JPH0634906B2 - Hydrogen separator - Google Patents

Hydrogen separator

Info

Publication number
JPH0634906B2
JPH0634906B2 JP1092053A JP9205389A JPH0634906B2 JP H0634906 B2 JPH0634906 B2 JP H0634906B2 JP 1092053 A JP1092053 A JP 1092053A JP 9205389 A JP9205389 A JP 9205389A JP H0634906 B2 JPH0634906 B2 JP H0634906B2
Authority
JP
Japan
Prior art keywords
hydrogen
thin film
porous substrate
less
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1092053A
Other languages
Japanese (ja)
Other versions
JPH02268818A (en
Inventor
弘 宮村
博 石川
哲男 境
哲也 君島
智 羽坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Agency of Industrial Science and Technology
Priority to JP1092053A priority Critical patent/JPH0634906B2/en
Publication of JPH02268818A publication Critical patent/JPH02268818A/en
Publication of JPH0634906B2 publication Critical patent/JPH0634906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/508Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by selective and reversible uptake by an appropriate medium, i.e. the uptake being based on physical or chemical sorption phenomena or on reversible chemical reactions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0057Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0084Solid storage mediums characterised by their shape, e.g. pellets, sintered shaped bodies, sheets, porous compacts, spongy metals, hollow particles, solids with cavities, layered solids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、水素ガスの回収、精製、除去等に好適に利用
でき、燃料電池や1次および2次電池の水素極にも利用
できる水素分離材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION “Industrial field of application” The present invention can be suitably used for recovery, purification, removal, etc. of hydrogen gas, and can also be used for hydrogen electrodes of fuel cells and primary and secondary batteries. It relates to the separating material.

「従来技術と発明が解決しようとする課題」 半導体産業では、高純度水素ガスを選択的に回収したり
分離したりする方法として、従来一般に低温吸着法やP
d膜法などが利用されている。
“Problems to be Solved by Prior Art and Invention” In the semiconductor industry, as a method for selectively collecting and separating high-purity hydrogen gas, a low temperature adsorption method or P
The d film method or the like is used.

ところが低温吸着法は、液体窒素を必要とするため高圧
ガス取締法の規制を受けると共に、実施するには極低温
技術を利用しなければならない問題がある。
However, the low-temperature adsorption method has a problem that it requires liquid nitrogen and is therefore subject to the regulations of the High Pressure Gas Control Law, and that it requires the use of cryogenic technology in order to be implemented.

またPd膜法にあっては、高価な膜を用いる必要がある
うえ、操業温度が高いという問題がある。
Further, the Pd film method has a problem that an expensive film needs to be used and the operating temperature is high.

このような問題に対処するため、安価な水素吸蔵合金を
用いて水素ガスを選択的に回収したり分離したりする水
素分離法が提案されている。
In order to deal with such a problem, a hydrogen separation method has been proposed in which an inexpensive hydrogen storage alloy is used to selectively collect or separate hydrogen gas.

しかしながら、従来提案されている水素分離法では、使
用する水素吸蔵合金が結晶性のものであるため、水素の
吸蔵と放出とを繰り返すうちに微粉化してしまう。この
ため、微粉化した水素吸蔵合金が系外に放出されないよ
うに対策する必要がある等の問題があった。
However, in the conventionally proposed hydrogen separation method, since the hydrogen storage alloy used is crystalline, it is pulverized during repeated storage and release of hydrogen. Therefore, there is a problem that it is necessary to take measures so that the finely divided hydrogen storage alloy is not released to the outside of the system.

その解決策として、水素吸蔵合金を薄膜にした水素分離
材を用いることも提案されている。しかしながら先に提
案されている水素吸蔵合金の薄膜は結晶性のものであっ
たので、水素吸蔵時に薄膜が体積膨張して、基板から剥
離したり、ピンホールを生じる問題があった。
As a solution to this problem, it has been proposed to use a hydrogen separating material having a thin film of a hydrogen storage alloy. However, since the thin film of the hydrogen storage alloy proposed above is crystalline, there is a problem that the thin film undergoes volume expansion at the time of hydrogen storage and peels from the substrate or causes pinholes.

そこで非晶質性の水素吸蔵合金を圧縮加工して水素分離
材に用いることも提案されたが、この方法によると分離
材は多孔質になって、高純度の水素ガスを分離すること
は困難であった。
Therefore, it was proposed to use amorphous hydrogen storage alloy by compression processing and use it as a hydrogen separating material, but this method makes the separating material porous and it is difficult to separate high-purity hydrogen gas. Met.

本発明は前記事情に鑑みてなされたもので、安価な水素
吸蔵合金を用いた水素分離法に好適な利用できる水素分
離材であって、水素吸蔵合金製薄膜の基板からの剥離や
ピンホール発生等のトラブルの無い水素分離材を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and is a hydrogen separation material that can be suitably used for a hydrogen separation method using an inexpensive hydrogen storage alloy, and is a peeling or pinhole generation from a substrate of a hydrogen storage alloy thin film. The object is to provide a hydrogen separation material free from problems such as.

「課題を解決するための手段」 請求項1の水素分離材は、小孔を有する多孔質基板の表
面に水素吸蔵合金製薄膜が積層された水素分離材であっ
て、前記薄膜が下記一般式(1)で示される水素貯蔵合金
によって形成され水素吸収により非晶質状態になるもの
であり、かつ前記多孔質基板が、遷移金属、IIIb族の元
素あるいはガラスからなる下地層が表面に形成されたも
のである。
"Means for Solving the Problem" The hydrogen separating material according to claim 1 is a hydrogen separating material in which a thin film made of a hydrogen storage alloy is laminated on a surface of a porous substrate having small pores, and the thin film has the following general formula: It is formed by the hydrogen storage alloy shown in (1) and becomes an amorphous state by absorbing hydrogen, and the porous substrate has an underlayer made of a transition metal, a group IIIb element or glass on the surface. It is a thing.

