JPH06350089A - Reverse staggered type thin film-field effect transistor - Google Patents

Reverse staggered type thin film-field effect transistor

Info

Publication number
JPH06350089A
JPH06350089A JP13550993A JP13550993A JPH06350089A JP H06350089 A JPH06350089 A JP H06350089A JP 13550993 A JP13550993 A JP 13550993A JP 13550993 A JP13550993 A JP 13550993A JP H06350089 A JPH06350089 A JP H06350089A
Authority
JP
Japan
Prior art keywords
film
gate electrode
amorphous silicon
layer
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13550993A
Other languages
Japanese (ja)
Other versions
JP3163844B2 (en
Inventor
Shinichi Nishida
真一 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13550993A priority Critical patent/JP3163844B2/en
Publication of JPH06350089A publication Critical patent/JPH06350089A/en
Application granted granted Critical
Publication of JP3163844B2 publication Critical patent/JP3163844B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To reduce off-state current at the time light is applied without the generation of parasitic capacitance and to inhibit the polarization and effect of a fixed change on a back channel in a reverse staggered type self aligned TFT. CONSTITUTION:A channel protective film formed in self-alignment is in three layers of a first insulating 8, a Si:H film 9, and a second insulating layer 10 with respect to a gate electrode 2 in a reverse staggered self-aligned TFT. As a result, incident light to the channel is absorbed by the a-Si:H layer 9, thus inhibiting an increase in a photo off state current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマトリクス表示素子や密
着型イメージセンサーなどに用いる薄膜電界効果トラン
ジスタの構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a thin film field effect transistor used for a matrix display device, a contact type image sensor and the like.

【0002】[0002]

【従来の技術】ガラスなどの絶縁性基板上にシリコン薄
膜を用いて薄膜トランジスタを構成する技術は、アクテ
ィブマトリクス液晶表示装置を構成する中心的技術とし
て重要である。アクティブマトリクス液晶表示装置の高
性能化を図る上で、画素のスイッチング素子としての薄
膜電界効果トランジスタ(以下TFTと記す。)の高性
能化が要求される。その一つの方策として、TFTを自
己整合化して作成することにより、フォトリソグラフィ
プロセスの目合わせの負担を軽減し、TFTの低寄生容
量化と短チャネル化を行うことが提案されている。
2. Description of the Related Art A technique for forming a thin film transistor by using a silicon thin film on an insulating substrate such as glass is important as a central technique for forming an active matrix liquid crystal display device. In order to improve the performance of the active matrix liquid crystal display device, it is required to improve the performance of a thin film field effect transistor (hereinafter referred to as TFT) as a switching element of a pixel. As one of the measures, it has been proposed that the TFT be self-aligned to reduce the burden of alignment in the photolithography process and to reduce the parasitic capacitance and the channel of the TFT.

【0003】今日一般的に多く用いられているのは、ゲ
ート電極を基板側に配し、ソース・ドレイン電極を半導
体薄膜層の上部に配するいわゆる逆スタガード型TFT
である。この構造でゲート電極とソース・ドレイン電極
を自己整合的に形成する方法として、ゲート電極をマス
クとして背面露光を行うことによりチャネル領域のパッ
シベーション用の絶縁膜(チャネル保護膜)を自己整合
的に形成し、これをマスクとしてイオン注入を行い、選
択的に非晶質シリコン薄膜ソース・ドレイン領域として
n型不純物導入を形成した後、クロミウム(Cr)など
の金属を成膜し、n型不純物導入領域の表面部をシリサ
イド化させ、低抵抗にしてソース・ドレイン電極として
用いる方法が提案されている。この方式では、ゲート電
極とソース・ドレイン電極間の微妙な目合わせが、背面
露光を用いることにより自己整合的に形成されているた
め、その重なりを精密に制御でき、かつ寄生容量を低く
抑えることができる。
What is commonly used today is a so-called inverted staggered TFT in which the gate electrode is arranged on the substrate side and the source / drain electrodes are arranged above the semiconductor thin film layer.
Is. As a method of forming the gate electrode and the source / drain electrodes in a self-aligned manner with this structure, back surface exposure is performed using the gate electrode as a mask to form an insulating film (channel protective film) for passivation in the channel region in a self-aligned manner. Then, ion implantation is performed by using this as a mask to selectively form an n-type impurity introduction as an amorphous silicon thin film source / drain region, and then a metal such as chromium (Cr) is formed into a film to form an n-type impurity introduction region. There has been proposed a method of siliciding the surface portion of the to make the resistance low and using it as a source / drain electrode. In this method, since the delicate alignment between the gate electrode and the source / drain electrodes is formed in a self-aligned manner by using the backside exposure, the overlap can be precisely controlled and the parasitic capacitance can be kept low. You can

