JPH06347463A - Optical inspection method - Google Patents

Optical inspection method

Info

Publication number
JPH06347463A
JPH06347463A JP5141708A JP14170893A JPH06347463A JP H06347463 A JPH06347463 A JP H06347463A JP 5141708 A JP5141708 A JP 5141708A JP 14170893 A JP14170893 A JP 14170893A JP H06347463 A JPH06347463 A JP H06347463A
Authority
JP
Japan
Prior art keywords
light
optical
antigen
antibody reaction
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5141708A
Other languages
Japanese (ja)
Inventor
Takayuki Suga
隆之 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5141708A priority Critical patent/JPH06347463A/en
Priority to US08/259,770 priority patent/US5648221A/en
Publication of JPH06347463A publication Critical patent/JPH06347463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To accurately inspect antigen-antibody reaction by detecting optical echo out of an examined sample where antibodies are mixed with the mixture of a specimen and an optically sensitive material. CONSTITUTION:In general, since a specimen exhibiting antigen-antibody reaction, has no absorption of light in a visible region wave length, therefore, after optically sensitive material such as rhodamine 640 and the like has been mixed with the specimen, it is then mixed with antibodies to be formed into the specimen 8, so that optical echo inspection is made possible. Now, light from a light source 1 is divided in two by an optical divider 2 to be controlled by a controller 11. After light has passed through light delay means 3 delaying light by the specified quantity of delay, and also through a phase modulation means 4 modulating light by the specified quantity in phase, lights are then joined together by a light joining means 5. The joined light beam is made to pass through a lens 6, so that the light beam is focused on a sample 8 within a cooling means 7. Next, optical echo from the sample 8 is detected by a light detector 9, so that an output signal is forwarded to a data processing means 13 via an electrical signal processing means 12 and the like. Based on information on phase relaxation time, the intensity of optical echo and the like, the presence and/or the absence, the kind, and the degree of antigen and antibody reaction can be detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被検試料からの光エコ
ーを測定することにより被検試料の抗原抗体反応の有無
または種類を光学的に検査する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for optically examining the presence or type of an antigen-antibody reaction in a test sample by measuring optical echo from the test sample.

【0002】[0002]

【従来の技術】抗原抗体反応は、そのきわめて高い特異
性を利用して、生体組織内外に由来する物質(抗原、抗
体)を検査する方法として、種々の病気の検査法に使わ
れてきた。これまでに抗原抗体反応の検査には、様々な
方法が開発されてきた。例えば、蛍光物質(プローブの
一種)で抗体を標識したもの(蛍光抗体)を使用する方
法がある。これは、抗体を予め蛍光物質で標識(標識
抗体)した上で、抗原と混合(反応)させる直接法と、
抗原を抗体(1次抗体)と混合(反応)した後、蛍光
物質で標識した二次抗体を更に混合(反応)する間接法
とがある。
2. Description of the Related Art The antigen-antibody reaction has been used as a method for inspecting substances (antigen, antibody) derived from the inside and outside of living tissue by utilizing its extremely high specificity, as an inspection method for various diseases. Various methods have been developed so far for the examination of antigen-antibody reaction. For example, there is a method using an antibody labeled with a fluorescent substance (a kind of probe) (fluorescent antibody). This is a direct method in which the antibody is labeled with a fluorescent substance in advance (labeled antibody) and then mixed (reacted) with the antigen,
There is an indirect method in which an antigen is mixed (reacted) with an antibody (primary antibody), and then a secondary antibody labeled with a fluorescent substance is further mixed (reacted).

