JPH06347266A - Buoy-type wave measuring apparatus - Google Patents

Buoy-type wave measuring apparatus

Info

Publication number
JPH06347266A
JPH06347266A JP16604593A JP16604593A JPH06347266A JP H06347266 A JPH06347266 A JP H06347266A JP 16604593 A JP16604593 A JP 16604593A JP 16604593 A JP16604593 A JP 16604593A JP H06347266 A JPH06347266 A JP H06347266A
Authority
JP
Japan
Prior art keywords
buoy
spring
waves
wave
sea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16604593A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kurioka
克彦 栗岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16604593A priority Critical patent/JPH06347266A/en
Publication of JPH06347266A publication Critical patent/JPH06347266A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Level Indicators Using A Float (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure waves by using a buoy floating on the surface of the sea regarding an apparatus which is installed on the sea and which measures the waves. CONSTITUTION:The upper end of a spring 2 which is expanded and contracted up and down is connected to a buoy 1 which floats on the surface of the sea, and a shake-suppressing body 4 in which, e.g. disks 3 have been shaft-supported in a multistage shape is connected to the lower end of the spring 2. Then, the shake-suppressing body 4 is restrained to the bottom of the sea via anchor means 5, 6. In addition, a sensor which detects the tension of the spring 2 and an operation device which computes various factors of waves on the basis of a detection signal from the sensor are installed. Thereby, the shake- suppressing body 4 is set to an almost immobile state irrespective of the waves on the surface of the sea, and it functions as the starting point to measure the waves by using the buoy 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、海上に設けられて波浪
を計測するための装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring waves, which is provided on the sea.

【0002】[0002]

【従来の技術】従来の波浪計測装置としては図9に示す
ようなものがあり、海底に立設固定されて海面を貫通す
る測定桿12の上端に、海面に向け超音波を発する超音波
発信器13と、海面から反射する超音波を受けるための超
音波受波器14とが、同レベルで設けられるとともに、こ
れらの送受波器13,14から海面までの距離を上記超音波
の発信から受波までに要した時間に基づき演算する演算
器15が設けられている。そして、上記演算器15で算出さ
れた上記距離の時間的変化に基づき、海面における波浪
の高さや周期が同演算器15で演算されるようになってい
る。
2. Description of the Related Art There is a conventional wave measuring device as shown in FIG. 9, in which an ultrasonic wave is transmitted to the upper end of a measuring rod 12 which is erected and fixed on the seabed and penetrates the sea surface. The device 13 and the ultrasonic wave receiver 14 for receiving the ultrasonic wave reflected from the sea surface are provided at the same level, and the distance from these wave transmitters / receivers 13, 14 to the sea surface is determined from the transmission of the ultrasonic wave. An arithmetic unit 15 is provided which performs an arithmetic operation based on the time required to receive the wave. Then, based on the temporal change in the distance calculated by the calculator 15, the height and period of the waves on the sea surface are calculated by the calculator 15.

【0003】[0003]

【発明が解決しようとする課題】ところで、上述のよう
な従来の波浪計測装置では、海底に測定桿12を立設固定
するのに多額の費用を必要とし、水深が増すのにつれて
上記費用が著しく増大するという問題点がある。本発明
は、このような問題点の解消をはかろうとするもので、
従来の海底に立設固定される測定桿を必要とせずに、海
面に浮くブイを用いて波浪の計測を行なえるようにし
た、ブイ式波浪計測装置を提供することを目的とする。
By the way, in the conventional wave measuring device as described above, a large amount of cost is required to vertically install and fix the measuring rod 12 on the seabed, and the above cost remarkably increases as the water depth increases. There is a problem of increase. The present invention is intended to solve such problems,
It is an object of the present invention to provide a buoy type wave measuring device capable of measuring waves using a buoy floating on the sea surface without the need for a conventional measuring rod vertically fixed to the sea floor.