【0004】[0004]

【発明が解決しようとする課題】上述のTFTをアクテ
ィブマトリクス液晶表示装置に用いる場合、図3に示す
ようにガラス基板1の裏面より照明光が入射し、対向基
板14側で反射した光がTFTのバックチャネル側から
入射することが多い。この入射光は非晶質シリコン膜内
部でキャリアの生成を行うため、これに伴い電流の増大
が起こる。特に、ゲート電極2に負の電圧を印加した場
合、暗状態ではチャネルが空乏化しドレイン電流が非常
に低く抑えられいわゆるOFF状態となるのに対して、
光が照射されるとフォトキャリアによりOFF電流が大
きく増大する。
When the above-mentioned TFT is used in an active matrix liquid crystal display device, illumination light enters from the back surface of the glass substrate 1 and light reflected on the counter substrate 14 side is reflected by the TFT as shown in FIG. Often comes from the back channel side. Since this incident light generates carriers inside the amorphous silicon film, the current increases accordingly. In particular, when a negative voltage is applied to the gate electrode 2, in the dark state, the channel is depleted, the drain current is suppressed to a very low level, and a so-called OFF state is obtained.
When irradiated with light, the photo carrier causes a large increase in the OFF current.

【0005】このOFF電流の増大はTFTがスイッチ
ング素子としての役割を果たす上で大きな障害となる。
例えば、液晶ディスプレイの1画素の等価回路は図4の
ようになっている。この時、容量が0.050pf、O
FF抵抗が1012Ωとすると、この等価回路の時定数は
50msとなり、フレーム周期と同等となる。このよう
にOFF電流が流れると、電荷保持が不十分となり設定
した輝度からずれることになって、画面の輝度制御が困
難になる。
This increase in the OFF current is a major obstacle to the TFT functioning as a switching element.
For example, an equivalent circuit of one pixel of a liquid crystal display is as shown in FIG. At this time, the capacity is 0.050 pf, O
When the FF resistance is 10 12 Ω, the time constant of this equivalent circuit is 50 ms, which is equivalent to the frame period. When the OFF current flows in this way, charge retention becomes insufficient and the brightness deviates from the set brightness, making it difficult to control the brightness of the screen.

【0006】本発明の目的は、OFF電流の少ない逆ス
タガード型TETを提供することにある。
An object of the present invention is to provide an inverted staggered type TET with a small OFF current.

【0007】[0007]

【課題を解決するための手段】本発明の逆スタガード型
薄膜電界効果トランジスタは、透明絶縁性基板の一表面
を選択的に被覆するゲート電極と、前記ゲート電極を被
覆して前記透明絶縁性基板の一表面の少なくとも所定領
域に被着されたゲート絶縁膜と、前記ゲート電極と交差
して前記ゲート絶縁膜に選択的に被着された非晶質シリ
コン膜と、前記非晶質シリコン膜の少なくとも表面部に
選択的に形成された一対の不純物導入領域と、前記非晶
質シリコン膜の前記一対の不純物導入領域で挟まれた領
域を被覆する第1の絶縁層、ノンドープ非晶質シリコン
層および第2の絶縁層からなるチャネル保護膜とを有す
るというものである。
An inverted staggered thin film field effect transistor according to the present invention comprises a gate electrode for selectively covering one surface of a transparent insulating substrate and the transparent insulating substrate for covering the gate electrode. A gate insulating film deposited on at least a predetermined region of the one surface, an amorphous silicon film intersecting the gate electrode and selectively deposited on the gate insulating film, and an amorphous silicon film. At least a pair of impurity introduced regions selectively formed on the surface and a first insulating layer that covers a region sandwiched by the pair of impurity introduced regions of the amorphous silicon film, a non-doped amorphous silicon layer And a channel protective film formed of the second insulating layer.