【0003】混合(反応)した被検試料を、蛍光顕微鏡
で観察し、その蛍光量や、蛍光パターンから抗原抗体反
応の有無または種類を判定する。また、抗原が対応する
抗体と反応して凝集する場合、その反応のパターン、即
ち凝集の程度を調べて抗原抗体反応の有無を判定する方
法がある。
The mixed (reacted) test sample is observed with a fluorescence microscope, and the presence or type of the antigen-antibody reaction is judged from the fluorescence amount or fluorescence pattern. When an antigen reacts with a corresponding antibody and aggregates, there is a method of determining the presence or absence of an antigen-antibody reaction by examining the pattern of the reaction, that is, the degree of aggregation.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記のような
従来の方法では、観察者が被検試料を肉眼や顕微鏡で観
察するため、判定が困難な場合や個人による判定の差が
生じてしまうので客観的に判断ができないという問題点
があった。本発明は上記問題点を鑑みてなされたもので
あり、抗原抗体反応の有無または種類を客観的に正確に
検査する方法を提供するものである。
However, in the conventional method as described above, the observer observes the sample to be inspected with the naked eye or a microscope, so that it may be difficult to make a determination or a difference in determination may occur between individuals. Therefore, there was a problem that it was not possible to make an objective decision. The present invention has been made in view of the above problems, and provides a method for objectively and accurately testing for the presence or type of an antigen-antibody reaction.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者は、鋭
意研究の結果、被検試料からの光エコーを測定し、それ
から得られる情報〔位相緩和時間(T2 )、光エコーの
強度(光の有無も含む)、ゼロフォノン線に由来する光
エコーの強度と、フォノンサイドバンドに由来する光エ
コーの強度の比等〕から抗原抗体反応の有無や、種類や
程度を検知できることを見いだし、本発明を成すに至っ
た。
Therefore, as a result of diligent research, the present inventor measured the optical echo from the sample to be examined, and obtained information [phase relaxation time (T 2 ), optical echo intensity ( It is possible to detect the presence or absence of an antigen-antibody reaction, and the type and degree, based on the ratio of the intensity of the optical echo derived from the zero phonon line to the intensity of the optical echo derived from the phonon sideband, etc.). Invented the invention.

【0006】つまり、本発明の検査方法は、被検物体と
光感応性物質とを「混合」させる第1のステップと、前
記第1のステップで得られた混合物と抗体とを混合させ
る第2のステップと、前記第2のステップで得られた被
検試料から光エコーを検出して抗原抗体反応の有無また
は種類を調べる第3のステップとからなる。
That is, in the inspection method of the present invention, the first step of "mixing" the object to be inspected and the photosensitive substance, and the second step of mixing the mixture obtained in the first step with the antibody And the third step of detecting the optical echo from the test sample obtained in the second step and examining the presence or type of the antigen-antibody reaction.

【0007】[0007]

【作用】本発明で、「混合」とは単に混ぜること、反応
させること、結合させること、染色すること、又は標識
することを意味する。光エコーは物質の構造、構成成分
等の違いに極めて敏感であり、それらの違いが、位相緩
和時間(T2 )の違い等に現れる。
In the present invention, "mixing" means simply mixing, reacting, binding, staining, or labeling. The optical echo is extremely sensitive to the difference in the structure and constituent components of the substance, and these differences appear in the difference in phase relaxation time (T 2 ).

【0008】位相緩和時間(T2 )を例にとり、図4を
用いて説明する。物質をパルス光(励起光)で励起する
場合を考える。まずt1 時にE1 のパルス光を照射し、
続いてt2 時にE2 のパルス光を照射する。次にt3
にE3 のパルス光を照射すると、〔t3 +t2 −t1
3 +τ(τ=t2 −t1 )〕時に今度は逆に物質から
光が放射されてくる。これが光エコーである。そして、
光エコーの強度は、exp(−4τ/T2 )に比例して
減衰する。このτを変化させ、その都度光エコーの強度
を測定すると、T2 が求まる。T2 は、物質ごとに、ま
たはその物質の状態ごとに異なる。従って、T2を測定
すれば、その物質又は状態を検知することができる。こ
の測定法は、特開平4−132020号公報に開示され
ている。
The phase relaxation time (T 2 ) will be described as an example with reference to FIG. Consider a case where a substance is excited by pulsed light (excitation light). First, at t 1, the pulsed light of E 1 is irradiated,
Subsequently, at time t 2 , pulsed light of E 2 is irradiated. Next is irradiated with pulsed light of t 3 at E 3, [t 3 + t 2 -t 1 =
At time t 3 + τ (τ = t 2 −t 1 )], light is emitted from the substance. This is a light echo. And
The optical echo intensity is attenuated in proportion to exp (-4τ / T 2 ). When this τ is changed and the intensity of the optical echo is measured each time, T 2 can be obtained. T 2 is different for each substance or each state of the substance. Therefore, by measuring T 2 , the substance or state can be detected. This measuring method is disclosed in JP-A-4-132020.