【0004】[0004]

【課題を解決するための手段】上述の目的を達成するた
め、本発明のブイ式波浪計測装置は、海面に浮くブイ
と、同ブイに上端を連結されて上下方向に伸縮するバネ
と、同バネの下端に連結されて水中に配設された動揺抑
制体と、同動揺抑制体を海底に拘束するアンカー手段と
をそなえ、上記バネの張力を検出するセンサと、同セン
サから検出信号を受けて上記張力に基づき波浪の諸元を
算出する演算装置とが上記ブイに装備されたことを特徴
としている。また本発明のブイ式波浪計測装置は、上記
演算装置の算出した波浪の諸元に対応する出力信号を受
けて同信号を発信する無線器が上記ブイに設けられたこ
とを特徴としている。
In order to achieve the above-mentioned object, a buoy type wave measuring device of the present invention comprises a buoy floating on the sea surface, a spring having an upper end connected to the buoy and extending and contracting vertically. A sensor for detecting the tension of the spring and a detection signal from the sensor, which is provided with a shake suppressing body connected to the lower end of the spring and arranged in water, and an anchor means for restraining the shake suppressing body to the seabed. The buoy is equipped with an arithmetic unit for calculating the specifications of waves based on the tension. Further, the buoy type wave measuring device of the present invention is characterized in that the buoy is provided with a radio device which receives an output signal corresponding to the specifications of the wave calculated by the arithmetic unit and transmits the signal.

【0005】[0005]

【作用】上述の本発明のブイ式波浪計測装置では、海面
に波浪が生じると、同海面に浮くブイが波浪に応じて動
揺するが、同ブイにバネを介して連結された水中の動揺
抑制体は動揺を抑制された状態に保たれるので、上記バ
ネが伸縮するようになる。そして上記バネの張力を検出
するセンサに接続された演算装置が、上記張力に基づき
波浪の諸元としての波高や周期等を演算する。また、上
記演算装置に接続された無線器が、同演算装置の算出し
た波浪の諸元に対応する信号を発信する。
In the above-mentioned buoy type wave measuring device of the present invention, when a wave occurs on the sea surface, the buoy floating on the sea surface sways according to the wave. However, the buoy is restrained from being shaken in water by a spring. Since the body is kept in a state of restraint of movement, the spring is expanded and contracted. An arithmetic device connected to the sensor that detects the tension of the spring calculates the wave height, the period, and the like as the specifications of the wave based on the tension. Further, the radio connected to the arithmetic unit transmits a signal corresponding to the wave specifications calculated by the arithmetic unit.

【0006】[0006]

【実施例】以下図面により本発明の一実施例としてのブ
イ式波浪計測装置について説明すると、図1はその使用
状態を示す立面図、図2はそのブイの縦断面図、図3は
その作用状態を模式的に示す説明図、図4はその作用時
におけるブイ等の動きを示す説明図、図5はそのバネの
張力の変動を示すグラフ、図6は波浪の粒子運動を示す
説明図、図7は上記装置における波浪計測のための各部
材の作用の経過を示すブロック線図、図8は上記装置に
おける各機器の結線状態を示す説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A buoy type wave measuring device as an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an elevational view showing its usage, FIG. 2 is a longitudinal sectional view of the buoy, and FIG. Explanatory diagram schematically showing the action state, FIG. 4 is an explanatory diagram showing the movement of the buoy and the like at the time of its action, FIG. 5 is a graph showing the fluctuation of the tension of the spring, FIG. 6 is an explanatory diagram showing the wave particle motion FIG. 7 is a block diagram showing the course of action of each member for measuring waves in the above device, and FIG. 8 is an explanatory diagram showing a connection state of each device in the above device.