【0008】[0008]

【作用】チャネル保護のノンドープ非晶質シリコン層に
より、バックチャネル側から入射した光はかなり吸収さ
れる。ノンドープ非晶質シリコンの吸収係数は、その膜
質および入射光の波長によりかなり異なるが、可視光に
対して通常5x105 cm-1程度である。この時ノンド
ープ非晶質シリコン層の膜厚を50nmとすると、この
層の透過率は1/10程度になる。
The non-doped amorphous silicon layer for channel protection absorbs light incident from the back channel side. The absorption coefficient of non-doped amorphous silicon varies considerably depending on the film quality and the wavelength of incident light, but is usually about 5 × 10 5 cm −1 with respect to visible light. At this time, if the thickness of the non-doped amorphous silicon layer is 50 nm, the transmittance of this layer becomes about 1/10.

【0009】フォトキャリアの生成は入射光強度にほぼ
比例しており、透過光強度が1/10になるとフォトキ
ャリアの量も1/10になり、光照射時のOFF電流を
ノンドープ非晶質シリコン層のないTETの1/10程
度に抑えることができるようになる。
The generation of photocarriers is almost proportional to the intensity of incident light. When the intensity of transmitted light becomes 1/10, the amount of photocarriers also becomes 1/10, and the OFF current at the time of light irradiation is non-doped amorphous silicon. It can be suppressed to about 1/10 of TET without a layer.

【0010】この時、ノンドープ非結晶シリコン層内部
にはフォトキャリアが生成するものの、高抵抗であり、
かつ誘電体でもないので分極や固定電荷がTFT内部の
電位分布に影響を与えることはほとんどない。
At this time, although photocarriers are generated inside the non-doped amorphous silicon layer, the resistance is high,
Moreover, since it is not a dielectric, polarization and fixed charges have almost no influence on the potential distribution inside the TFT.

【0011】一方、この構造を作成する際は、チャネル
保護膜を作成する時に、2つの絶縁層の間にノンドープ
非晶質シリコン層を挟み込んで成膜すること以外、通常
の自己整合構造の逆スタガード型TFTの工程と全く同
様にして作成することができる。
On the other hand, in forming this structure, a reverse of a normal self-aligned structure is adopted except that a non-doped amorphous silicon layer is sandwiched between two insulating layers when forming a channel protective film. It can be manufactured in exactly the same process as the staggered type TFT.

【0012】さらに、このようにして作製したノンドー
プ非晶質シリコン層の(遮光層)は、TFTのチャネル
領域に対して自己整合的に作成されており、この形成に
伴ってチャネル容量に付加して、余分な寄生容量が発生
することがない。
Furthermore, the non-doped amorphous silicon layer (light-shielding layer) thus formed is formed in a self-aligned manner with respect to the channel region of the TFT. With this formation, it is added to the channel capacitance. Therefore, no extra parasitic capacitance is generated.

【0013】[0013]

【実施例】図1に、本発明の一実施例の逆スタガート型
TFTの断面図を示す。
FIG. 1 is a sectional view of an inverted staggered type TFT according to an embodiment of the present invention.