【0009】本発明は、この光エコーを利用するもので
ある。光エコーを測定するためには、励起光(一般には
レーザー光)の波長に被検試料が吸収を持たなければな
らない。つまり、被測定物(被検試料)は励起光に対し
て光吸収体でなければならない。一般には、抗原抗体反
応を検査すべき被検試料は可視領域の波長の光に光の吸
収を持たない。現在、光エコーを測定するレーザとして
は紫外領域の波長のものがないので、上記の被検試料
は、励起光を吸収しない。そこで本発明では励起光の波
長に吸収を持つ光感応性物質と被検物体とを予め「混
合」しておく。この混合物が励起光の波長に対して光吸
収体となるので、抗原抗体反応後、直ちに光エコーを測
定することが可能になる。
The present invention utilizes this optical echo. In order to measure the optical echo, the test sample must have absorption at the wavelength of the excitation light (generally laser light). That is, the object to be measured (test sample) must be a light absorber for the excitation light. Generally, a test sample to be tested for an antigen-antibody reaction does not absorb light having a wavelength in the visible region. Currently, there is no laser for measuring an optical echo that has a wavelength in the ultraviolet region, and therefore the above-described test sample does not absorb excitation light. Therefore, in the present invention, the light-sensitive substance having absorption at the wavelength of the excitation light and the test object are “mixed” in advance. Since this mixture becomes a light absorber for the wavelength of the excitation light, it becomes possible to measure the light echo immediately after the antigen-antibody reaction.

【0010】以下、本発明を実施例により具体的に説明
するが、本発明はこれに限定されるものではない。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

【0011】[0011]

【実施例1】図1は、本出願人が特願平4−28470
1号公報において提案した、被検試料からの光エコーを
測定する光エコー測定装置の構成図である。光源1は、
空間コヒーレンスと所定の時間コヒーレンスとを有し、
被検試料に対して注目する光吸収体の光学的位相緩和時
間よりも短い時間コヒーレンスを有する光を供給する。
光源1は、例えば、モード同期アルゴンイオンレーザー
で励起された色素レーザーからなる。光遅延手段3は、
図示なき可動ステージに固定されたコーナーキューブ3
aと、可動ステージを変位させる変位器3bとからな
り、コーナーキューブ3aの位置の変動により、光を遅
延させる。
EXAMPLE 1 FIG. 1 shows that the applicant of the present invention is Japanese Patent Application No. 4-28470.
1 is a configuration diagram of an optical echo measurement device proposed in Japanese Patent Publication No. 1 for measuring an optical echo from a test sample. Light source 1
Has a spatial coherence and a predetermined temporal coherence,
Light having a coherence shorter than the optical phase relaxation time of the light absorber of interest is supplied to the test sample.
The light source 1 is composed of, for example, a dye laser excited by a mode-locked argon ion laser. The optical delay means 3 is
Corner cube 3 fixed to a movable stage (not shown)
a and a displacement device 3b that displaces the movable stage, and delays the light due to the change in the position of the corner cube 3a.

【0012】位相変調手段4は、コーナーキューブ4
a、圧電素子4b、交流駆動源4cからなる。圧電素子
4bは一端が固定され他端にコーナーキューブ4aが固
定されている。位相変調手段4では、交流駆動源4cに
より圧電素子4bに所定の周波数fの交流電圧を印加し
て、圧電素子4bを周波数fで振動させる。さらに、圧
電素子4bの振動によって、周波数fでコーナーキュー
ブ4aが振動される。このコーナーキューブ4aの振動
は、光に周波数fで位相変調をおこなう。本実施例で
は、位相変調周波数は21KHzとした。
The phase modulating means 4 is a corner cube 4
a, a piezoelectric element 4b, and an AC drive source 4c. One end of the piezoelectric element 4b is fixed and the corner cube 4a is fixed to the other end. In the phase modulation means 4, the AC drive source 4c applies an AC voltage of a predetermined frequency f to the piezoelectric element 4b to vibrate the piezoelectric element 4b at the frequency f. Further, the corner cube 4a is vibrated at the frequency f by the vibration of the piezoelectric element 4b. The vibration of the corner cube 4a phase-modulates the light at the frequency f. In this embodiment, the phase modulation frequency is 21 KHz.

