JPH06347270A - Automatic collimation device of surveying instrument - Google Patents

Automatic collimation device of surveying instrument

Info

Publication number
JPH06347270A
JPH06347270A JP5160202A JP16020293A JPH06347270A JP H06347270 A JPH06347270 A JP H06347270A JP 5160202 A JP5160202 A JP 5160202A JP 16020293 A JP16020293 A JP 16020293A JP H06347270 A JPH06347270 A JP H06347270A
Authority
JP
Japan
Prior art keywords
light
distance
pulsed light
lens
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5160202A
Other languages
Japanese (ja)
Inventor
Hiroshi Uchimura
博 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5160202A priority Critical patent/JPH06347270A/en
Publication of JPH06347270A publication Critical patent/JPH06347270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To obtain the title collimation device wherein a long distance can be searched easily and a search range can be changed by a simple structure irrespective of whether a distance is near or far. CONSTITUTION:The title collimation device is provided with a pulsed laser diode 1 which radiates a pulsed beam to an object 9 to be measured, with a plurality of photoelectric conversion cells 6a which convert a reflected pulsed beam from the object 9 to be measured into an electric signal and with an objective lens 8 which converges the pulsed beam from the pulsed laser diode 1. The light-receiving face of each photoelectric conversion cell 6a is arranged two-dimensionally, the angle of divergence of the pulsed beam from the objective lens 8 is controlled, according to a distance up to the object 9 to be measured, by a lens 2 and a motor 3 which drives the lens 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は測量機の自動視準装置
即ち、測定点に設置された反射部材と測量機の望遠鏡の
光軸とをほぼ一致させる装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic collimation device for a surveying instrument, that is, a device for aligning a reflecting member installed at a measuring point with an optical axis of a telescope of the surveying instrument.

【0002】[0002]

【従来の技術】従来のこの種の装置は、光射出方向が一
定な視準装置を機械的に駆動することで測定対象物を探
索する機械駆動式の装置や、レ−ザダイオ−ドからのレ
−ザ光を音響光学素子等の偏向素子を用いて二次元的に
射出し、その光による走査範囲内のタ−ゲットから反射
された光を受光装置で検出し、その検出光により測量機
本体からタ−ゲットまでの方向を求め、視準する光走査
式の装置が知られている(特開平4−166791号公
報)。
2. Description of the Related Art A conventional device of this type is a mechanically driven device for searching for an object to be measured by mechanically driving a collimation device having a constant light emission direction, and a laser diode. Laser light is emitted two-dimensionally using a deflecting element such as an acousto-optical element, and the light reflected from the target within the scanning range by the light is detected by a light receiving device, and the survey light is used by the detected light. There is known an optical scanning type device which obtains a direction from a main body to a target and collimates it (Japanese Patent Laid-Open No. 4-166791).

【0003】[0003]

【発明が解決しようとする課題】ところが、前記機械駆
動式の装置は、機械的に走査するために反射部材を検出
するまでに非常に時間がかかるという問題があった。
However, the mechanically driven apparatus has a problem that it takes a very long time to detect the reflecting member for mechanical scanning.

【0004】これに対し、光走査式の装置には、反射部
材の検出は速いが、偏向素子をドライブするための動力
源や回路が必要になるとともに、光学系の光路が複雑に
なるので、小型化が難しいとともに、人体保護の関係か
らレ−ザダイオ−ドの出力をあまり大きくできないの
で、遠距離探索が難しいという問題があった。更に、こ
の光走査式の装置は探索角(ビ−ムの振れ角)固定であ
るから捜索範囲を変化させることがむずかしく、近距離
の実質的探索面積が狭いという問題があった。
On the other hand, in the optical scanning type apparatus, although the detection of the reflecting member is fast, a power source and a circuit for driving the deflecting element are required, and the optical path of the optical system becomes complicated. There is a problem that it is difficult to miniaturize, and because the output of the laser diode cannot be increased so much because of the protection of the human body, it is difficult to search for a long distance. Furthermore, since this optical scanning device has a fixed search angle (beam deflection angle), it is difficult to change the search range, and there is a problem that the actual search area at a short distance is narrow.