【0014】この実施例は透明絶縁性基板(ガラス基板
1)の一表面を選択的に被覆するゲート電極2と、ゲー
ト電極2を被覆してガラス基板1の一表面の少なくとも
所定領域に被着されたゲート絶縁膜3と、ゲート電極2
と交差してゲート絶縁膜3に選択的に被着されたノンド
ープ非晶質シリコン膜(ノンドープa−Si:H膜5)
と、ノンドープa−Si:H膜5の少なくとも表面部に
選択的に形成された一対のn型不純物導入領域4−1,
4−2と、ノンドープa−Si:H膜5の一対のn型不
純物導入領域4−1,4−2で挟まれた領域を被覆する
第1の絶縁層8、ノンドープ非晶質シリコン層(遮光用
のノンドープa−Si:H層9)および第2の絶縁層1
0からなる3層のチャネル保護膜とを有するというもの
である。
In this embodiment, a gate electrode 2 which selectively covers one surface of a transparent insulating substrate (glass substrate 1) and a gate electrode 2 which covers the surface of at least a predetermined region of the one surface of the glass substrate 1 are deposited. Gate insulating film 3 and gate electrode 2
Non-doped amorphous silicon film (non-doped a-Si: H film 5) selectively crossed with and deposited on the gate insulating film 3
And a pair of n-type impurity introduction regions 4-1 selectively formed on at least the surface portion of the non-doped a-Si: H film 5.
4-2, the first insulating layer 8 that covers the region sandwiched by the pair of n-type impurity introduction regions 4-1 and 4-2 of the non-doped a-Si: H film 5, the non-doped amorphous silicon layer ( Non-doped a-Si: H layer 9) for shading and second insulating layer 1
It has a three-layer channel protective film of 0.

【0015】次に、この実施例の製造方法について説明
する。
Next, the manufacturing method of this embodiment will be described.

【0016】まず、図2(a)に示すように、ガラス基
板1上にクロミウム膜を150nmスパッタ法により形
成し、フォトリソグラフィによりゲート電極のレジスト
パタンを形成し、クロミウムをエッチングしてパターニ
ングして幅6μmのストライプ状のゲート電極2を形成
する。
First, as shown in FIG. 2A, a chromium film is formed on a glass substrate 1 by a 150 nm sputtering method, a resist pattern of a gate electrode is formed by photolithography, and chromium is etched and patterned. A stripe-shaped gate electrode 2 having a width of 6 μm is formed.

【0017】さらにこの上に、プラズマCVD法を用い
て、図2(b)に示すように、ゲート絶縁膜3として窒
化シリコン膜を400nm堆積する。次に、グロー放電
プラズマ中でSiH4 ガスを分解することによってノン
ドープ非晶質シリコン膜(a−Si:H膜5)を50n
m堆積する。次にプラズマCVD法で非晶質窒化シリコ
ン膜11を250nm堆積させる。
Furthermore, a plasma CVD method is used to deposit a silicon nitride film as a gate insulating film 3 to a thickness of 400 nm as shown in FIG. 2 (b). Then, the non-doped amorphous silicon film (a-Si: H film 5) is depleted by 50 n by decomposing SiH 4 gas in glow discharge plasma.
m. Next, an amorphous silicon nitride film 11 is deposited to a thickness of 250 nm by the plasma CVD method.

【0018】ここでポジ型フォトレジストを塗布し、ガ
ラス基板1の裏面から波長435nmの紫外光を照射す
る。このとき、ゲート電極2がマスクとして働くが、図
2(c)に示すように、ゲート電極を細らせた形のパタ
ンにフォトレジスト膜12を形成するため過度に露光を
行う。例えば、フォトレジスト膜12の厚さ1.5μm
のとき、照射光の強さは7mW/cm2 、露光時間は7
分とし、現像時間は2分とする。
Here, a positive photoresist is applied, and ultraviolet light having a wavelength of 435 nm is irradiated from the back surface of the glass substrate 1. At this time, the gate electrode 2 acts as a mask, but as shown in FIG. 2C, the photoresist film 12 is formed in a pattern in which the gate electrode is thinned, so that excessive exposure is performed. For example, the thickness of the photoresist film 12 is 1.5 μm
, The irradiation light intensity is 7 mW / cm 2 , and the exposure time is 7
Minutes, and the development time is 2 minutes.