【0013】光検出器9は、光電子増倍管(フォトマ
ル)である。シャープカットフィルタ14は、照射レー
ザー光より長波長側の光のみを透過させるものである。
ロックインアンプ10は、位相変調手段4の変調周波数
の2倍の変調成分を抽出する信号処理手段である。本実
施例では、光エコー検出のためにロックインアンプ10
のロックイン周波数は、42KHzにした。
The photodetector 9 is a photomultiplier tube (photomultiplier). The sharp cut filter 14 transmits only the light on the longer wavelength side of the irradiation laser light.
The lock-in amplifier 10 is a signal processing unit that extracts a modulation component that is twice the modulation frequency of the phase modulation unit 4. In this embodiment, the lock-in amplifier 10 is used for detecting the optical echo.
The lock-in frequency of was set to 42 KHz.

【0014】光源1から発せられた光は、光分割器2で
2つの光束に分割される。光分割器2の透過光路上に
は、所定量の光遅延を生じるように光遅延手段3が配置
されている。また、光分割器2の反射光路上には、所定
量の位相変調を生じるように位相変調手段4が配置され
ている。光遅延手段3及び位相変調手段4は、制御手段
11によって制御される。光遅延手段3及び位相変調手
段4を経た2つの光束は、光合波器5で合波される。
The light emitted from the light source 1 is split into two light beams by the light splitter 2. An optical delay unit 3 is arranged on the transmission optical path of the optical splitter 2 so as to generate a predetermined amount of optical delay. Further, on the reflected light path of the light splitter 2, the phase modulation means 4 is arranged so as to generate a predetermined amount of phase modulation. The optical delay means 3 and the phase modulation means 4 are controlled by the control means 11. The two light beams that have passed through the optical delay unit 3 and the phase modulation unit 4 are combined by the optical combiner 5.

【0015】光合波器5で合波された光束は、レンズ6
を通して冷却装置7内にある被検試料8に集光される。
レンズ6の代わりに顕微鏡の光学系を使い被検試料を観
察しながら、光を集光してもかまわない。被検試料から
の光エコーは、シャープカットフィルター14を透過し
て、光検出器9で検出する。光検出器9の出力信号は、
ロックインアンプ10で処理される。ロックインアンプ
10の出力信号は、電気信号処理装置12を介してデー
タ処理装置13へ送られる。
The light flux multiplexed by the optical multiplexer 5 is reflected by the lens 6
It is focused on the sample 8 to be inspected in the cooling device 7.
Instead of the lens 6, an optical system of a microscope may be used and light may be condensed while observing the test sample. The optical echo from the test sample passes through the sharp cut filter 14 and is detected by the photodetector 9. The output signal of the photodetector 9 is
It is processed by the lock-in amplifier 10. The output signal of the lock-in amplifier 10 is sent to the data processing device 13 via the electric signal processing device 12.

【0016】被検試料の位相緩和時間(T2 )は、光遅
延器により2つの光ビームの光路長差を順次変化させる
ことにより生じる光エコーの強度の変化を記録すること
により得られる。被検物体としては、培養されたヒト喉
頭癌由来細胞(HEp−2)を用いた。また、抗体とし
ては、血清中に含まれている抗核小体抗体と抗DNA抗
体とを用いた。この培養されたヒト喉頭癌由来細胞(H
Ep−2)と、細胞染色用色素(光感応性物質)である
XRITCとを「混合」した。この「混合」したもの
と、上記の2つの抗体とをそれぞれ混ぜる。このように
して得られた被検試料を使用した。XRITCを化学式
で表すと、
The phase relaxation time (T 2 ) of the test sample is obtained by recording the change in the intensity of the optical echo caused by sequentially changing the optical path length difference between the two light beams by the optical delay device. Cultured human laryngeal cancer-derived cells (HEp-2) were used as test objects. As the antibody, an anti-nucleolar antibody and an anti-DNA antibody contained in serum were used. The cultured human laryngeal cancer-derived cells (H
Ep-2) was "mixed" with XRITC, a dye for cell staining (photosensitive substance). This "mixed" and the above two antibodies are mixed respectively. The test sample thus obtained was used. When XRITC is represented by a chemical formula,

