and dried to form a porous body.

【0016】金属アルコキサイドと有機高分子との共
加水分解、共重縮合(いわゆるゾル−ゲル法)により、
分子レベルの有機−無機複合体を作成し、加熱による有
機成分を分解させることによって、分子オーダーでの細
孔を有する多孔質体を合成する。
By cohydrolysis and copolycondensation (so-called sol-gel method) of metal alkoxide and organic polymer,
A molecular-level organic-inorganic composite is prepared, and an organic component is decomposed by heating to synthesize a porous body having pores on the molecular order.

【0017】このようにして得られる多孔質体は、反射
防止膜等の光学薄膜材料として用いることもできるし、
バルク状に形成して、レンズ、プリズム等に構成して用
いることもできる。これらにおいて、グラジエントな屈
折率分布を持たせることもできる。屈折率分布を持たせ
るには、微小空孔の密度を変化させればよい。
The porous body thus obtained can be used as an optical thin film material such as an antireflection film,
It can also be formed into a bulk shape and used as a lens, a prism or the like. In these, it is also possible to have a gradient refractive index distribution. In order to have a refractive index distribution, the density of the micro holes may be changed.

【0018】すなわち、本発明の多孔質光学材料は、透
明材料中に微小空孔を分散させてその透明材料自身の屈
折率より低い屈折率にしたことを特徴とするものであ
る。
That is, the porous optical material of the present invention is characterized in that micropores are dispersed in a transparent material to have a refractive index lower than that of the transparent material itself.

【0019】この場合、微小空孔は真空あるいは気体か
らなり、また、微小空孔の大きさは10Åから使用波長
程度であることが望ましい。透明材料としては、高分子
材料、無機材料、無機高分子複合材料何れであってもよ
い。そして、本発明の多孔質光学材料には屈折率に分布
を持たせることもできる。なお、本発明の多孔質光学材
料は、光学薄膜材料として用いることもでき、光学バル
ク材料として用いることもできる。
In this case, it is desirable that the micropores are made of vacuum or gas, and the size of the micropores is from 10Å to about the wavelength used. The transparent material may be any of a polymer material, an inorganic material and an inorganic polymer composite material. The porous optical material of the present invention can have a distribution in refractive index. The porous optical material of the present invention can be used as an optical thin film material or an optical bulk material.

【0020】[0020]

【作用】本発明においては、透明材料中に微小空孔を分
散させてその透明材料自身の屈折率より低い屈折率にす
ることができるので、例えば反射防止処理において、処
理表面層の屈折率を従来に比べてより空気の屈折率に近
づけることができるため、大きな反射防止効果が得られ
る。それ以外にも、低屈折率材料として各方面で有効に
利用し得る。
In the present invention, since it is possible to disperse fine pores in the transparent material to make the refractive index lower than that of the transparent material itself, for example, in the antireflection treatment, the refractive index of the treated surface layer is Since the refractive index of air can be made closer to that of the conventional one, a large antireflection effect can be obtained. Besides, it can be effectively used in various fields as a low refractive index material.

【0021】[0021]

【実施例】以下、本発明の多孔質光学材料のいくつかの
実施例について説明する。 実施例1 モノマーとして東亜合成(株)製のアクリル酸誘導体
(M−5600)を用い、この中に重合開始部材であり
窒素ガスを発生するα、α′−アゾイソブチロニトリル
を3.0重量%溶解し、基板上に塗布して電子線照射に
より表面をゆるやかに硬化させた後、基板を110℃で
加熱することにより、樹脂を硬化させると同時に、樹脂
中に微小な気泡を内在させた。次いで、アッベ法による
屈折率測定を行ったところ、気泡を内在させない樹脂と
比べて0.1%以下の屈折率低下が見られた。
EXAMPLES Some examples of the porous optical material of the present invention will be described below. Example 1 An acrylic acid derivative (M-5600) manufactured by Toagosei Co., Ltd. was used as a monomer, and α, α′-azoisobutyronitrile, which is a polymerization initiation member and generates nitrogen gas, was added in an amount of 3.0. It is melted in a weight percentage, coated on a substrate, the surface is gently cured by electron beam irradiation, and then the substrate is heated at 110 ° C. to cure the resin and at the same time allow minute bubbles to be present in the resin. It was Next, when the refractive index was measured by the Abbe method, it was found that the refractive index was decreased by 0.1% or less as compared with the resin in which no bubbles were contained.