【0019】このフォトレジスト膜12をマスクとして
非晶質窒化シリコン膜11を希弗酸によりエッチグす
る。これにより、図2(d)に示すように、幅5μmの
ストライプ状のチャネル保護膜11aがゲート電極2に
対して自己整合的に形成される。
The amorphous silicon nitride film 11 is etched with dilute hydrofluoric acid using the photoresist film 12 as a mask. As a result, as shown in FIG. 2D, the stripe-shaped channel protection film 11 a having a width of 5 μm is formed in self alignment with the gate electrode 2.

【0020】レジストを剥離後、イオン注入法によりリ
ンイオンを30kvで4x1015/cm2 だけ注入す
る。このようにすると、図2(e)に示すように、a−
Si:H膜5のチャネル保護膜11aに覆われていない
領域には、リンがドーピングされn型不純物導入領域4
−1,4−2が形成される。これに対して、チャネル保
護膜11aで覆われている領域ではドーピングが行われ
ない。このようにして、ソース・ドレイン領域(4−
1,4−2)をゲート電極に対して自己整合的に形成す
る。
After stripping the resist, phosphorus ions are implanted at 30 kv by 4 × 10 15 / cm 2 by the ion implantation method. By doing so, as shown in FIG.
A region of the Si: H film 5 which is not covered with the channel protective film 11a is doped with phosphorus and the n-type impurity introduction region 4 is formed.
-1, 4-2 are formed. On the other hand, doping is not performed in the region covered with the channel protective film 11a. In this way, the source / drain regions (4-
1, 4-2) is formed in self-alignment with the gate electrode.

【0021】しかる後に、希弗酸でチャネル保護膜11
aを除去し、改めてプラズマCVD法を用いてチャネル
保護膜を形成する。すなわち、図2(f)に示すよう
に、第1の絶縁層8(厚さ50nmの非晶質窒化シリコ
ン膜)、a−Si:H層9および第2の絶縁層10(厚
さ50nmの非晶質窒化シリコン膜)をプラズマCVD
法により連続的に形成する。a−Si:H層9の厚さは
少なくとも10nm,好しくは30nmとする。
Thereafter, the channel protection film 11 is formed with diluted hydrofluoric acid.
After removing a, the channel protection film is formed again by using the plasma CVD method. That is, as shown in FIG. 2F, the first insulating layer 8 (amorphous silicon nitride film having a thickness of 50 nm), the a-Si: H layer 9 and the second insulating layer 10 (having a thickness of 50 nm). Amorphous silicon nitride film) plasma CVD
It is formed continuously by the method. The thickness of the a-Si: H layer 9 is at least 10 nm, preferably 30 nm.

【0022】ここで、ポジ型フォトレジストを塗布し、
再びガラス基板1の裏面から紫外光を照射し、ゲート電
極パタンを投影する。この時のフォトレジスト膜は1回
目の背面露光で形成されるフォトレジスト膜12よりや
や広めになるよう露光時間と現像時間を制御する。例え
ば、フォトレジスト膜の厚さが同じのとき、照射光の強
さは7mW/cm2 、露光時間は4分30秒、現像時間
は1分20秒とする。
Here, a positive photoresist is applied,
UV light is again irradiated from the back surface of the glass substrate 1 to project the gate electrode pattern. The exposure time and the development time are controlled so that the photoresist film at this time is slightly wider than the photoresist film 12 formed by the first back exposure. For example, when the photoresist films have the same thickness, the irradiation light intensity is 7 mW / cm @ 2, the exposure time is 4 minutes 30 seconds, and the development time is 1 minute 20 seconds.

【0023】このレジスト膜をマスクにして前述の第2
の絶縁層8,a−Si:H層9,第1の絶縁膜8を連続
してドライエッチングすることにより、図2(g)に示
すように、幅5.7μmのストライプ状のチャネル保護
膜11bを形成する。
Using the resist film as a mask, the second
2G, the insulating layer 8, the a-Si: H layer 9, and the first insulating film 8 are continuously dry-etched to form a striped channel protective film having a width of 5.7 μm as shown in FIG. 11b is formed.