【0007】図8に示すように、本装置は、海面に浮く
ブイ1をそなえ、同ブイ1に、上下方向に伸縮するバネ
2の上端が連結されるとともに、同バネ2の下端に動揺
抑制体4が連結されている。そしてケーブル5および海
底に沈座するアンカー6からなるアンカー手段で、動揺
抑制体4が海底に拘束されている。なお、本実施例で
は、動揺抑制体4は多数の円板3を多段状に軸支するこ
とにより構成されている。またブイ1には、図2に示す
ように、バネ2の張力を検出するセンサ11が装備される
とともに、同センサ11に接続された演算装置8が装備さ
れており、同演算装置8はセンサ11から検出信号を受け
て上記張力に基づき、波浪の諸元としての波高や周期を
算出できるように構成されている。
As shown in FIG. 8, this device has a buoy 1 floating on the sea surface, and the upper end of a spring 2 which expands and contracts in the vertical direction is connected to the buoy 1 and the lower end of the spring 2 suppresses shaking. The body 4 is connected. Then, the motion suppressing body 4 is restrained on the seabed by an anchor means including a cable 5 and an anchor 6 that is seated on the seabed. In addition, in the present embodiment, the vibration suppressing body 4 is configured by pivotally supporting a large number of discs 3 in a multi-step manner. As shown in FIG. 2, the buoy 1 is equipped with a sensor 11 for detecting the tension of the spring 2 and an arithmetic unit 8 connected to the sensor 11. The arithmetic unit 8 is a sensor. It is configured to be able to calculate the wave height and the period as the characteristics of the wave based on the tension by receiving the detection signal from 11.

【0008】さらに、演算装置8の算出した波浪の諸元
に対応する出力信号を受けて同信号を発信する無線器16
が、ブイ1に装備されている。なお、ブイ1は浮体10と
同浮体10の下面に結合されたフレーム7とをそなえてお
り、同フレーム7がセンサ11を介しバネ2の上端を接続
されている。そして浮体10の上面に形成された凹所に、
前述の演算装置8や無線器16が搭載されるとともに、電
源としての蓄電池19が搭載されて、これらを覆うように
カバー9が設けられている。またカバー9には、無線器
16から発信するためのアンテナ17が装着されている。さ
らにカバー9の上面には、蓄電池19に充電しうる太陽電
池18が装着されている。
Further, a radio device 16 which receives an output signal corresponding to the wave characteristics calculated by the arithmetic unit 8 and transmits the signal.
Is equipped on buoy 1. The buoy 1 includes a floating body 10 and a frame 7 coupled to the lower surface of the floating body 10, and the frame 7 is connected to the upper end of a spring 2 via a sensor 11. And in the recess formed on the upper surface of the floating body 10,
The arithmetic unit 8 and the wireless device 16 described above are mounted, a storage battery 19 as a power source is mounted, and a cover 9 is provided to cover these. In addition, the cover 9 has a radio
An antenna 17 for transmitting from 16 is attached. Furthermore, on the upper surface of the cover 9, a solar cell 18 capable of charging the storage battery 19 is mounted.

【0009】ブイ1は水面上にあり、波浪により運動す
る。この運動は、図4に示すように、一般に楕円運動で
ある。ブイ1はバネ2により動揺抑制体4と結ばれてい
るため、ブイ1の運動はバネ2により動揺抑制体4に伝
達される。ブイ1に楕円運動を生じさせる波浪の粒子運
動は、図6に示すように、深度が大きいほどその運動の
軌跡は小さい。このため、水中にある動揺抑制体4に作
用する波浪外力は、ブイ1に作用する波浪外力に比べ、
極めて小さい。また、動揺抑制体4は、水流抵抗が極め
て大きい形状であるため、周期の短い周期的な外力に対
しては、ほとんど動揺しない。したがってバネ2から伝
達される周期的な外力に対しても、動揺抑制体4は動揺
しない。
The buoy 1 is on the surface of the water and moves by waves. This movement is generally an elliptical movement, as shown in FIG. Since the buoy 1 is connected to the rocking suppressor 4 by the spring 2, the movement of the buoy 1 is transmitted to the rocking suppressor 4 by the spring 2. As shown in FIG. 6, the particle motion of waves causing an elliptical motion in the buoy 1 has a smaller trajectory as the depth increases. Therefore, the wave external force that acts on the vibration suppressor 4 in the water is larger than the wave external force that acts on the buoy 1.
Extremely small. Further, since the motion suppressor 4 has a shape with extremely large water flow resistance, it hardly sways with respect to a periodic external force having a short cycle. Therefore, the shake suppressing body 4 does not shake even with respect to the periodic external force transmitted from the spring 2.