【0005】探索範囲を変化させる従来技術として、探
索範囲内に複数個のタ−ゲットが存在する場合にタ−ゲ
ットを限定することを目的とする自動焦点整合装置であ
って、TVカメラ等の撮像装置を用いて、予め広範囲の
画角でのデ−タ入力を可能にしておいて、有効とする画
角を電気回路又はコンピュ−タにより限定するものがあ
る(特開平4−43475号公報)。しかし、この装置
には、CCDを制御する回路やこれによって得た信号を
処理する回路などが必要になるので、回路規模が非常に
大きくなるという問題があった。
As a conventional technique for changing the search range, there is provided an automatic focusing device for limiting a target when a plurality of targets exist within the search range, such as a TV camera. There is a technique in which data can be input in a wide range of field angles in advance by using an image pickup device and the effective field angle is limited by an electric circuit or a computer (Japanese Patent Laid-Open No. 4-43475). ). However, this device requires a circuit for controlling the CCD and a circuit for processing a signal obtained by the CCD, so that there is a problem that the circuit scale becomes very large.

【0006】この発明はこのような事情に鑑みてなされ
たもので、その課題は遠距離探索を容易にするととも
に、簡単な構造で距離の遠近に拘らず探索範囲を変化さ
せることができる測量機を提供することである。
The present invention has been made in view of the above circumstances, and its object is to facilitate a long-distance search and to have a simple structure capable of changing the search range regardless of the distance. Is to provide.

【0007】[0007]

【課題を解決するための手段】前述の課題を解決するた
め請求項1記載の発明の測量機は、測定対象物にパルス
光を出射するパルス光発生手段と、受光面を二次元的に
配置し前記測定対象物からの反射パルス光を電気信号に
変換する受光手段と、前記パルス光発生手段からのパル
ス光を集束する集光光学系と、この集光光学系からのパ
ルス光の広がり角を前記測定対象物までの距離に応じて
制御するパルス光広がり角制御手段とを備えている。
In order to solve the above-mentioned problems, a surveying instrument according to a first aspect of the present invention has a pulse light generating means for emitting pulsed light to an object to be measured and a light receiving surface arranged two-dimensionally. Then, a light receiving means for converting the reflected pulsed light from the measurement object into an electric signal, a focusing optical system for focusing the pulsed light from the pulsed light generating means, and a spread angle of the pulsed light from the focusing optical system And a pulsed light divergence angle control means for controlling according to the distance to the measurement object.

【0008】[0008]

【作用】光源にパルス光発生手段を用いたので、出力を
大きくして遠距離探索を容易にすることができるし、人
体保護も図り得る。また、複数の受光手段の受光面を二
次元的に配置したので測定対象物の位置検出ができる。
Since the pulsed light generating means is used as the light source, the output can be increased to facilitate long-distance search and protect the human body. Further, since the light receiving surfaces of the plurality of light receiving means are two-dimensionally arranged, the position of the measuring object can be detected.

【0009】また、パルス光発生手段からのパルス光を
集束する集光光学系と、この集光光学系からのパルス光
の広がり角を測定対象物までの距離に応じて制御するパ
ルス光広がり角制御手段とを備えたものでは、測定対象
物までの距離に応じて探索範囲を自由に変えることがで
きる。
Further, a converging optical system for converging the pulsed light from the pulsed light generating means and a pulsed light divergence angle for controlling the divergence angle of the pulsed light from the converging optics according to the distance to the object to be measured. With the control means, the search range can be freely changed according to the distance to the measurement object.

【0010】[0010]

【実施例】以下この発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1はこの発明の一実施例に係る測量機の
全体構成図である。光源としては瞬間的に高出力を得る
ことができるパルスレ−ザダイオ−ド1を用いた。パル
ス点灯としては数ワット〜数百ワット、パルス幅数n秒
〜数百n秒程度である。人体の保護に対する光出力は時
間軸に対する出射光の積分値として表せるので、パルス
点灯方式を採ることにより高出力の素子が使用でき、単
一面積当たりの瞬間ピ−ク光量を大きくとれる。
FIG. 1 is an overall configuration diagram of a surveying instrument according to an embodiment of the present invention. As the light source, a pulse laser diode 1 capable of instantaneously obtaining a high output was used. The pulse lighting is several watts to several hundreds watts, and the pulse width is several nanoseconds to several hundred nanoseconds. Since the light output for protection of the human body can be expressed as the integrated value of the emitted light with respect to the time axis, a high output element can be used by adopting the pulse lighting method, and a large instantaneous peak light amount per single area can be obtained.