【0024】しかる後に、この表面を希弗酸で処理した
後、200nmのクロミウム膜を堆積し、図2(h)に
示すようにクロミウムシリサイド層7−1,7−2を形
成し、残ったクロミウム膜をパターニングしてソース・
ドレイン金属層6−1,6−2を形成する。
Thereafter, this surface was treated with dilute hydrofluoric acid, and then a 200 nm chromium film was deposited to form chromium silicide layers 7-1 and 7-2 as shown in FIG. Source the chromium film by patterning
Drain metal layers 6-1 and 6-2 are formed.

【0025】次に、図2(i)に示すように半導体層を
島状にパターニングする工程を経て、TFT全体を覆う
ように200nmのパッシベーション用の窒化シリコン
膜13を堆積する。
Next, as shown in FIG. 2I, a 200 nm silicon nitride film 13 for passivation is deposited so as to cover the entire TFT through a step of patterning the semiconductor layer into an island shape.

【0026】このようにして作製したTFTは図1に示
すように、TFTのチャネルが形成される領域がa−S
i:H層9で覆われているため、図5(ドレイン電圧1
0Vのときのドレイン電流対ゲート電圧特性を示すグラ
フ)に示すようにバックチャネル側から光を照射した場
合のオフ電流は、曲線23(従来例)と曲線24(一実
施例)とを比較すると分るように従来より1〜2桁程度
小さくすることができる。
In the TFT thus manufactured, as shown in FIG. 1, the region where the channel of the TFT is formed is aS.
i: Since it is covered with the H layer 9, as shown in FIG.
As shown in the graph showing the drain current vs. gate voltage characteristic at 0 V), the off current when light is irradiated from the back channel side is obtained by comparing the curve 23 (conventional example) with the curve 24 (one example). As can be seen, it can be reduced by about 1 to 2 digits from the conventional one.

【0027】[0027]

【発明の効果】一般に、アクティブマトリクス液晶ディ
スプレイでは、バックライト等による迷光がTFTのバ
ックチャネルに入射し、TFTのオフ時の抵抗が低下す
ることによる表示品質の劣化が表れることがあるが、本
発明のTFTを用いてセルアレイを構成すればオフ時の
抵抗の低下が1〜2桁程度抑えられ、このような表示品
質の劣化に対して著しい改善が見られるという効果があ
る。
In general, in an active matrix liquid crystal display, stray light due to a backlight or the like is incident on the back channel of the TFT, and the display quality may be deteriorated due to a reduction in the resistance when the TFT is off. If the cell array is formed by using the TFT of the invention, there is an effect that a decrease in resistance when off is suppressed by about 1 to 2 digits and a remarkable improvement can be seen against such deterioration of display quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の逆スタガード型TFTの断
面図である。
FIG. 1 is a cross-sectional view of an inverted staggered type TFT according to an embodiment of the present invention.

【図2】一実施例の製造方法の説明のため(a)〜
(i)に分図して示す工程順断面図である。
2A to 2C are explanatory views of a manufacturing method according to an embodiment.
It is a process order sectional view divided and shown in (i).

【図3】逆スタガード型TFTを用いたアクティブマト
リクス液晶表示素子の断面模式図である。
FIG. 3 is a schematic cross-sectional view of an active matrix liquid crystal display element using an inverted staggered TFT.

【図4】アクティブマトリクス液晶表示素子の1画素の
等価回路図である。
FIG. 4 is an equivalent circuit diagram of one pixel of an active matrix liquid crystal display element.