【0022】比較例1 ガスを発生しない重合開始部材としてテトラメチルチウ
ラムジスルフィドを用いた以外は、実施例1と全く同様
にして樹脂を合成した。次いで、実施例1と同様の方法
で屈折率を測定したが、屈折率に変化は見られなかっ
た。
Comparative Example 1 A resin was synthesized in the same manner as in Example 1 except that tetramethylthiuram disulfide was used as a polymerization initiation member that does not generate gas. Then, the refractive index was measured by the same method as in Example 1, but no change was observed in the refractive index.

【0023】実施例2 モノマーの表面硬化の際に紫外線を用いた以外は、実施
例1と全く同様にして樹脂中に気泡を内在させた。次い
で、アッベ法による屈折率測定を行ったところ、気泡を
内在させない樹脂と比べて0.1%以下の屈折率低下が
見られた。
Example 2 Bubbles were incorporated in the resin in exactly the same manner as in Example 1 except that ultraviolet rays were used for the surface hardening of the monomer. Next, when the refractive index was measured by the Abbe method, it was found that the refractive index was decreased by 0.1% or less as compared with the resin in which no bubbles were contained.

【0024】実施例3 樹脂として東洋紡績(株)製のポリエステル(バイロン
−200)中に発泡部材として1.0重量%の2、2´
−アゾビス(2、4−ジメチルバレロニトリル)を溶解
し、基板上に塗布後、紫外線照射により発泡部材を分解
し、樹脂中に微小な気泡が内在させた。次いで、実施例
1と同様の方法で屈折率測定を行ったところ、気泡を内
在させない樹脂と比べて0.1%以下の屈折率の低下が
見られた。
Example 3 Polyester (Byron-200) manufactured by Toyobo Co., Ltd. was used as a resin, and 1.0% by weight of 2, 2'as a foam member.
-Azobis (2,4-dimethylvaleronitrile) was dissolved and applied on a substrate, and then the foamed member was decomposed by irradiation of ultraviolet rays, and fine bubbles were made to exist in the resin. Next, when the refractive index was measured by the same method as in Example 1, a decrease in the refractive index of 0.1% or less was observed as compared with the resin in which no bubbles were contained.

【0025】実施例4 金属アルコキサイドのテトラエトキシシラン50gと有
機高分子としてアミド基を繰り返し単位とするポリオキ
サゾリン5gとをエタノール30mlに溶かし、次い
で、この溶液に濃塩酸1.2gを45gの純水で希釈し
た溶液を添加し、基板上に広げて反応させた。生成した
ゲルを600℃で焼成し、有機高分子を分解させ、細孔
を生じさせた。有機高分子の分解温度以下で焼成した生
成物に比べて0.1%以下の屈折率低下が見られた。
Example 4 50 g of tetraethoxysilane of metal alkoxide and 5 g of polyoxazoline having an amide group as a repeating unit as an organic polymer were dissolved in 30 ml of ethanol, and then 1.2 g of concentrated hydrochloric acid was added to this solution in 45 g of pure water. The solution diluted with was added, spread on the substrate and reacted. The generated gel was fired at 600 ° C. to decompose the organic polymer and generate pores. A decrease in the refractive index of 0.1% or less was observed as compared with the product baked at the decomposition temperature of the organic polymer or lower.

【0026】[0026]