【0012】前記パルスレ−ザダイオ−ド1の前方には
対物レンズ8が配置され、対物レンズ8を出たパルス光
は測定対象物9に照射される。パルスレ−ザダイオ−ド
1と対物レンズ8との間には、対物レンズ8から出射さ
れるパルス光の広がり角を制御するレンズ2(例えば凸
レンズ)が配置されている。レンズ2はモ−タ3により
光軸方向に駆動される。レンズ2と対物レンズ8との間
にはハ−フミラ−4が配置され、測定対象物9で反射さ
れた反射パルス光を受光装置6側へ反射させる。受光装
置6とハ−フミラ−4との間には、受光装置6と測定対
象物9との焦点を合わせるための合焦用のレンズ5が配
置され、レンズ5はモ−タ7により駆動される。これら
の光源1〜モータ7及び後述する図4の回路は点線で示
す望遠鏡10内に配置されている。
An objective lens 8 is arranged in front of the pulse laser diode 1, and the pulsed light emitted from the objective lens 8 is applied to an object 9 to be measured. A lens 2 (for example, a convex lens) that controls the divergence angle of the pulsed light emitted from the objective lens 8 is disposed between the pulse laser diode 1 and the objective lens 8. The lens 2 is driven in the optical axis direction by the motor 3. A half mirror-4 is arranged between the lens 2 and the objective lens 8 to reflect the reflected pulsed light reflected by the measuring object 9 to the light receiving device 6 side. A focusing lens 5 for focusing the light receiving device 6 and the measuring object 9 is arranged between the light receiving device 6 and the half mirror 4, and the lens 5 is driven by the motor 7. It The light source 1 to the motor 7 and the circuit of FIG. 4 described later are arranged in the telescope 10 shown by a dotted line.

【0013】前記レンズ2とモ−タ3とで構成されるパ
ルス光広がり角制御手段により、パルス光の出射角を拡
げた場合、単一面積当たりの出射光量は少なくなるが、
一度に広範囲の探索が可能になる。また、パルス光の出
射角を狭くする場合、探索範囲は狭まるが、単一面積当
たりの出射光量は多くなる。
When the emission angle of the pulsed light is expanded by the pulsed light divergence angle control means composed of the lens 2 and the motor 3, the amount of emitted light per single area is reduced,
A wide range of searches can be made at once. Further, when the emission angle of the pulsed light is narrowed, the search range is narrowed, but the amount of emitted light per single area is large.

【0014】なお、パルス光広がり角を狭くし、探索範
囲を限定することで測定対象物を限定することもでき
る。
The measuring object can be limited by narrowing the pulsed light divergence angle and limiting the search range.

【0015】前記受光装置6はセル状に成形したホトダ
イオ−ドアレイを二次元的に配置したものを用いた。た
だし、他にも高速応答が可能なリニアイメージセンサや
ホトダイオードを2次元的に配置したものやCCDを用
いてもよい。尚、CCDを用いる事は可能であるが、C
CD電荷の放電時に受光パルスが来る様なタイミングを
避けるために、CCDの充放電のタイミングをパルス送
光タイミングと同期させる必要がある。また、使用パル
ス幅に応じてCCDの容量性負荷を小さく抑える必要が
ある。
The light receiving device 6 used is a two-dimensionally arranged photo diode array formed in a cell shape. However, a linear image sensor capable of high-speed response, a two-dimensional array of photodiodes, or a CCD may be used. It is possible to use CCD, but C
It is necessary to synchronize the charge / discharge timing of the CCD with the pulse light transmission timing in order to avoid the timing at which the light receiving pulse comes when the CD charge is discharged. Further, it is necessary to keep the capacitive load of the CCD small according to the pulse width used.