【図5】本発明の逆スタガード型TFTTにバックチャ
ネル側から光が入射した場合のオフ電流の増大が、従来
型のトランジスタに比して抑制されることを示すグラフ
である。
FIG. 5 is a graph showing that an increase in off-current when light is incident on the inverted staggered TFT T of the present invention from the back channel side is suppressed as compared with a conventional transistor.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ゲート電極 3 ゲート絶縁膜 4−1,4−2 n型不純物導入領域 5 ノンドープa−Si:H層 6−1,6−2 ソース・ドレイン金属層 7 金属シリサイド膜 8 第1の絶縁膜 9 遮光用のノンドープa−Si:H層 10 第2の絶縁膜 11 非晶質窒化シリコン膜 11a,11b チャネル保護膜 12 フォトレジスト膜 13 窒化シリコン膜 14 対向基板 15 照明光 16 液晶 17 容量 18 コモン電圧端子 19 TFT 20 走査線 21 信号線 22 暗特性 23 従来の光照射時の特性曲線 24 本発明によるTFTの光照射時の特性曲線 1 Glass Substrate 2 Gate Electrode 3 Gate Insulating Film 4-1, 4-2 n-type Impurity Introduction Region 5 Non-doped a-Si: H Layer 6-1, 6-2 Source / Drain Metal Layer 7 Metal Silicide Film 8 First Insulating film 9 Non-doped a-Si: H layer for light shielding 10 Second insulating film 11 Amorphous silicon nitride film 11a, 11b Channel protective film 12 Photoresist film 13 Silicon nitride film 14 Counter substrate 15 Illuminating light 16 Liquid crystal 17 Capacitance 18 common voltage terminal 19 TFT 20 scanning line 21 signal line 22 dark characteristic 23 conventional characteristic curve during light irradiation 24 characteristic curve during light irradiation of TFT according to the present invention

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透明絶縁性基板の一表面を選択的に被覆
するゲート電極と、前記ゲート電極を被覆して前記透明
絶縁性基板の一表面の少なくとも所定領域に被着された
ゲート絶縁膜と、前記ゲート電極と交差して前記ゲート
絶縁膜に選択的に被着された非晶質シリコン膜と、前記
非晶質シリコン膜の少なくとも表面部に選択的に形成さ
れた一対の不純物導入領域と、前記非晶質シリコン膜の
前記一対の不純物導入領域で挟まれた領域を被覆する第
1の絶縁層、ノンドープ非晶質シリコン層および第2の
絶縁層からなるチャネル保護膜とを有することを特徴と
する逆スタガード型薄膜電界効果トランジスタ。
1. A gate electrode that selectively covers one surface of a transparent insulating substrate, and a gate insulating film that covers the gate electrode and is deposited on at least a predetermined region of one surface of the transparent insulating substrate. An amorphous silicon film intersecting the gate electrode and selectively deposited on the gate insulating film, and a pair of impurity introduction regions selectively formed on at least a surface portion of the amorphous silicon film. And a channel protection film including a first insulating layer, a non-doped amorphous silicon layer, and a second insulating layer, which covers a region sandwiched by the pair of impurity introduction regions of the amorphous silicon film. Characteristic is an inverted staggered thin film field effect transistor.
【請求項2】 不純物導入領域およびチャネル保護膜が
ゲート電極と自己整合的に配置されている請求項1記載
の逆スタガード型薄膜電界効果トランジスタ。
2. The inverted staggered thin film field effect transistor according to claim 1, wherein the impurity introduction region and the channel protection film are arranged in a self-aligned manner with the gate electrode.
【請求項3】 不純物導入領域の表面部に金属シリサイ
ド層がチャネル保護膜と自己整合的に形成されている請
求項1または2記載の逆スタガード型薄膜電界効果トラ
ンジスタ。
3. The inverted staggered thin film field effect transistor according to claim 1, wherein a metal silicide layer is formed on the surface of the impurity introduction region in a self-aligned manner with the channel protection film.
JP13550993A 1993-06-07 1993-06-07 Method of manufacturing inverted staggered thin film field effect transistor Expired - Lifetime JP3163844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13550993A JP3163844B2 (en) 1993-06-07 1993-06-07 Method of manufacturing inverted staggered thin film field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13550993A JP3163844B2 (en) 1993-06-07 1993-06-07 Method of manufacturing inverted staggered thin film field effect transistor

Publications (2)

Publication Number Publication Date
JPH06350089A true JPH06350089A (en) 1994-12-22
JP3163844B2 JP3163844B2 (en) 2001-05-08