RNi……(1) また請求項2の水素分離材は、前記薄膜が下記一般式
(2)からなるものである。
RNi 2 (1) In the hydrogen separation material according to claim 2, the thin film has the following general formula:
It consists of (2).

RNi2-xMx……(2) ((1)式および(2)式中Rは希土類金属元素を示し、M
は遷移金属あるいはIIIb属の元素を示し、xは2.0以
下の値である。) (1)式および(2)式中Rは、単一の希土類金属元素だけ
でなく、希土類金属の混合体たとえばミッシュメタル(M
m)として知られるランタン(La)とセリウム(Ce)の合金な
どであっても良い。
RNi 2− xMx (2) (In the formulas (1) and (2), R represents a rare earth metal element, and M
Represents a transition metal or a group IIIb element, and x has a value of 2.0 or less. ) In formulas (1) and (2), R is not only a single rare earth metal element, but also a mixture of rare earth metals such as Misch metal (M
It may be an alloy of lanthanum (La) and cerium (Ce) known as m).

(2)式中Mの示す遷移金属の元素としては、銅(Cu)、亜
鉛(Zn)、コバルト(Co)、鉄(FE)、モリブデン(Mo)、パラ
ジウム(P2)、ニオブ(Nb)、タングステン(W)、ジルコニ
ウム(Zr)、バナジウム(V)等を、またIIIb属元素として
はアルミニウム(Al)、ホウ素(B)等を挙げることができ
るが、中でもCu、Co、Alが好適に用いられる。
(2) In the formula, the transition metal element represented by M includes copper (Cu), zinc (Zn), cobalt (Co), iron (FE), molybdenum (Mo), palladium (P2), niobium (Nb), Tungsten (W), zirconium (Zr), vanadium (V), and the like, and aluminum (Al), boron (B), and the like as IIIb group elements can be mentioned, among which Cu, Co, and Al are preferably used. To be

(1)式あるいは(2)式で示される水素吸蔵合金からなる
薄膜の膜厚は、50μm以下であることが望ましい。膜
厚を50μm以下に設定すると、単位面積当たりの水素
透過速度が向上する。
The thickness of the thin film made of the hydrogen storage alloy represented by the formula (1) or (2) is preferably 50 μm or less. When the film thickness is set to 50 μm or less, the hydrogen permeation rate per unit area is improved.

この水素吸蔵合金製薄膜を支持する前記多孔質基板は、
平均孔径が1μm以下であると、前記水素吸蔵合金製薄
膜の剥離をより確実に抑止できる。又、多孔質基板は、
孔径分布がそろっているもの、特に孔径分布が平均孔径
の±5%以内のものであることが望ましい。分布±5%
を越えると、ピンホールが生じ易い等の不都合が生じ
る。
The porous substrate supporting the thin film of hydrogen storage alloy,
When the average pore diameter is 1 μm or less, peeling of the hydrogen storage alloy thin film can be more reliably suppressed. Also, the porous substrate is
It is desirable that the pore size distribution is uniform, especially the pore size distribution is within ± 5% of the average pore size. Distribution ± 5%
If it exceeds the range, inconveniences such as pinholes are likely to occur.

この多孔質基板には、ステンレス鋼製のフィルタ、アル
ミナ等のセラミックス製のフィルタ、多孔質ガラスなど
を使用できる。このうち多孔質ガラスは、SiO2:7
5〜99,9wt%、Al23:12wt%以下、B23:1
2wt%以下、Na2O:8wt%以下、K2O:8wt%以
下、MgO:8wt%以下の範囲の組成を有するものであ
ることが望ましい。
As the porous substrate, a stainless steel filter, a ceramics filter such as alumina, or porous glass can be used. Among them, the porous glass is SiO 2 : 7
5 to 99,9 wt%, Al 2 O 3 : 12 wt% or less, B 2 O 3 : 1
It is desirable to have a composition in the range of 2 wt% or less, Na 2 O: 8 wt% or less, K 2 O: 8 wt% or less, MgO: 8 wt% or less.

またSiO2が多いよりは、Al23、B23、Na
2O、K2O、MgO等の酸化物が多く存在する方が好ま
しい。このような多孔質ガラスは前記(1)式あるいは
(2)式で示される水素吸蔵合金との親和性が強いので、
この基板を用いると基板と薄膜との密着性がより向上し
薄膜の剥離を確実に抑制できる。
Further more SiO 2 is large, Al 2 O 3, B 2 O 3, Na
It is preferable that many oxides such as 2 O, K 2 O and MgO exist. Such a porous glass has the above formula (1) or
Since it has a strong affinity with the hydrogen storage alloy represented by formula (2),
When this substrate is used, the adhesion between the substrate and the thin film is further improved, and peeling of the thin film can be surely suppressed.