【0016】図2(a)は9個の光電変換セル6aを一
個のパッケ−ジ内に二次元的に配置した例を示し、図2
(b)は光電変換セル6aを4個用いた例を示し、図中
の円は測定対象物9との焦点及び視準が理想的な状態で
合ったときの測定対象物9の結像点を表す。
FIG. 2A shows an example in which nine photoelectric conversion cells 6a are two-dimensionally arranged in one package, and FIG.
(B) shows an example in which four photoelectric conversion cells 6a are used, and a circle in the figure is an image forming point of the measurement object 9 when the focus and collimation with the measurement object 9 are in an ideal state. Represents

【0017】焦点は合致しているが、視準即ち結像点の
位置がずれている場合CPU16は受光装置に応じて、
本体10の光軸上に測定対象物9が位置するように制御
する。例えば、図2(a)の受光装置を用いている場合
は中央の光電変換セル6aの反射光強度が最も強くなる
ように測量機本体10を制御し、図2(b)の受光装置
では各光電変換セル6aの反射光強度が均等になるよう
に測量機本体10を制御することで視準できる。
When the focus is in agreement but the collimation, that is, the position of the image formation point is deviated, the CPU 16 responds to the light receiving device.
The measurement target 9 is controlled to be located on the optical axis of the main body 10. For example, when the light receiving device of FIG. 2 (a) is used, the surveying instrument main body 10 is controlled so that the reflected light intensity of the central photoelectric conversion cell 6a is maximized. Collimation can be performed by controlling the surveying instrument main body 10 so that the reflected light intensity of the photoelectric conversion cells 6a becomes uniform.

【0018】測量機本体10の制御は、測量機本体を2
つの電動モ−タ18,19により水平方向と垂直方向に
駆動させて行なう。
Control of the surveying instrument main body 10 is performed by controlling the surveying instrument main body 2
It is driven by two electric motors 18 and 19 in the horizontal and vertical directions.

【0019】更に、焦点がずれている時点からの制御を
説明する。尚、微弱であっても反射パルス光は検出でき
ているものとする。パルス光を送るタイミングは既知で
あるから、僅かな焦点ずれがあっても受光さえできれば
大体の距離情報は得られる。即ち、遅延時間測定回路1
7でパルス光の送信から受信までの時間差を計測するこ
とで距離情報が得られ、CPU16はこの距離情報に基
づいてレンズ5の位置を移動させるようにモータ7を制
御する。受光装置6で、反射パルス光のピーク値が検出
されるまで、この距離計測とレンズ駆動とを繰り返すこ
とにより、より正確な焦点整合を行なう。
Further, the control from the time when the focus is deviated will be described. It is assumed that the reflected pulsed light can be detected even if it is weak. Since the timing of sending the pulsed light is known, if the light can be received even if there is a slight defocus, the approximate distance information can be obtained. That is, the delay time measuring circuit 1
Distance information is obtained by measuring the time difference between transmission and reception of pulsed light at 7, and the CPU 16 controls the motor 7 so as to move the position of the lens 5 based on this distance information. The light receiving device 6 repeats the distance measurement and the lens driving until the peak value of the reflected pulsed light is detected, thereby performing more accurate focus matching.

【0020】図4は受光装置6の1個の光電変換セル6
aからの情報をCPU16で処理するための回路図であ
る。尚、CPU16は共通の1個であるが、各セルに同
様の回路が接続されている。光電変換セル6aに入射し
た反射パルス光は光電変換され、負荷抵抗11の両端に
変換された電流値に応じた電圧が生じる。この電気信号
はハイパスフィルタ13、増幅器14を経由してピ−ク
検出回路15に送られ、このピ−ク検出回路15でデジ
タル信号に変換され、このピ−ク光量値がCPU16に
与えられる。一方、遅延時間測定回路17では、パルス
点灯を行ったタイミングの時間情報を表す送信信号との
時間差を計測し、その結果をデジタル化してCPU16
に送る。尚、遅延時間測定回路17は全ての光電変換セ
ル6aに対して必要な回路ではなく、パルス測距を行う
システムの場合に必要になり、最低限一個の光電変換セ
ル6aに対して設ければよい。
FIG. 4 shows one photoelectric conversion cell 6 of the light receiving device 6.
It is a circuit diagram for processing the information from a in CPU16. It should be noted that the CPU 16 is one in common, but a similar circuit is connected to each cell. The reflected pulsed light incident on the photoelectric conversion cell 6a is photoelectrically converted, and a voltage corresponding to the converted current value is generated across the load resistor 11. The electric signal is sent to the peak detection circuit 15 via the high-pass filter 13 and the amplifier 14, converted into a digital signal by the peak detection circuit 15, and the peak light amount value is given to the CPU 16. On the other hand, the delay time measuring circuit 17 measures the time difference from the transmission signal indicating the time information of the timing at which the pulse lighting is performed, digitizes the result, and the CPU 16
Send to. The delay time measuring circuit 17 is not necessary for all the photoelectric conversion cells 6a, but is necessary for a system that performs pulse distance measurement. If the delay time measuring circuit 17 is provided for at least one photoelectric conversion cell 6a. Good.