【0010】これらの結果、水面上のブイ1は波浪によ
り楕円運動をする一方で、水中の動揺抑制体4は水中で
ほとんど静止状態となる。このため水中の動揺抑制体4
は、ブイ1で波浪を計測するための原点(不動点)とな
る。本装置の作用についてさらに具体的に説明すると、
図3はブイ1の上下方向の運動のみを取り出して模式的
に示すもので、ブイ1を質量M1の質点Aとし、動揺抑
制体4を質量M2の質点B、バネ2をバネ定数kのバネ
Cとしている。バネ2の質量は、M1,M2と比べ十分
小さいとし省略する。静止状態での釣り合い位置から上
向きに、質点Aについての座標系x1,質点Bについて
の座標系x2をとると、質点Aには、波浪による外力Fx
(t)が作用するとともに、バネCによる外力−k(x1
2)が作用する。
As a result, the buoy 1 on the surface of the water makes an elliptical motion due to the waves, while the motion suppressor 4 in the water becomes almost stationary in the water. For this reason, the shake suppressor 4 in the water
Is the origin (fixed point) for measuring the waves on the buoy 1. More specifically explaining the operation of this device,
FIG. 3 schematically shows only the vertical movement of the buoy 1, and shows the buoy 1 as the mass point A of the mass M 1 , the sway suppressor 4 as the mass point B of the mass M 2 , and the spring 2 as the spring constant k. Spring C is used. Since the mass of the spring 2 is sufficiently smaller than M1 and M2, the description thereof will be omitted. When the coordinate system x 1 for the mass point A and the coordinate system x 2 for the mass point B are taken upward from the equilibrium position in the stationary state, the mass point A has an external force Fx due to waves.
(t) acts and the external force of the spring C −k (x 1
x 2 ) acts.

【0011】また質点Bには、バネCによる外力k(x1
−x2)と、自身の運動による水流抵抗−ndx2/dt
とが作用する。質点Bも質点Aと同様に、水中において
波浪による外力を受けるが、水流抵抗−ndx2/dt
に比べ十分小さいとし省略する。座標系x1,x2を静止
状態における釣り合い位置からとったため、質点A,B
に作用する浮力および重力は相殺される。以上をまとめ
ると、質点Aについては[数1]式,質点Bについては
[数2]式の通りとなる。
At the mass point B, the external force k (x 1
-X 2 ) and the water flow resistance due to its own movement -ndx 2 / dt
And work. Similarly to the mass point A, the mass point B receives an external force due to waves in water, but the water flow resistance is −ndx 2 / dt.
Omitted as it is sufficiently smaller than Since the coordinate systems x 1 and x 2 are taken from the equilibrium position in the stationary state, the mass points A and B are
The buoyancy and gravity acting on the are offset. Summarizing the above, the equation for the mass point A is given by [Equation 1] and the equation for the mass point B is given by [Equation 2]

【0012】[0012]

【数1】 [Equation 1]

【数2】 波浪による外力Fx(t)をFxcosωtとし、M1,M2
k,n,ωが以下の場合を仮定する。 M1=500kg,M2=100kg,k=20N/m,n=100N/(m/
s),ω=2rad/s この場合、質点Bの運動の振幅は、質点Aの運動の振幅
の約24分の1となる。
[Equation 2] The external force Fx (t) due to waves is Fxcosωt, and M 1 , M 2 ,
Assume that k, n, and ω are as follows. M 1 = 500kg, M 2 = 100kg, k = 20N / m, n = 100N / (m /
s), ω = 2 rad / s In this case, the amplitude of the motion of the mass point B is about 1/24 of the amplitude of the motion of the mass point A.