この多孔質基板の表面には、下地層を形成しておく。下
地層は、前記水素吸蔵合金製薄膜と基板との親和性を高
めたり、使用温度範囲での基板と薄膜の熱膨張係数の差
を緩和して、薄膜が剥離したり薄膜にピンホールが発生
するのを防止するものである。このような下地層は、遷
移金属、IIIb属の元素あるいはガラスによって形成され
ることが望ましい。例えば、多孔質基板が多孔質ガラス
製である場合には、ソーダガラスや銅メッキによって下
地層を形成すると水素吸蔵合金製薄膜と基板との親和性
をより一層強めることができる。
An underlayer is formed on the surface of this porous substrate. The underlayer enhances the affinity between the hydrogen-absorbing alloy thin film and the substrate, relaxes the difference in the coefficient of thermal expansion between the substrate and the thin film in the operating temperature range, and causes the thin film to peel or pinholes to occur in the thin film. It is to prevent it. Such an underlayer is preferably formed of a transition metal, a Group IIIb element, or glass. For example, when the porous substrate is made of porous glass, the affinity between the hydrogen storage alloy thin film and the substrate can be further enhanced by forming the underlayer with soda glass or copper plating.

前記下地層は、多孔質基板全体の50重量%以下の範囲
で形成されることが望ましい。下地層が多孔質基板全体
の50重量%を越えると、水素透過速度が低下するとい
う不都合が生じる。
The underlayer is preferably formed in a range of 50% by weight or less of the entire porous substrate. If the amount of the underlayer exceeds 50% by weight of the entire porous substrate, the hydrogen permeation rate will be reduced.

請求項1および2の水素分離材の水素吸蔵合金製薄膜
は、真空蒸着法、スパッタリング法、イオンビーム蒸着
法、イオンプレーティング法等の物理蒸着法(PVD法)
や気相成長法(CVD法)などの乾式の薄膜形成技術によ
って形成することができる。特にPVD法で薄膜を形成
すると、水素吸蔵合金の組成制御を容易に行うことがで
きる。
The hydrogen storage alloy thin film of the hydrogen separation material according to claim 1 or 2 is a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method, a sputtering method, an ion beam vapor deposition method, or an ion plating method.
It can be formed by a dry thin film forming technique such as a vapor deposition method (CVD method). In particular, when the thin film is formed by the PVD method, the composition of the hydrogen storage alloy can be easily controlled.

これらの方法で水素吸蔵合金製薄膜を形成すると、成膜
される水素吸蔵合金は非晶質状態、あるいはC14,C
15またはC36のラーベス構造の結晶状態になるが、
一度水素を吸蔵すると非晶質状態になる。従って本発明
に係る水素分離材は非結晶状態で使用されることにな
る。
When the hydrogen storage alloy thin film is formed by these methods, the formed hydrogen storage alloy is in an amorphous state or C14, C
15 or C36 Laves structure crystalline state,
Once hydrogen is occluded, it becomes amorphous. Therefore, the hydrogen separating material according to the present invention is used in an amorphous state.

なお本発明の水素分離材を用いた水素分離操作は、10
0℃〜300℃の温度範囲で行なわれることが望まし
い。300℃を越えた温度で操作が行なわれると、薄膜
を形成する前記(1)(2)式で示される水素吸蔵合金が結
晶化するため、基板から薄膜が剥離したり、薄膜にピン
ホールが生じる危険が生じる。
The hydrogen separation operation using the hydrogen separation material of the present invention is 10
It is desirable to be performed in a temperature range of 0 ° C to 300 ° C. When the operation is performed at a temperature higher than 300 ° C., the hydrogen storage alloy represented by the formulas (1) and (2) forming the thin film is crystallized, so that the thin film is peeled from the substrate or pinholes are formed in the thin film. There is a danger.

また水素分離操作時の圧力は、主に多孔質基板の曲げ強
さに依存するが、高圧ガス取締法で規制される圧力範囲
以下に設定されることが望ましい。
The pressure during the hydrogen separation operation mainly depends on the bending strength of the porous substrate, but is preferably set within the pressure range regulated by the high pressure gas control method.

さらに本発明の水素分離材の水素吸蔵合金製薄膜は酸化
され易いので、水素分離操作時に処理対象となるガス
は、酸化性のガス成分の少ないものであることが望まし
い。具体的には、被処理ガスに含まれる酸化性ガス成分
はガス全体の0.1%以下であることが望ましい。
Further, since the thin film made of the hydrogen storage alloy of the hydrogen separating material of the present invention is easily oxidized, it is desirable that the gas to be treated during the hydrogen separating operation has a small oxidizing gas component. Specifically, the oxidizing gas component contained in the gas to be treated is preferably 0.1% or less of the entire gas.

「作用」 本発明の水素分離材を用いた水素分離処理は、分離材の
一方の側に処理対象となる水素含有ガスを供給して行な
われる。被処理ガスに含まれる各種の分子のうち水素分
子のみが水素吸蔵合金製薄膜の表面で解離する。この解
離した水素は、被処理ガスを供給された水素分離材の一
方の側と他方の側との圧力差により水素吸蔵合金製薄膜
内を拡散して膜を透過し、ついで多孔質基板の孔を通過
する。この結果、水素分離材の他方の側に水素が分離精
製される。
"Operation" The hydrogen separation process using the hydrogen separation material of the present invention is performed by supplying the hydrogen-containing gas to be processed to one side of the separation material. Among various molecules contained in the gas to be processed, only hydrogen molecules are dissociated on the surface of the hydrogen-absorbing alloy thin film. The dissociated hydrogen diffuses in the hydrogen-absorbing alloy thin film due to the pressure difference between the one side and the other side of the hydrogen separating material supplied with the gas to be processed, permeates through the film, and then the pores of the porous substrate. Pass through. As a result, hydrogen is separated and purified on the other side of the hydrogen separating material.