【0021】次に、この実施例の測定機の動作を説明す
る。
Next, the operation of the measuring machine of this embodiment will be described.

【0022】まず、パルスレ−ザダイオ−ド1から送り
出されたパルス光を対物レンズ8から出射させる。この
とき対物レンズ8からのパルス光の広がり角が最大とな
るようにレンズ2をモ−タ3で駆動する。出射されたパ
ルス光は測定対象物9で反射され、対物レンズ8を通
り、ハ−フミラ−4で反射され、レンズ5を通過して受
光装置6に至る。
First, the pulsed light sent from the pulse laser diode 1 is emitted from the objective lens 8. At this time, the lens 2 is driven by the motor 3 so that the spread angle of the pulsed light from the objective lens 8 is maximized. The emitted pulsed light is reflected by the object 9 to be measured, passes through the objective lens 8, is reflected by Haarmyla-4, passes through the lens 5, and reaches the light receiving device 6.

【0023】このとき受光装置6でパルス光が検出でき
ない場合、次の原因が考えられる。第1に十分な合焦を
していないこと、第2に測定対象物までの距離が長す
ぎ、検出レベル以下の受光量となっていること、第3に
測定対象物9が探索範囲内にないこと、などが考えられ
る。
If the light receiving device 6 cannot detect the pulsed light at this time, the following causes are considered. Firstly, the subject is not sufficiently focused, secondly, the distance to the measuring object is too long and the amount of received light is below the detection level, and thirdly, the measuring object 9 is within the search range. It is possible that there is no such thing.

【0024】第1の場合にはモ−タ7でレンズ5による
焦点を近距離から遠距離の間で移動させながら探索を行
なう。第2の場合にはモ−タ3でレンズ2による広がり
角を狭めながら探索を行う。通常第1の場合と第2の場
合との両方が関係していると考えられるが、このような
場合には、受光量がおよそ広がり角の二乗及び距離の二
乗に反比例することにより、最大広がり角にしたときの
最大測定距離が既知であるとすると、これにより遠距離
を探索するときに、探索範囲の平面積を固定したシステ
ムと考えて、広がり角と焦点とを同時に駆動することに
より対応できる。
In the first case, the search is performed while the motor 7 moves the focal point of the lens 5 from a short distance to a long distance. In the second case, the search is performed while the motor 3 narrows the spread angle of the lens 2. Usually, both the first case and the second case are considered to be related, but in such a case, the maximum received light spreads because the received light amount is approximately inversely proportional to the square of the spread angle and the square of the distance. Assuming that the maximum measurement distance when the angle is set is known, this is considered as a system in which the flat area of the search range is fixed when searching for a long distance, and it is possible to respond by driving the divergence angle and the focus at the same time. it can.