【0017】[0017]

【化1】 [Chemical 1]

【0018】となる。この2種類の被検試料を、上記の
光エコー測定装置により検査を行ったところ、両者の位
相緩和時間(T2 )の違い等から、両者を明確に区別す
ることができた。即ち、抗原抗体反応の種類の違いを区
別することができた。また細胞染色用色素(光感応性物
質)として、ローダミン640、テキサスレッド並びに
その誘導体、5(6)カルボキシローダミンサクシンイ
ミジルエステル〔5(6)CARBOXY−X−RHO
DAMINE SUCCINIMIDYL ESTE
R〕を使用しても同様の結果が得られた。ローダミン6
40を化学式で表すと、
[0018] When these two types of test samples were inspected by the above-described optical echo measurement device, the two could be clearly distinguished from each other due to the difference in the phase relaxation time (T 2 ). That is, it was possible to distinguish between different types of antigen-antibody reaction. In addition, as a dye (photosensitive substance) for cell staining, rhodamine 640, Texas red and its derivatives, 5 (6) carboxyrhodamine succinimidyl ester [5 (6) CARBOXY-X-RHO
DAMINE SUCCINIMIDYL ESTE
Similar results were obtained using R]. Rhodamine 6
40 is represented by a chemical formula,

【0019】[0019]

【化2】 [Chemical 2]

【0020】となる。テキサスレッドを化学式で表す
と、
[0020] The chemical formula of Texas Red is

【0021】[0021]

【化3】 [Chemical 3]

【0022】となる。5(6)カルボキシローダミンサ
クシンイミジルエステルを化学式で表すと、
It becomes 5 (6) carboxyrhodamine succinimidyl ester is represented by a chemical formula:

【0023】[0023]

【化4】 [Chemical 4]

【0024】となる。また、光感応性物質は、光エコー
を測定できるものであればどの様なものでもよい。例え
ば、酵素でもよい。酵素の場合は、酵素を「混合」した
後、薬品を混ぜて励起光に対して光吸収体にすればよ
い。また、本実施例では、光エコーを測定する際に、上
記のような装置を用いたが、これに限るものではなく、
光エコーを測定できるものであればよい。
It becomes Further, the photosensitive substance may be any substance as long as it can measure a light echo. For example, it may be an enzyme. In the case of an enzyme, after "mixing" the enzyme, a drug may be mixed to form a light absorber for excitation light. Further, in the present embodiment, when measuring the optical echo, using the device as described above, but is not limited to this,
Anything that can measure an optical echo may be used.

【0025】[0025]

【実施例2】図2は、本出願人が特願平4−98643
号公報において提案した光エコー測定装置である。実施
例1の装置と異なりこの装置では被検試料を透過してき
た光を光検出器9で検出する。
[Second Embodiment] FIG. 2 shows that the present applicant filed Japanese Patent Application No. 4-98643.
It is the optical echo measurement device proposed in the publication. Unlike the device of the first embodiment, in this device, the light transmitted through the test sample is detected by the photodetector 9.

【0026】この装置で実施例1と同様の被検試料を測
定したところ、実施例1と同様に両者を区別することが
できた。即ち、抗原抗体反応の種類の違いを区別するこ
とができた。また、被検試料が非常に強い散乱体の場合
には、その散乱光をレンズで集光し、その光を光検出器
9で検出しても、同様に両者を区別することができた。
When a test sample similar to that of Example 1 was measured with this apparatus, it was possible to distinguish between them as in Example 1. That is, it was possible to distinguish between different types of antigen-antibody reaction. Further, when the test sample was a very strong scatterer, the scattered light was condensed by the lens and the light was detected by the photodetector 9, and the two could be similarly distinguished.

【0027】他の構成は、実施例1と同様である。The other structure is the same as that of the first embodiment.

【0028】[0028]

【実施例3】図3は、本出願人が特開平4−26964
4号公報において提案した光エコー測定装置である。こ
の装置は、共焦点型レーザー走査顕微鏡と同様の配置を
とっており、被検試料上の焦点位置と共焦点の位置にあ
るピンホールを通過してきた光のみを光検出器で検出す
る。
[Third Embodiment] FIG.
This is the optical echo measurement device proposed in Japanese Patent No. 4 publication. This device has the same arrangement as the confocal laser scanning microscope, and detects only the light that has passed through the pinholes at the confocal position on the sample to be detected by the photodetector.