本発明の水素分離材の薄膜は、一般式(1)あるいは一般
式(2)で示される水素貯蔵合金からなり、水素吸蔵によ
り非晶質状態になるものなので、含有水素量の変化によ
る体積変動が極めて小さいうえ、粒界に起因する割れが
生じない。
The thin film of the hydrogen separation material of the present invention is made of the hydrogen storage alloy represented by the general formula (1) or (2), and becomes an amorphous state by hydrogen storage, so that the volume fluctuation due to the change of the hydrogen content. Is extremely small, and cracks due to grain boundaries do not occur.

従って本発明の水素分離材は、多孔質基板からの薄膜の
剥離が抑止されると共に薄膜にピンホールが生じにくい
ものとなる。
Therefore, the hydrogen separating material of the present invention suppresses the peeling of the thin film from the porous substrate and makes it difficult for pinholes to occur in the thin film.

また本発明の水素分離材は、水素吸蔵合金製薄膜が多孔
質基板に積層されたものなので、薄膜を極薄く形成する
ことができる。従って本発明の水素分離材によれば、水
素吸蔵合金製薄膜を薄く形成して水素の透過速度を向上
することができる。
Further, since the hydrogen separation material of the present invention has a thin film made of a hydrogen storage alloy laminated on a porous substrate, the thin film can be formed extremely thin. Therefore, according to the hydrogen separating material of the present invention, the hydrogen absorbing alloy thin film can be formed thin to improve the hydrogen permeation rate.

「実施例」 以下実施例に沿って本発明の水素分離材を詳しく説明す
る。
"Example" Hereinafter, the hydrogen separation material of the present invention will be described in detail with reference to Examples.

(実施例1) 本発明の一実施例による水素分離材を製作して、水素加
圧試験および水素分離試験に供した。
Example 1 A hydrogen separating material according to an example of the present invention was manufactured and subjected to a hydrogen pressure test and a hydrogen separation test.

この水素分離材は、第1図に示すように、多孔質基板1
の一方の面に薄膜2が積層されたものである。多孔質基
板1は、シラス組成を有する多孔質ガラスに銅製の下地
層が被覆されたもので、平均孔径は3000Åであっ
た。この多孔質ガラスの孔径分布は、第2図に示すよう
に、極めてシャープであった。この多孔質ガラスの、他
の特性を第1表にまとめて示す。
As shown in FIG. 1, this hydrogen separating material is used for the porous substrate 1
The thin film 2 is laminated on one surface. The porous substrate 1 was a porous glass having a shirasu composition coated with an underlayer made of copper, and had an average pore diameter of 3000 Å. The pore size distribution of this porous glass was extremely sharp as shown in FIG. Other properties of this porous glass are summarized in Table 1.

薄膜2は厚さは5μmのもので、この薄膜2をなす水素
吸蔵合金の組成はLaNi2であった。この薄膜2は、
成膜時には一部にC15ラーベス構造の結晶状態になっ
ていたが、一度水素吸蔵させたところ完全な非晶質状態
になった。
The thin film 2 had a thickness of 5 μm, and the composition of the hydrogen storage alloy forming this thin film 2 was LaNi 2 . This thin film 2
A part of the film was in a crystalline state with a C15 Laves structure, but once hydrogen was absorbed, it became a completely amorphous state.

この水素分離材は、次のようにして製造された。This hydrogen separation material was manufactured as follows.

まず基板1となる多孔質ガラスをアセトンで洗浄し、C
uを無電解メッキして下地層を形成した。
First, the porous glass to be the substrate 1 is washed with acetone, and C
u was electroless plated to form a base layer.

ついでこのものをスパッタ装置にセットして薄膜2を形
成した。ターゲットには分割型ターゲットを用いた。分
割角はLaが40度、Niが50度であった。これらを
各4枚用意して張り合わせターゲットとした。スパッタ
リングの条件は以下の通りであった。
Then, this was set in a sputtering device to form a thin film 2. A split type target was used as the target. The division angle was 40 degrees for La and 50 degrees for Ni. Each of these 4 sheets was prepared and used as a bonding target. The sputtering conditions were as follows.

成膜直後の薄膜2のX線回折結果を第3図に示し、13
0℃,15atmで水素加圧処理して水素を吸蔵させた後
のX線回折結果を第4図に示す。第3図と第4図を比較
すると、成膜後は結晶性(C15ラーベス構造)が見られ
るが、水素吸蔵後は、完全に非晶質状態になっているこ
とが判る。また、この薄膜2をなす合金の結晶化温度が
350℃付近にあることが判った。
The X-ray diffraction result of the thin film 2 immediately after the film formation is shown in FIG.
FIG. 4 shows the X-ray diffraction results after hydrogen pressure treatment at 0 ° C. and 15 atm to absorb hydrogen. Comparing FIG. 3 and FIG. 4, it can be seen that although crystallinity (C15 Laves structure) is observed after film formation, it is completely in an amorphous state after hydrogen storage. It was also found that the crystallization temperature of the alloy forming the thin film 2 was around 350 ° C.

薄膜2をなす合金の、水素圧力と水素放出量との関係を
第5図に示す。第5図は非晶質状態が示す典型的な傾向
を示しており、プラトー領域がないことから、この薄膜
2をなす合金は急激な体積変化を生じないものであるこ
とが確認できた。
FIG. 5 shows the relationship between the hydrogen pressure and the hydrogen release amount of the alloy forming the thin film 2. FIG. 5 shows a typical tendency that the amorphous state shows, and since there is no plateau region, it was confirmed that the alloy forming the thin film 2 does not cause a rapid volume change.