【0025】図3(a)は受光量が同一となる広がり角
と距離との関係を説明するための図であり、距離d1
対する最大広がり角をθ1 とする。ここではθ1 がシス
テム上物理的に最大となり得る最大広がり角と一致する
ものとする。また、距離d2における受光量がd1 のと
きと同一となり得る広がり角をθ2 とした。図3(b)
及び図3(c)は距離d1 ,d2 における最大探索面積
をそれぞれ示し、その直径をl1 ,l2 とする。湿度や
温度によっても影響をうけるが、概ねl1 =l2 であ
る。換言すればd1 以上の距離に対しては同一面積での
探索が可能になり、平面積固定の検索機構ということも
でき、焦点整合を必要とするシステムでは、焦点即ち探
索面の距離を移動しながら広がり角を制御することで最
大体積の探索が行える。
FIG. 3A is a diagram for explaining the relationship between the spread angle and the distance at which the amount of received light is the same, and the maximum spread angle with respect to the distance d 1 is θ 1 . Here, it is assumed that θ 1 coincides with the maximum divergence angle that can be physically maximized in the system. Further, the spread angle that can be the same as that when the amount of received light at the distance d 2 is d 1 is defined as θ 2 . Figure 3 (b)
And FIG. 3C shows the maximum search areas at the distances d 1 and d 2 , respectively, and the diameters thereof are l 1 and l 2 , respectively. Although it is affected by humidity and temperature, it is generally l 1 = l 2 . In other words, it is possible to search in the same area for a distance of d 1 or more, and it can be said that it is a search mechanism with a fixed flat area. In a system that requires focus matching, the focus, that is, the distance of the search surface is moved. However, the maximum volume can be searched by controlling the spread angle.

【0026】前記第3の場合(測定対象物9が探索範囲
内にない場合)には、前述の第1、第2の場合の処理を
併用しながら、若しくは広がり角を固定した状態で第1
の場合の処理を併用しながら、測量機本体を駆動させる
か、出射パルス光を偏向させる手段が必要になるが、従
来の方式よりも駆動すべき範囲は短くなる。なお、焦点
深度が深い場合、前記第1の場合の処理を減少又は削除
することができる。
In the third case (when the measuring object 9 is not within the search range), the first processing is performed while the processing in the first and second cases described above is used together or the spread angle is fixed.
While using the processing in the case of 1), it is necessary to drive the surveying instrument main body or to deflect the emitted pulsed light, but the range to be driven becomes shorter than the conventional method. When the depth of focus is deep, the processing in the first case can be reduced or deleted.

【0027】また、僅かな焦点ずれがあっても、パルス
光が検出できる程度の受光量が得られれば、パルス測距
を行なうことも可能であるから、これと焦点の相互補正
により、より正確な焦点整合を行なうシステムの構築も
できる。
Further, even if there is a slight defocus, it is possible to perform pulse distance measurement as long as the amount of received light that can detect the pulsed light can be obtained. It is also possible to build a system that performs precise focus matching.

【0028】以上によりパルス光の検知ができた状態と
なる。
As described above, the pulsed light can be detected.

【0029】次に、光電変換セル6aをパッケ−ジ内に
二次元的に配置した受光装置6により得られる位置情報
を元に、図示しない電動モ−タにより測量機本体を駆動
し、測定対象物9との光軸を合わすように視準させる。
Next, based on the position information obtained by the light receiving device 6 in which the photoelectric conversion cells 6a are two-dimensionally arranged in the package, the surveying instrument main body is driven by an electric motor (not shown) to measure the object to be measured. Collimate so that the optical axis of the object 9 is aligned.

【0030】更に、モ−タ3でレンズ2を駆動し、距離
情報との兼ね合いで、広がり角を追尾動作に都合のよい
探索範囲となるように設定する。
Further, the lens 2 is driven by the motor 3, and the divergence angle is set so as to be a search range convenient for the tracking operation in consideration of the distance information.

【0031】再度、合焦、視準、探索範囲の微調整を行
なう。
Focusing, collimation, and fine adjustment of the search range are performed again.

【0032】以上の動作により合焦、視準が自動的に行
なわれ、自動追尾が可能となるシステムが構築できる。
By the above operation, focusing and collimation are automatically performed, and a system capable of automatic tracking can be constructed.