【発明の効果】以上の説明から明らかなように、本発明
の多孔質光学材料によると、透明材料中に微小空孔を分
散させてその透明材料自身の屈折率より低い屈折率にす
ることができるので、例えば反射防止処理において、処
理表面層の屈折率を従来に比べてより空気の屈折率に近
づけることができるため、大きな反射防止効果が得られ
る。それ以外にも、低屈折率材料として各方面で有効に
利用し得る。
As is apparent from the above description, according to the porous optical material of the present invention, it is possible to disperse fine pores in the transparent material to make the refractive index lower than that of the transparent material itself. Therefore, for example, in the antireflection treatment, the refractive index of the treated surface layer can be made closer to the refractive index of air as compared with the conventional case, and a large antireflection effect can be obtained. Besides, it can be effectively used in various fields as a low refractive index material.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 透明材料中に微小空孔を分散させてその
透明材料自身の屈折率より低い屈折率にしたことを特徴
とする多孔質光学材料。
1. A porous optical material, characterized in that micropores are dispersed in a transparent material to have a refractive index lower than that of the transparent material itself.
【請求項2】 前記微小空孔が真空あるいは気体からな
ることを特徴とする請求項1記載の多孔質光学材料。
2. The porous optical material according to claim 1, wherein the micropores are made of vacuum or gas.
【請求項3】 前記微小空孔の大きさが10Åから使用
波長程度であることを特徴とする請求項1又は2記載の
多孔質光学材料。
3. The porous optical material according to claim 1, wherein the size of the micropores is about 10Å to about the wavelength used.
【請求項4】 前記透明材料が高分子材料からなること
を特徴とする請求項1から3の何れか1項記載の多孔質
光学材料。
4. The porous optical material according to claim 1, wherein the transparent material is a polymer material.
【請求項5】 前記透明材料が無機材料からなることを
特徴とする請求項1から3の何れか1項記載の多孔質光
学材料。
5. The porous optical material according to claim 1, wherein the transparent material is an inorganic material.
【請求項6】 前記透明材料が無機高分子複合材料から
なることを特徴とする請求項1から3の何れか1項記載
の多孔質光学材料。
6. The porous optical material according to claim 1, wherein the transparent material is an inorganic polymer composite material.
【請求項7】 屈折率に分布を持たせたことを特徴とす
る請求項1から6の何れか1項記載の多孔質光学材料。
7. The porous optical material according to claim 1, wherein the refractive index has a distribution.
【請求項8】 光学薄膜材料として用いたことを特徴と
する請求項1から7の何れか1項記載の多孔質光学材
料。
8. The porous optical material according to claim 1, which is used as an optical thin film material.
【請求項9】 光学バルク材料として用いたことを特徴
とする請求項1から7の何れか1項記載の多孔質光学材
料。
9. The porous optical material according to claim 1, which is used as an optical bulk material.
JP16324892A 1992-06-23 1992-06-23 Porous optical material Pending JPH063501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16324892A JPH063501A (en) 1992-06-23 1992-06-23 Porous optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16324892A JPH063501A (en) 1992-06-23 1992-06-23 Porous optical material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002036645A Division JP3549108B2 (en) 2002-02-14 2002-02-14 Anti-reflective porous optical material

Publications (1)

Publication Number Publication Date
JPH063501A true JPH063501A (en) 1994-01-14

Family

ID=15770176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16324892A Pending JPH063501A (en) 1992-06-23 1992-06-23 Porous optical material

Country Status (1)