以上のように製作された水素分離材を水素加圧試験に供
した、水素加圧試験は水素分離材の薄膜2の側を300
℃、15atmの水素ガス雰囲気にさらした後、この薄膜
2を走査型電子顕微鏡(SEM)で調べることによって行
った。
The hydrogen separation material manufactured as described above was subjected to a hydrogen pressure test.
After exposure to a hydrogen gas atmosphere at 15 ° C. and 15 atm, this thin film 2 was examined by a scanning electron microscope (SEM).

この結果この水素分離材は、水素加圧試験後もピンホー
ルが観察されず、また薄膜2と基板1との剥離も観察さ
れず、薄膜2が健全な状態に保たれていることを確認で
きた。
As a result, no pinholes were observed in the hydrogen separating material after the hydrogen pressure test and no peeling between the thin film 2 and the substrate 1 was observed, and it was confirmed that the thin film 2 was kept in a healthy state. It was

製作した水素分離材を第6図に示す分離装置に取り付け
て、水素分離処理試験を行った。第6図中符号3は水素
分離材である。この水素分離材3は、Oリング6,6を
介して容器4内を2室に仕切るように容器4内に固定さ
れている。その結果水素分離材の薄膜2側には、被処理
ガス供給室7が、基板1側には捕集室8が形成されてい
る。被処理ガス供給室7には、開閉バルブ9を有する被
処理ガス供給管10が接続されており、この供給管10
には、パージ流量調整バルブ11が連設されている。ま
た分離水素捕集室8にはバルブ13を備えた導出管14
が連設されている。
The produced hydrogen separation material was attached to the separation device shown in FIG. 6 to perform a hydrogen separation treatment test. Reference numeral 3 in FIG. 6 is a hydrogen separating material. The hydrogen separating material 3 is fixed in the container 4 through O-rings 6 and 6 so as to divide the container 4 into two chambers. As a result, the to-be-processed gas supply chamber 7 is formed on the thin film 2 side of the hydrogen separation material, and the collection chamber 8 is formed on the substrate 1 side. A to-be-processed gas supply pipe 7 having an open / close valve 9 is connected to the to-be-processed gas supply chamber 7.
A purge flow rate adjusting valve 11 is connected to the valve. Further, the separation hydrogen collection chamber 8 has a lead-out pipe 14 equipped with a valve 13.
Are lined up.

前記容器4は、ヒータ15と断熱材16とからなる恒温
装置17内に収容されている。そしてヒータ15の温度
は、ガス供給室7内に差し込まれた温度センサ19の測
定結果に応じて温度コントローラ18で制御されるよう
になっている。
The container 4 is housed in a constant temperature device 17 including a heater 15 and a heat insulating material 16. The temperature of the heater 15 is controlled by the temperature controller 18 according to the measurement result of the temperature sensor 19 inserted in the gas supply chamber 7.

この水素分離装置のガス供給室7にHeガスを供給して
捕集室8側にリークするHeガス量を測定したところ、
2.7×10-9atm・cc/sec以下であり、水素分離材3の
薄膜2にはピンホールが存在しないことを確認できた。
He gas was supplied to the gas supply chamber 7 of this hydrogen separator to measure the amount of He gas leaking to the collection chamber 8 side.
It was 2.7 × 10 −9 atm · cc / sec or less, and it was confirmed that the thin film 2 of the hydrogen separating material 3 had no pinholes.

ついでこの水素分離装置の被処理ガス供給室7に、A
r;30vol%、H2;70vol%のガスを供給した。こ
のときのガス供給室7の雰囲気は、300℃、10atm
に設定された。その結果、捕集室8から99,99vol
%の純度に精製された水素ガスが得られた。この時の水
素透過速度は0.56cm3/cm2・secであった。
Then, in the process gas supply chamber 7 of this hydrogen separator, A
Gas of r; 30 vol% and H 2 ; 70 vol% was supplied. At this time, the atmosphere of the gas supply chamber 7 is 300 ° C. and 10 atm.
Was set to. As a result, 99,99 vol from the collection room 8
Hydrogen gas purified to a purity of% was obtained. At this time, the hydrogen permeation rate was 0.56 cm 3 / cm 2 · sec.

この結果および水素分離試験後の観察結果から、この水
素分離材は薄膜2が基板1にしっかりと密着しており、
ピンホールの発生も無く、水素分離材として十分使用に
耐え得るものであることが確認できた。
From this result and the observation result after the hydrogen separation test, in this hydrogen separation material, the thin film 2 was firmly adhered to the substrate 1,
It was confirmed that there were no pinholes and that it could be used sufficiently as a hydrogen separation material.

(比較例) LaNi2.5Co2.5の組成を有しかつ結晶性の水素吸蔵
合金で薄膜2が形成された水素分離材を、実施例1と略
同様の方法で製作し、水素加圧試験に供した。スパッタ
リングターゲットには、分割型ターゲットを使用した。
分割角はLa23度、Ni48.5度、Co48.5度
で、これらを各3枚張り合わせたものであった。
(Comparative Example) LaNi 2.5 has the composition Co 2.5 and crystallinity of the hydrogen separation member which the thin film 2 is formed in the hydrogen storage alloy, manufactured in substantially the same manner as in Example 1, subjected to a hydrogen pressure test did. A split target was used as the sputtering target.
The division angle was La23 degrees, Ni48.5 degrees, and Co48.5 degrees, and these three sheets were laminated together.