【0033】この実施例の測量機ではTVカメラ等の特
別大きな部品の使用を必要としないので、小型化を図る
ことができる。また、探索範囲を容易に変更できるの
で、高速に移動する測定対象物9には探索範囲を広げる
ことで対応することができるとともに、測定対象物とな
り得るタ−ゲットが複数ある場合には探索範囲を狭める
ことで対応できる。出射されるパルス光は広がり角の二
乗に反比例するが、光源のレ−ザパルスダイオ−ド1が
高出力であるから対物レンズ8からの広がり角を大きく
とれ、その結果近距離の測定対象物9に視準させると
き、測量機本体を測定対象物9に向けるだけで即座に視
準させることが可能となる。逆に広がり角を狭くするこ
とで、遠距離に対する光量を大きくとれる。近距離では
大きな光量は不要であるため広がり角を大きくとれるこ
とになり、遠距離では僅かな広がり角でも探索範囲面積
自体は狭くならないので、光量を優先させることができ
るのである。
Since the surveying instrument of this embodiment does not require the use of an extra large component such as a TV camera, it can be miniaturized. Further, since the search range can be easily changed, it is possible to deal with the measurement object 9 that moves at a high speed by expanding the search range, and when there are a plurality of targets that can be measurement objects, the search range can be increased. It can be dealt with by narrowing. The emitted pulsed light is inversely proportional to the square of the divergence angle, but since the laser pulse diode 1 of the light source has a high output, the divergence angle from the objective lens 8 can be made large, and as a result, the measurement target 9 at a short distance can be obtained. At the time of collimation, it is possible to instantly collimate by simply pointing the surveying instrument main body at the measurement object 9. Conversely, by narrowing the divergence angle, a large amount of light can be obtained with respect to a long distance. Since a large amount of light is unnecessary at a short distance, a wide divergence angle can be obtained, and at a long distance, even a small divergence angle does not narrow the search range area itself, so that the amount of light can be prioritized.

【0034】なお、この実施例では、レンズ2に凸レン
ズを用いた場合について述べたが、凹レンズを用いるよ
うにしてもよい。また、モ−タ3でレ−ザパルスダイオ
−ド1を直接光軸に沿って駆動させる方法でも広角を制
御でき、この場合にはレンズ2が不要になる。
In this embodiment, a case where a convex lens is used as the lens 2 has been described, but a concave lens may be used. The wide angle can also be controlled by a method of driving the laser pulse diode 1 directly along the optical axis with the motor 3, and in this case, the lens 2 becomes unnecessary.

【0035】更に、この実施例では、パルス光を送る光
路とパルス光を受ける光路とを同じにしたが、両光路を
分離させてもよい。
Further, in this embodiment, the optical path for transmitting the pulsed light and the optical path for receiving the pulsed light are the same, but both optical paths may be separated.

【0036】[0036]

【発明の効果】以上説明したように請求項1記載の発明
の測量機によれば、光源にパルス光発生手段を用いたの
で出力を大きくして遠距離探索を容易にすることができ
るし、また複数の受光手段の受光面を二次元的に配置し
たので測定対象物の位置検出ができ、コントラスト方式
による焦点検出も可能になる。
As described above, according to the surveying instrument of the invention described in claim 1, since the pulsed light generating means is used as the light source, the output can be increased to facilitate the long distance search. Further, since the light receiving surfaces of the plurality of light receiving means are two-dimensionally arranged, the position of the measuring object can be detected, and the focus detection by the contrast method can also be performed.

【0037】また、請求項2記載の発明の測量機によれ
ば、近距離の測定対象物に対しては探索範囲を広くして
高速の位置検出を可能にし、近距離に測定対象物となり
得るタ−ゲットが複数個存在するときには、逆に探索範
囲を狭めることにより測定対象物を限定することもでき
る。
According to the surveying instrument of the second aspect of the present invention, it is possible to widen the search range for an object to be measured at a short distance to enable high-speed position detection and become an object to be measured at a short distance. When there are a plurality of targets, the object to be measured can be limited by narrowing the search range.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はこの発明の一実施例に係る測量機の全体
構成図である。
FIG. 1 is an overall configuration diagram of a surveying instrument according to an embodiment of the present invention.

【図2】図2は受光装置の光電変換セルの配置を示す図
である。
FIG. 2 is a diagram showing an arrangement of photoelectric conversion cells of a light receiving device.