【0013】以上は、上下方向の運動についてのみ考え
たが、横方向の運動についても同様の原理が適用でき
る。これらから、水面上のブイ1の運動が大きくても、
水中の動揺抑制体4は、ほとんど静止状態になることが
わかる。以上の運動の様子を図4に示す。円板3を多段
状に軸支された動揺抑制体4と、ブイ1との距離は、ブ
イ1の運動のみによって決まる。動揺抑制体4とブイ1
とを結ぶバネ2は、この距離に応じて伸びる。そして、
バネ2の張力の変動は図5に示すようになる。
Although only the vertical movement has been considered above, the same principle can be applied to the horizontal movement. From these, even if the movement of the buoy 1 on the water surface is large,
It can be seen that the shake suppressor 4 in water is almost stationary. The state of the above exercise is shown in FIG. The distance between the sway suppressor 4 in which the disc 3 is axially supported in multiple stages and the buoy 1 is determined only by the movement of the buoy 1. Shake suppression body 4 and buoy 1
The spring 2 connecting to and extends according to this distance. And
The fluctuation of the tension of the spring 2 is as shown in FIG.

【0014】図5中のa,b,c,dの各点は、図4中
の各点a,b,c,dに対応する。最大張力Faと最少
張力Fcとの差をバネ定数kで割った値(Fa−Fc)/
kが、計測対象の波浪の波高となる。最大張力となる時
刻Ta1およびTa2の差(Ta2−Ta1)が、計測対象
の波浪の周期となる。図7は、以上の計測の乱れをまと
めたものである。また演算装置8の構成は、図8に示す
とおりで、同装置8は、張力検出用センサ11からの入力
および無線器16への出力を制御する入出力ユニット20
と、計測データおよび実行プログラムの格納に供するメ
モリユニット21と,演算ユニット22とをそなえて構成さ
れている。
Points a, b, c and d in FIG. 5 correspond to points a, b, c and d in FIG. A value obtained by dividing the difference between the maximum tension Fa and the minimum tension Fc by the spring constant k (Fa-Fc) /
k is the wave height of the wave to be measured. The difference (Ta 2 −Ta 1 ) between the times Ta 1 and Ta 2 at which the maximum tension is reached is the wave cycle of the measurement target. FIG. 7 is a summary of the above measurement irregularities. The configuration of the arithmetic unit 8 is as shown in FIG. 8. The unit 8 is an input / output unit 20 that controls the input from the tension detecting sensor 11 and the output to the wireless device 16.
And a memory unit 21 for storing measurement data and an execution program, and an arithmetic unit 22.

【0015】上述のように本実施例のブイ式波浪計測装
置では、従来の測定桿(図9の符号12参照)を必要とせ
ずに、ブイ1にバネ2を介して接続された動揺抑制体4
をアンカー手段5,6で海底に拘束するとともに、ブイ
1にバネの張力を検出するセンサ11と、同張力に基づき
波浪の諸元を算出する演算装置8とを装備するという簡
素な構成で、波浪の計測を的確に行なえる効果がある。
また演算装置8で算出された波浪の諸元は、無線器16に
より発信されるので、波浪情報をリアルタイムで陸上の
無線局や航行中の船舶に伝達できる利点がある。
As described above, the buoy type wave measuring device of this embodiment does not require a conventional measuring rod (see reference numeral 12 in FIG. 9), and the vibration suppressing body connected to the buoy 1 via the spring 2 Four
Is restrained to the seabed by the anchor means 5 and 6, and the buoy 1 is equipped with the sensor 11 for detecting the tension of the spring and the arithmetic unit 8 for calculating the specifications of the wave based on the tension. This has the effect of accurately measuring the waves.
Further, since the specifications of the waves calculated by the arithmetic unit 8 are transmitted by the wireless device 16, there is an advantage that the wave information can be transmitted in real time to a land-based wireless station or a ship under navigation.