水素加圧試験の結果、この水素分離材は水素雰囲気に接
すると薄膜2が基板1から剥離してしまうことが判明し
た。
As a result of a hydrogen pressure test, it was found that the thin film 2 peeled off from the substrate 1 when the hydrogen separating material was brought into contact with a hydrogen atmosphere.

(実施例2 実施例1の水素分離材と薄膜2をなす水素吸蔵合金の組
成のみが異なるものを、実施例1と同様の方法で作成し
た。
(Example 2) A hydrogen separating material of Example 1 and a hydrogen storage alloy forming the thin film 2 were different from each other only in composition.

この水素分離材は、薄膜2がLaNi1Co1の組成を有
し被結晶性の水素吸蔵合金からなるものである。製造す
る際スパッタリングターゲットには分割型ターゲットを
用いた。分割角はLaが40度、Niが25度、Coが
25度であった。
In this hydrogen separating material, the thin film 2 is made of a crystallizable hydrogen storage alloy having a composition of LaNi 1 Co 1 . A split-type target was used as the sputtering target during manufacturing. The division angle was 40 degrees for La, 25 degrees for Ni, and 25 degrees for Co.

この水素分離材を、実施例1と同様の水素加圧試験およ
び水素分離試験に供したところ、実施例1のものと同
様、この水素分離材も、基板1と薄膜2との密着性が良
く、ピンホールが生じにくいので、水素分離材として十
分使用に耐え得るものであることが確認された。
When this hydrogen separating material was subjected to a hydrogen pressure test and a hydrogen separating test similar to those in Example 1, this hydrogen separating material also showed good adhesion between the substrate 1 and the thin film 2 as in Example 1. Since pinholes are unlikely to occur, it has been confirmed that the hydrogen separator can withstand sufficient use.

「発明の効果」 以上説明したように、請求項1または請求項2に記載の
水素分離材は、遷移金属、IIIb族の元素あるいはガラス
からなる下地層が表面に形成された多孔質基板に、前記
一般式(1)または(2)で示される水素貯蔵合金からなり
成膜時にC14,C15またはC36のラーベス構造を
有するかあるいは非晶質状態であって、水素吸蔵により
非晶質状態になる薄膜が、前記多孔質基板に積層された
ものなので、水素吸蔵合金製薄膜の含有水素量の変化に
より体積変動が小さいうえ、粒界に起因する割れが生じ
ない。
"Effects of the Invention" As described above, the hydrogen separating material according to claim 1 or 2 comprises: a porous substrate having an underlayer made of a transition metal, a Group IIIb element or glass formed on its surface; It is made of the hydrogen storage alloy represented by the general formula (1) or (2) and has a Laves structure of C14, C15 or C36 at the time of film formation or is in an amorphous state, and becomes amorphous by hydrogen absorption. Since the thin film is laminated on the porous substrate, the volume variation is small due to the change in the amount of hydrogen contained in the hydrogen storage alloy thin film, and cracks due to grain boundaries do not occur.

従って本発明の水素分離材は、多孔質基板からの薄膜の
剥離が抑止されると共に薄膜にピンホールが生じにくい
ものとなる。
Therefore, the hydrogen separating material of the present invention suppresses the peeling of the thin film from the porous substrate and makes it difficult for pinholes to occur in the thin film.

また本発明の水素分離材は、水素吸蔵合金製薄膜が多孔
質基板に積層されたものなので、薄膜を極薄く形成する
ことができる。従って本発明の水素分離材によれば、薄
膜を薄くして水素透過速度の向上を図ることができる。
Further, since the hydrogen separation material of the present invention has a thin film made of a hydrogen storage alloy laminated on a porous substrate, the thin film can be formed extremely thin. Therefore, according to the hydrogen separating material of the present invention, the thin film can be thinned to improve the hydrogen permeation rate.

よって、本発明の水素分離材によれば、安価な水素吸蔵
合金を用いた水素分離法を実現することができる。ま
た、本願発明の水素分離材は、遷移金属、IIIb族の元素
あるいはガラスからなる下地層が表面に形成された多孔
質基板を用いたものなので、基板と水素吸蔵合金製薄膜
との親和性がより強く、薄膜の剥離を確実に防止でき
る。
Therefore, according to the hydrogen separation material of the present invention, it is possible to realize a hydrogen separation method using an inexpensive hydrogen storage alloy. Further, since the hydrogen separation material of the present invention uses a porous substrate having an underlayer made of a transition metal, a Group IIIb element or glass formed on the surface, the affinity between the substrate and the hydrogen storage alloy thin film is high. It is stronger and can reliably prevent peeling of the thin film.

また請求項3の水素分離材においては、水素吸蔵合金製
薄膜の膜厚が50μm以下であるので、単位面積当たり
の水素透過速度が速い。
Further, in the hydrogen separation material according to the third aspect, since the film thickness of the hydrogen storage alloy thin film is 50 μm or less, the hydrogen permeation rate per unit area is high.

請求項4の水素分離材においては、多孔質基板の平均孔
径が1μm以下であるので、多孔質基板と水素吸蔵合金
製薄膜との密着性がより良好である。従ってこの水素分
離材では水素吸蔵合金製薄膜の剥離をより確実に防止で
きる。
In the hydrogen separating material according to the fourth aspect, since the average pore diameter of the porous substrate is 1 μm or less, the adhesion between the porous substrate and the hydrogen-absorbing alloy thin film is better. Therefore, with this hydrogen separation material, peeling of the hydrogen storage alloy thin film can be prevented more reliably.