【図3】図3は受光装置の受光量が同一となる距離
1 ,d2 と出射パルス光の広がり角をθ1 ,θ2 との
関係、並びに距離d1 ,d2 における最大探索面積を示
す図である。
Maximum search area relationship, and at a distance d 1, d 2 and FIG. 3 is a distance d 1, d 2 and the spread angle of the outgoing pulse light theta 1 which the amount of light received by the light receiving device are the same, theta 2 FIG.

【図4】図4は受光装置の光電変換セルからの情報をC
PUで処理するための回路図である。
FIG. 4 is a diagram showing information from a photoelectric conversion cell of a light receiving device as C
It is a circuit diagram for processing by PU.

【符号の説明】[Explanation of symbols]

1 パルスレ−ザダイオ−ド 2,5 レンズ 3,7 モ−タ 6 受光装置 6a 光電変換セル 8 対物レンズ 9 測定対象物 1 pulse laser diode 2,5 lens 3,7 motor 6 light receiving device 6a photoelectric conversion cell 8 objective lens 9 object to be measured

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 測定対象物にパルス光を出射するパルス
光発生手段と、 受光面を二次元的に配置し前記測定対象物からの反射パ
ルス光を電気信号に変換する受光手段と、 前記パルス光発生手段からのパルス光を集束する集光光
学系と、 この集光光学系からのパルス光の広がり角を前記測定対
象物までの距離に応じて制御するパルス光広がり角制御
手段とを備えていることを特徴とする測量機の自動視準
装置。
1. A pulsed light generating means for emitting pulsed light to an object to be measured, a light receiving means for arranging a light receiving surface two-dimensionally and converting reflected pulsed light from the object to be measured into an electric signal, said pulse A condensing optical system for converging the pulsed light from the light generating means, and a pulsed light divergence angle control means for controlling the divergence angle of the pulsed light from the condensing optics according to the distance to the object to be measured. The automatic collimation device of the surveying instrument.
JP5160202A 1993-06-04 1993-06-04 Automatic collimation device of surveying instrument Pending JPH06347270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5160202A JPH06347270A (en) 1993-06-04 1993-06-04 Automatic collimation device of surveying instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5160202A JPH06347270A (en) 1993-06-04 1993-06-04 Automatic collimation device of surveying instrument

Publications (1)

Publication Number Publication Date
JPH06347270A true JPH06347270A (en) 1994-12-20

Family

ID=15710002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5160202A Pending JPH06347270A (en) 1993-06-04 1993-06-04 Automatic collimation device of surveying instrument

Country Status (1)

Country Link
JP (1) JPH06347270A (en)

Similar Documents

Publication Publication Date Title
US11988773B2 (en) 2-dimensional steering system for lidar systems
JP7515545B2 (en) Integrated illumination and detection for LIDAR-based 3D imaging - Patent Application 20070123633
US20190257924A1 (en) Receive path for lidar system
US20170176596A1 (en) Time-of-flight detector with single-axis scan
US6839127B1 (en) Optical range finder having a micro-mirror array
US20120218563A1 (en) Devices and methods for position determination and surface measurement
US11644543B2 (en) LiDAR systems and methods that use a multi-facet mirror
CN109752704A (en) A kind of prism and multi-line laser radar system
US11686819B2 (en) Dynamic beam splitter for direct time of flight distance measurements
KR20200102900A (en) Lidar device
CN210347920U (en) Laser receiving device and laser radar system
US20230305117A1 (en) Detection apparatus, control method and control apparatus of detection apparatus, lidar system, and terminal
JP3381233B2 (en) Autofocus device and focus adjustment method
CN108885260B (en) Time-of-flight detector with single axis scanning
JPH06347270A (en) Automatic collimation device of surveying instrument
JPH06317741A (en) Range finder
JPH11201718A (en) Sensor device and distance measuring equipment
JP2989593B1 (en) Distance measuring device
US11914076B2 (en) Solid state pulse steering in LiDAR systems
JP3200927B2 (en) Method and apparatus for measuring coating state
CN113447947A (en) Device and method for generating scene data
CN112558038A (en) Scanning method of laser radar
CN221595265U (en) Laser radar
Cameron et al. The Design and Manufacture of a High-Resolution Laser Radar Scanner
RU2199709C2 (en) Multi-channel guidance system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030212