【0029】この装置で実施例1と同様の被検試料を測
定したところ、実施例1と同様に両者を区別することが
できた。即ち、抗原抗体反応の種類の違いを区別するこ
とができた。他の構成は、実施例1と同様である。
When the same test sample as in Example 1 was measured with this apparatus, it was possible to distinguish between the two as in Example 1. That is, it was possible to distinguish between different types of antigen-antibody reaction. Other configurations are the same as those in the first embodiment.

【0030】[0030]

【実施例4】被検物体としては、培養されたヒト喉頭癌
由来細胞(HEp−2)を用いた。抗体としては、血清
中に抗核抗体を含むものと抗核抗体を含まないものとを
用いた。上記被検物体と、細胞染色用色素(光感応性物
質)であるXRITCとをそれぞれ「混合」した。それ
ぞれの「混合」したものと、抗核小体抗体を含む血清と
を混ぜる。このようにして得られた被検試料を使用し
た。
Example 4 Cultured human laryngeal cancer-derived cells (HEp-2) were used as test objects. As the antibody, those containing antinuclear antibody in serum and those not containing antinuclear antibody in serum were used. The object to be inspected and XRITC, which is a dye (photosensitive substance) for cell staining, were “mixed” with each other. Each "mix" is mixed with serum containing anti-nucleolar antibody. The test sample thus obtained was used.

【0031】これらの被検試料を実施例1及び2及び3
と同様に検査を行ったところ、抗核抗体が存在しない被
検試料には光感応性物質が存在しないため、光エコーが
測定されず、抗核抗体の存在する被検試料からは光エコ
ーが測定された。従って光エコーの有無により、両者を
明確に区別することができた。即ち、抗原抗体反応の有
無を区別することができた。
These test samples were tested in Examples 1 and 2 and 3.
When a test was conducted in the same manner as above, since the photosensitizer was not present in the test sample in which the antinuclear antibody was not present, the light echo was not measured, and the light echo was detected in the test sample in which the antinuclear antibody was present. Was measured. Therefore, the two could be clearly distinguished by the presence or absence of optical echo. That is, it was possible to distinguish the presence or absence of an antigen-antibody reaction.

【0032】[0032]

【発明の効果】以上のように、本発明は、抗原抗体反応
の有無または種類を検知できる検査方法を提供する。こ
の方法を用いれば、これまで観察者の肉眼や顕微鏡での
観察に頼っていた抗原抗体反応の検査を、客観的な数値
で現すことができ正確な検査が可能となる。
INDUSTRIAL APPLICABILITY As described above, the present invention provides a test method capable of detecting the presence or type of antigen-antibody reaction. By using this method, the examination of the antigen-antibody reaction, which has hitherto relied on the observation with the naked eye or the microscope, can be expressed in an objective numerical value, and an accurate examination can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本出願人による光エコー測定装置の概念図。FIG. 1 is a conceptual diagram of an optical echo measurement device by the applicant.

【図2】本出願人による光エコー測定装置の概念図。FIG. 2 is a conceptual diagram of an optical echo measurement device by the applicant.

【図3】本出願人による光エコー測定装置の概念図。FIG. 3 is a conceptual diagram of an optical echo measurement device by the applicant.

【図4】従来の光エコー測定の原理図。FIG. 4 is a principle diagram of a conventional optical echo measurement.

【符号の説明】[Explanation of symbols]