請求項5の水素分離材は、孔径分布が平均孔径の±5%
以内の分布範囲であると共に、SiO2:75〜99,
9wt%、Al23:12wt%以下、B23:12wt%以
下、Na2O:8wt%以下、K2O:8wt%以下、Mg
O:8wt%以下の範囲の組成を有する多孔質基板からな
るものなので、基板と水素吸蔵合金製薄膜との親和性が
極めて強い。従ってこの水素分離材においては、基板か
らの薄膜の剥離を確実に防止できる。
The hydrogen separation material according to claim 5 has a pore size distribution of ± 5% of the average pore size.
Within the range of distribution, SiO 2 : 75 to 99,
9 wt%, Al 2 O 3 : 12 wt% or less, B 2 O 3 : 12 wt% or less, Na 2 O: 8 wt% or less, K 2 O: 8 wt% or less, Mg
O: Since it is composed of a porous substrate having a composition in the range of 8 wt% or less, the affinity between the substrate and the hydrogen storage alloy thin film is extremely strong. Therefore, in this hydrogen separator, peeling of the thin film from the substrate can be reliably prevented.

そして、本発明の水素分離材の水素吸蔵合金製薄膜を形
成する方法として、物理蒸着法あるいは気相成長法を用
いると、成膜時にC14,C15またはC36のラーベ
ス構造を有するかあるいは非晶質状態であって、水素吸
蔵により非晶質状態になる水素吸蔵合金製薄膜を容易に
形成できる。
When a physical vapor deposition method or a vapor deposition method is used as a method for forming the hydrogen storage alloy thin film of the hydrogen separating material of the present invention, it has a Laves structure of C14, C15 or C36 at the time of film formation, or is amorphous. In this state, it is possible to easily form a hydrogen-absorbing alloy thin film which becomes amorphous by hydrogen absorption.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の水素分離材の一実施例を示す断面図、
第2図は同実施例の水素分離材をなす多孔質ガラスの孔
径分布を示すグラフ、第3図は同実施例の水素分離材の
水素吸蔵合金製薄膜を成膜直後に調べたX線回折結果を
示すグラフ、第4図は同水素吸蔵合金製薄膜を水素加圧
吸蔵処理後に調べたX線回折結果を示すグラフ、第5図
は同水素吸蔵合金製薄膜の水素圧力と水素放出量の関係
を示すグラフ、第6図は実施例の水素分離試験に用いた
装置の概略構成図である。 1……多孔質基板、2……薄膜、3……水素分離材
FIG. 1 is a sectional view showing an embodiment of the hydrogen separation material of the present invention,
FIG. 2 is a graph showing the pore size distribution of the porous glass forming the hydrogen separating material of the same example, and FIG. 3 is an X-ray diffraction analysis of the hydrogen separating material thin film of the hydrogen separating material of the same example immediately after film formation. Fig. 4 is a graph showing the results, Fig. 4 is a graph showing the X-ray diffraction results of the hydrogen storage alloy thin film examined after hydrogen pressure storage treatment, and Fig. 5 is a graph showing the hydrogen pressure and hydrogen release amount of the hydrogen storage alloy thin film. FIG. 6 is a graph showing the relationship, and FIG. 6 is a schematic configuration diagram of the apparatus used for the hydrogen separation test of the example. 1 ... Porous substrate, 2 ... Thin film, 3 ... Hydrogen separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽坂 智 神奈川県川崎市幸区塚越4―320 日本酸 素株式会社内 審査官 山田 泰之 (56)参考文献 特開 昭62−273030(JP,A) 特開 昭58−8510(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Hazaka 4-320 Tsukagoshi, Sachi-ku, Kawasaki City, Kanagawa Prefecture Yasuyuki Yamada, Examiner, Nihon Oxygen Co., Ltd. (56) References JP 62-273030 (JP, A) ) JP-A-58-8510 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】小孔を有する多孔質基板に水素吸蔵合金製
薄膜が積層された水素分離材であって、 前記薄膜が、下記一般式(1)で示される水素貯蔵合金
からなり、水素吸蔵により非晶質状態になるものであ
り、かつ前記多孔質基板が、遷移金属、IIIb族の元素あ
るいはガラスからなる下地層が表面に形成されたもので
あることを特徴とする水素分離材。 RNi……(1) ((1)式中Rは希土類金属元素を示す。)
1. A hydrogen separation material comprising a porous substrate having small holes and a hydrogen-absorbing alloy thin film laminated on the porous substrate, wherein the thin film comprises a hydrogen storage alloy represented by the following general formula (1): And a porous substrate having an underlayer made of a transition metal, a group IIIb element or glass formed on the surface thereof. RNi 2 (1) (R in the formula (1) represents a rare earth metal element.)
【請求項2】小孔を有する多孔質基板に水素吸蔵合金製
薄膜が積層された水素分離材であって、 前記薄膜が、下記一般式(2)で示される水素貯蔵合金
からなり、水素吸蔵により非晶質状態になるものであ
り、かつ前記多孔質基板が、遷移金属、IIIb族の元素あ
るいはガラスからなる下地層が表面に形成されたもので
あることを特徴とする水素分離材。 RNi−xMx……(2) ((2)式中Rは希土類金属元素、Mは遷移金属あるい
はIIIb族の元素を示し、xは2.0以下の値である。)
2. A hydrogen separating material comprising a porous substrate having small pores and a hydrogen absorbing alloy thin film laminated on the porous substrate, wherein the thin film comprises a hydrogen storage alloy represented by the following general formula (2): And a porous substrate having an underlayer made of a transition metal, a group IIIb element or glass formed on the surface thereof. RNi 2 -xMx (2) (In the formula (2), R represents a rare earth metal element, M represents a transition metal or a group IIIb element, and x has a value of 2.0 or less.)
【請求項3】水素吸蔵合金製薄膜の膜厚が50μm以下
であることを特徴とする請求項1または2記載の水素分
離材。
3. The hydrogen separating material according to claim 1 or 2, wherein the thin film of the hydrogen storage alloy has a thickness of 50 μm or less.
【請求項4】前記多孔質基板が、平均孔径1μm以下の
ものであることを特徴とする請求項1または2記載の水
素分離材。
4. The hydrogen separating material according to claim 1 or 2, wherein the porous substrate has an average pore diameter of 1 μm or less.
【請求項5】前記多孔質基板の孔径分布が平均孔径の±
5%以内の分布範囲であると共に、組成がSiO2:7
5〜99.9wt%、Al23:12wt%以下、B23
12wt%以下、Na2O:8wt%以下、K2O:8wt%以
下、MgO:8wt%以下の範囲にあることを特徴とする
請求項3記載の水素分離材。
5. The pore size distribution of the porous substrate is within ± the average pore size.
The distribution range is within 5%, and the composition is SiO 2 : 7
5 to 99.9 wt%, Al 2 O 3 : 12 wt% or less, B 2 O 3 :
The hydrogen separation material according to claim 3, wherein the hydrogen separation material is in the range of 12 wt% or less, Na 2 O: 8 wt% or less, K 2 O: 8 wt% or less, and MgO: 8 wt% or less.
JP1092053A 1989-04-12 1989-04-12 Hydrogen separator Expired - Lifetime JPH0634906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1092053A JPH0634906B2 (en) 1989-04-12 1989-04-12 Hydrogen separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1092053A JPH0634906B2 (en) 1989-04-12 1989-04-12 Hydrogen separator