Family

ID=15153428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13550993A Expired - Lifetime JP3163844B2 (en) 1993-06-07 1993-06-07 Method of manufacturing inverted staggered thin film field effect transistor

Country Status (1)

Country Link
JP (1) JP3163844B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103704A (en) * 2006-09-22 2008-05-01 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
CN100416390C (en) * 2004-03-30 2008-09-03 乐金显示有限公司 Liquid crystal display device
JP2011135086A (en) * 2009-12-23 2011-07-07 Samsung Electronics Co Ltd Thin-film transistor, method of manufacturing the same, and display substrate using the same
US8513661B2 (en) 2008-01-23 2013-08-20 Canon Kabushiki Kaisha Thin film transistor having specified transmittance to light
JP2014107453A (en) * 2012-11-28 2014-06-09 Fujifilm Corp Oxide semiconductor element, method for manufacturing oxide semiconductor element, display device, and image sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109004058B (en) * 2018-07-11 2020-06-30 浙江大学 Germanium channel field effect transistor device with optical grid and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100416390C (en) * 2004-03-30 2008-09-03 乐金显示有限公司 Liquid crystal display device
JP2008103704A (en) * 2006-09-22 2008-05-01 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US8513661B2 (en) 2008-01-23 2013-08-20 Canon Kabushiki Kaisha Thin film transistor having specified transmittance to light
JP2011135086A (en) * 2009-12-23 2011-07-07 Samsung Electronics Co Ltd Thin-film transistor, method of manufacturing the same, and display substrate using the same
US9570621B2 (en) 2009-12-23 2017-02-14 Samsung Display Co., Ltd. Display substrate, method of manufacturing the same
JP2014107453A (en) * 2012-11-28 2014-06-09 Fujifilm Corp Oxide semiconductor element, method for manufacturing oxide semiconductor element, display device, and image sensor

Also Published As

Publication number Publication date
JP3163844B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
US7907226B2 (en) Method of fabricating an array substrate for liquid crystal display device
US6011274A (en) X-ray imager or LCD with bus lines overlapped by pixel electrodes and dual insulating layers therebetween
US7445948B2 (en) Method of making a TFT array with photo-imageable insulating layer over address lines
US6359672B2 (en) Method of making an LCD or X-ray imaging device with first and second insulating layers
US5976902A (en) Method of fabricating a fully self-aligned TFT-LCD
JP4750236B2 (en) Thin film transistor semiconductor structure
US5610082A (en) Method for fabricating thin film transistor using back light exposure
US5712494A (en) Thin film field effect transistor having an extension portion acting as a light shield and back gate
JP3386017B2 (en) Method of manufacturing thin film transistor for liquid crystal display device
US6225644B1 (en) Semiconductor TFT, producing method thereof, semiconductor TFT array substrate and liquid crystal display using the same
KR910009040B1 (en) Method of manufacturing an amphorous-silicon thin film transistor
US6300174B1 (en) Liquid crystal panel having a thin film transistor for driver circuit and a method for fabricating thereof
US5719078A (en) Method for making a thin film transistor panel used in a liquid crystal display having a completely self-aligned thin film transistor
KR100272266B1 (en) Thin film transistor and method of manufacturing same
JP3163844B2 (en) Method of manufacturing inverted staggered thin film field effect transistor
JPH09260678A (en) Manufacture of thin-film semiconductor device
KR100908850B1 (en) Driving element for driving circuit-integrated liquid crystal display device and manufacturing method of switching element
JPH0933944A (en) Liquid crystal display device
JPH1051001A (en) Thin film transistor, liquid crystal display device using it, and manufacture of the thin film transistor
JPH07142737A (en) Manufacture of thin-film transistor
KR100218578B1 (en) Structure and its manufacturing method of liquid crystal display device
JP3259769B2 (en) Thin film integrated device
KR970003742B1 (en) Thin film transistor manufacturing method
JPH04233512A (en) Production of active matrix substrate
JPH0936375A (en) Manufacture of thin-film semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080302

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 13

EXPY Cancellation because of completion of term