Country Link
JP (1) JPH063501A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045734A1 (en) * 1997-04-04 1998-10-15 Fuji Photo Film Co., Ltd. Antireflection films and image display device containing the same
EP1265080A2 (en) * 2001-05-25 2002-12-11 Shipley Company LLC Porous optical materials
JP2003512641A (en) * 1999-10-19 2003-04-02 ロリク アーゲー Topologically structured polymer coatings
WO2003035780A1 (en) * 2001-10-25 2003-05-01 Matsushita Electric Works, Ltd. Coating material composition and article having coating film formed therewith
JP2003246137A (en) * 2002-02-26 2003-09-02 Toppan Forms Co Ltd Ink for forming ink jet ink acceptive layer and recording sheet using the same
WO2006132351A1 (en) 2005-06-09 2006-12-14 Hitachi Chemical Company, Ltd. Method for forming antireflection film
US7256948B2 (en) 2004-03-30 2007-08-14 Nikon Corporation Anti-reflection coating, and optical element and optical system with anti-reflection coating
US7336421B2 (en) 2004-03-30 2008-02-26 Nikon Corporation Optical system with anti-reflection coating
JP2009128844A (en) * 2007-11-28 2009-06-11 Canon Inc Optical system and optical instrument having same
US7582351B2 (en) 2001-10-25 2009-09-01 Panasonic Electric Works Co., Ltd. Composite thin film holding substrate, transparent conductive film holding substrate, and panel light emitting body
JP2010054862A (en) * 2008-08-28 2010-03-11 Fujifilm Corp Antireflection porous optical material and method of manufacturing the same
US7758956B2 (en) 2005-02-16 2010-07-20 Fujifilm Corporation Antireflection film and polarizing plate and image display device using same
US8425984B2 (en) 2008-02-19 2013-04-23 Fujifilm Corporation Multilayer film and manufacturing method thereof
JP2013543655A (en) * 2010-09-30 2013-12-05 ▲海▼洋王照明科技股▲ふん▼有限公司 Organic electroluminescent device and manufacturing method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210858B1 (en) 1997-04-04 2001-04-03 Fuji Photo Film Co., Ltd. Anti-reflection film and display device using the same
WO1998045734A1 (en) * 1997-04-04 1998-10-15 Fuji Photo Film Co., Ltd. Antireflection films and image display device containing the same
JP2003512641A (en) * 1999-10-19 2003-04-02 ロリク アーゲー Topologically structured polymer coatings
US8906458B2 (en) 1999-10-19 2014-12-09 Rolic Ag Topologically structured polymer coating
JP4928038B2 (en) * 1999-10-19 2012-05-09 ロリク アーゲー Topologically structured polymer coating
EP1265080A2 (en) * 2001-05-25 2002-12-11 Shipley Company LLC Porous optical materials
EP1265080A3 (en) * 2001-05-25 2004-11-24 Shipley Company LLC Porous optical materials
US6967222B2 (en) 2001-05-25 2005-11-22 Shipley Company, L.L.C. Porous optical materials
US7582351B2 (en) 2001-10-25 2009-09-01 Panasonic Electric Works Co., Ltd. Composite thin film holding substrate, transparent conductive film holding substrate, and panel light emitting body
WO2003035780A1 (en) * 2001-10-25 2003-05-01 Matsushita Electric Works, Ltd. Coating material composition and article having coating film formed therewith
JP2003246137A (en) * 2002-02-26 2003-09-02 Toppan Forms Co Ltd Ink for forming ink jet ink acceptive layer and recording sheet using the same
US7336421B2 (en) 2004-03-30 2008-02-26 Nikon Corporation Optical system with anti-reflection coating
US7256948B2 (en) 2004-03-30 2007-08-14 Nikon Corporation Anti-reflection coating, and optical element and optical system with anti-reflection coating
US7758956B2 (en) 2005-02-16 2010-07-20 Fujifilm Corporation Antireflection film and polarizing plate and image display device using same
US7968181B2 (en) 2005-02-16 2011-06-28 Fujifilm Corporation Antireflection film and polarizing plate and image display device using same
WO2006132351A1 (en) 2005-06-09 2006-12-14 Hitachi Chemical Company, Ltd. Method for forming antireflection film
JP2009128844A (en) * 2007-11-28 2009-06-11 Canon Inc Optical system and optical instrument having same
US7626772B2 (en) 2007-11-28 2009-12-01 Canon Kabushiki Kaisha Optical system and optical apparatus having the same
US8425984B2 (en) 2008-02-19 2013-04-23 Fujifilm Corporation Multilayer film and manufacturing method thereof
JP2010054862A (en) * 2008-08-28 2010-03-11 Fujifilm Corp Antireflection porous optical material and method of manufacturing the same
JP2013543655A (en) * 2010-09-30 2013-12-05 ▲海▼洋王照明科技股▲ふん▼有限公司 Organic electroluminescent device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH063501A (en) Porous optical material
JP2610686B2 (en) Dispersion of liquid crystal droplets in a photopolymerization matrix and apparatus and method manufactured therefrom
CN103732391B (en) transparent laminated film
AU762653B2 (en) Method for preparing a latex with photochromic properties and uses thereof, particularly in ophthalmology
JP5345891B2 (en) Anti-glare film and method for producing the same
CA1197063A (en) Process of making articles of foamed polymethyl methacrylate
CN104267450A (en) Anti-glare Film, Manufacturing Method Of Same, Polarizing Plate And Image Display Device
JP2010090302A (en) Fine particle of curing type fluorine-based acrylic resin and optical material using the same
JP3549108B2 (en) Anti-reflective porous optical material
ES2365613T3 (en) PHOTOCROMIC MULTI-PAPER BODY AND METHOD FOR MANUFACTURING.
US5378391A (en) Liquid crystal film
US6197224B1 (en) Selectively reflective shaped articles
JP4099955B2 (en) (Polymer / liquid crystal) composite film display device and method for manufacturing the same
JP2004171023A (en) Porous optical material for antireflection
KR102187883B1 (en) Coating composition of multi function epoxy and arcyl series and manufacturing method thereof
KR20110034237A (en) Spherical multi-layer large polymer particles with low density and preparation method thereof
JP2003251750A (en) Optical film having coating layer for reducing interactive mottle
CN115097676B (en) Optical film with full-coverage electrode and light transmittance capable of being controlled in multiple areas and multiple levels and preparation method thereof
JP2934071B2 (en) Polymer-dispersed liquid crystal display device and method of manufacturing the same
JPH05119301A (en) Production of liquid crystal display element
JP2008102516A (en) Method of manufacturing (polymer/liquid crystal) composite film display
JP2007328124A (en) Optically anisotropic material and its manufacturing method
EP0799879A1 (en) A composite polymer/liquid crystal material suitable for modulated light transmission, and the process for its manufacture
JPS62239104A (en) Optical parts
FR2703690A1 (en) Electrooptical material based on liquid crystal dispersed in a polymer, process for production by chemical modification of the interface and device based on this material.