Publications (2)

Publication Number Publication Date
JPH02268818A JPH02268818A (en) 1990-11-02
JPH0634906B2 true JPH0634906B2 (en) 1994-05-11

Family

ID=14043768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1092053A Expired - Lifetime JPH0634906B2 (en) 1989-04-12 1989-04-12 Hydrogen separator

Country Status (1)

Country Link
JP (1) JPH0634906B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6478853B1 (en) 1999-03-09 2002-11-12 Secretary Of Agency Of Industrial Science And Technology Amorphous Ni alloy membrane for separation/dissociation of hydrogen, preparing method and activating method thereof
JP4250679B2 (en) * 2002-11-20 2009-04-08 三菱マテリアル株式会社 Hydrogen separation and permeable membrane with excellent high temperature amorphous stability
US7708809B2 (en) 2002-11-20 2010-05-04 Mitsubishi Materials Corporation Hydrogen permeable membrane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588510A (en) * 1981-07-09 1983-01-18 Toyobo Co Ltd Composite membrane for separating gas
JPS62273030A (en) * 1986-05-20 1987-11-27 Ise Kagaku Kogyo Kk Preparation of hydrogen separating medium

Also Published As

Publication number Publication date
JPH02268818A (en) 1990-11-02

Similar Documents

Publication Publication Date Title
US5738708A (en) Composite metal membrane
US7468093B2 (en) Multiple phase alloys and metal membranes for hydrogen separation-purification and method for preparing the alloys and the metal membranes
McCool et al. Nanostructured thin palladium-silver membranes: Effects of grain size on gas permeation properties
CA2399145C (en) Hydrogen-permeable structure and method for preparation thereof
US20040101686A1 (en) Composite materials capable of hydrogen sorption and methods for the production thereof
JP2008012495A (en) Hydrogen permeation alloy membrane
JP2002206135A (en) Hydrogen permeation membrane, its manufacturing method, and its use
JPH0382734A (en) Rare earth metal-series hydrogen storage alloy
Krevet et al. Nucleation and growth of high‐T c Nb3Ge coevaporated films
JPH0634906B2 (en) Hydrogen separator
US4781734A (en) Non-porous hydrogen diffusion membrane and utilization thereof
Xiong et al. Fabrication and characterization of Pd/Nb40Ti30Ni30/Pd/porous nickel support composite membrane for hydrogen separation and purification
JPH02271901A (en) Production of hydrogen separating medium
JP3359954B2 (en) Hydrogen permeable membrane
JP2006000722A (en) Hydrogen-permeable alloy membrane and its manufacturing method
Panichkin et al. Hydrogen permeable membranes based on niobium foils coated with layer of tungsten and molybdenum in niobium solid solution characteristics research
JPH01131004A (en) Production of hydrogen-separating membrane
US7323034B2 (en) Space group Cp2 alloys for the use and separation of hydrogen
Honkanen et al. Oxidation of copper alloys studied by analytical transmission electron microscopy cross-sectional specimens
JPH0819500B2 (en) Hydrogen storage alloy thin film body and method for producing the same
JP2008272605A (en) Hydrogen permeable membrane and its manufacturing method
JPH02268817A (en) Production of hydrogen separating medium
JPH01131002A (en) Production of hydrogen-occlusive alloy
JP2004068049A (en) Bcc solid solution type hydrogen storage alloy with excellent hydrogen migration capacity, and method for manufacturing the hydrogen storage alloy
Alexeeva et al. Creation of hydrogen-selective tubular composite membranes based on Pd-alloys: I. Improvement of ceramic support with Ni layer deposition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term