1・・・光源 10・・・ロッ
クインアンプ 2・・・光分割器 11・・・制御
手段 3・・・光遅延手段 12・・・電気
信号処理装置 3a・・・コーナーキューブ 13・・・データ
処理装置 3b・・・変位器 14・・・フィル
ター 4・・・位相変調手段 15・・・ミラ
ー 4a・・・コーナーキューブ 16、17・・・
対物レンズ 4b・・・圧電素子 18・・・レンズ 4c・・・交流駆動源 19・・・半透過
鏡 5・・・光合波器 20・・・光ト
ラップ 6・・・レンズ 21・・・走査
手段 7・・・冷却装置 22・・・走査
駆動手段 8・・・被検試料 23・・・ピン
ホール 9・・・光検出器
DESCRIPTION OF SYMBOLS 1 ... Light source 10 ... Lock-in amplifier 2 ... Optical splitter 11 ... Control means 3 ... Optical delay means 12 ... Electric signal processing device 3a ... Corner cube 13 ... Data processing device 3b ... Displacer 14 ... Filter 4 ... Phase modulator 15 ... Mirror 4a ... Corner cube 16, 17 ...
Objective lens 4b ... Piezoelectric element 18 ... Lens 4c ... AC drive source 19 ... Semitransparent mirror 5 ... Optical multiplexer 20 ... Optical trap 6 ... Lens 21 ... Scanning Means 7 ... Cooling device 22 ... Scan drive means 8 ... Test sample 23 ... Pinhole 9 ... Photodetector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検物体と光感応性物質とを「混合」さ
せる第1のステップと、 前記第1のステップで得られた混合物と抗体とを混合さ
せる第2のステップと、 前記第2のステップで得られた被検試料から光エコーを
検出して抗原抗体反応の有無または種類を調べる第3の
ステップとを備えたことを特徴とする光学的検査方法。
1. A first step of "mixing" a test object and a photosensitive substance; a second step of mixing the mixture obtained in the first step with an antibody; and the second step. And a third step for detecting the presence or type of an antigen-antibody reaction by detecting a light echo from the test sample obtained in the above step.
【請求項2】 前記被検物体は培養された細胞であるこ
とを特徴とする請求項1記載の光学的検査装置。
2. The optical inspection apparatus according to claim 1, wherein the object to be inspected is a cultured cell.
【請求項3】 前記抗体は血清に含まれていることを特
徴とする請求項1記載の光学的検査方法。
3. The optical inspection method according to claim 1, wherein the antibody is contained in serum.
JP5141708A 1993-06-14 1993-06-14 Optical inspection method Pending JPH06347463A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5141708A JPH06347463A (en) 1993-06-14 1993-06-14 Optical inspection method
US08/259,770 US5648221A (en) 1993-06-14 1994-06-14 Optical inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5141708A JPH06347463A (en) 1993-06-14 1993-06-14 Optical inspection method

Publications (1)

Publication Number Publication Date
JPH06347463A true JPH06347463A (en) 1994-12-22

Family

ID=15298358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5141708A Pending JPH06347463A (en) 1993-06-14 1993-06-14 Optical inspection method

Country Status (1)

Country Link
JP (1) JPH06347463A (en)

Similar Documents

Publication Publication Date Title
Periasamy et al. FLIM microscopy in biology and medicine
US5589936A (en) Optical measuring apparatus for measuring physichemical properties
JPH09113448A (en) Device for performing laser-induced two-photon flurescence-correlation spectrochemical analysis
JP2975991B2 (en) Polarization measurement method and apparatus
EP1980842A1 (en) Circular dichroism fluorescent microscope
JPS6234039A (en) Fluorescence detector used in immunoassay
WO2011152067A1 (en) Device for detecting biomolecule and method for detecting biomolecule
JPS60237345A (en) Method and device for analyzing particle
US4115699A (en) Apparatus for sensitive detection and quantitative analysis of biological and biochemical substances
WO2016063322A1 (en) Optical analysis device and biomolecular analysis device
JPH05126725A (en) Scanning type analysis microscope
JP3365474B2 (en) Polarizing imaging device
Gadella et al. Construction and characterization of a frequency-domain fluorescence lifetime imaging microscopy system
US5648221A (en) Optical inspection method
JPH06347465A (en) Optical inspection method
JPH06347463A (en) Optical inspection method
US20050225764A1 (en) Device and method for detecting fluorescence comprising a light emitting diode as excitation source
Periasamy et al. High-speed fluorescence microscopy: lifetime imaging in the biomedical sciences
JPH06347464A (en) Optical inspection method
JPH03154850A (en) Specimen inspecting device
Masters et al. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP
JPH10104079A (en) Depolarization imaging device
JPH0815155A (en) Method and apparatus for optical inspection
JP2836859B2 (en) Three-dimensional spatial and time-resolved absorption spectrum measurement device
JP2002357544A (en) Measuring apparatus