【0016】[0016]

【発明の効果】以上詳述したように、本発明のブイ式波
浪計測装置によれば、次のような効果ないし利点が得ら
れる。 (1) 従来のようなコストの増大を招く測定桿を必要とせ
ずに、ブイ式の簡素な構成で波浪の計測を的確に行なえ
るようになる。 (2) 演算装置で算出された波浪の諸元は、無線器により
発信されるので、波浪情報をリアルタイムで陸上の無線
局や航行中の船舶に伝達できるようになる。
As described in detail above, according to the buoy type wave measuring device of the present invention, the following effects and advantages are obtained. (1) Wave measurement can be accurately performed with a simple buoy type configuration without the need for a conventional measuring rod that increases cost. (2) Since the specifications of the waves calculated by the arithmetic unit are transmitted by the wireless device, it becomes possible to transmit the wave information in real time to the land-based wireless station and the ship underway.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としてのブイ式波浪計測装置
の使用状態を示す立面図である。
FIG. 1 is an elevational view showing a usage state of a buoy type wave measuring device as one embodiment of the present invention.

【図2】図1の装置のブイの縦断面図である。2 is a vertical cross-sectional view of the buoy of the apparatus of FIG.

【図3】図2の装置の作用状態を模式的に示す説明図で
ある。
FIG. 3 is an explanatory view schematically showing an operating state of the apparatus of FIG.

【図4】図1の装置の作用時におけるブイ等の動きを示
す説明図である。
FIG. 4 is an explanatory diagram showing a movement of a buoy or the like when the device of FIG. 1 is operating.

【図5】図1の装置のバネ張力の変動を示すグラフであ
る。
5 is a graph showing variations in spring tension of the device of FIG.

【図6】波浪の粒子状態を示す説明図である。FIG. 6 is an explanatory diagram showing a particle state of waves.

【図7】図1の装置の各部材の作用経過を示すブロック
線図である。
FIG. 7 is a block diagram showing an operation process of each member of the apparatus of FIG.

【図8】図1の装置の各機器の結線状態を示す説明図で
ある。
8 is an explanatory diagram showing a wire connection state of each device of the apparatus in FIG. 1. FIG.

【図9】従来の波浪計測装置の一例を示す立面図であ
る。
FIG. 9 is an elevational view showing an example of a conventional wave measuring device.

【符号の説明】[Explanation of symbols]

1 ブイ 2 バネ 3 円板 4 動揺抑制体 5 ケーブル 6 アンカー 7 フレーム 8 演算装置 9 カバー 10 浮体 11 張力検出用センサ 12 測定桿 13 超音波発信器 14 超音波受波器 15 演算器 16 無線器 17 アンテナ 18 太陽電池 19 蓄電池 20 入出力ユニット 21 メモリユニット 22 演算ユニット 1 buoy 2 spring 3 disk 4 vibration suppressor 5 cable 6 anchor 7 frame 8 arithmetic unit 9 cover 10 floating body 11 tension detecting sensor 12 measuring rod 13 ultrasonic transmitter 14 ultrasonic receiver 15 arithmetic unit 16 radio unit 17 Antenna 18 Solar battery 19 Storage battery 20 Input / output unit 21 Memory unit 22 Arithmetic unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 海面に浮くブイと、同ブイに上端を連結
されて上下方向に伸縮するバネと、同バネの下端に連結
されて水中に配設された動揺抑制体と、同動揺抑制体を
海底に拘束するアンカー手段とをそなえ、上記バネの張
力を検出するセンサと、同センサから検出信号を受けて
上記張力に基づき波浪の諸元を算出する演算装置とが上
記ブイに装備されたことを特徴とする、ブイ式波浪計測
装置。
1. A buoy floating on the surface of the sea, a spring which is connected to the buoy at its upper end and expands and contracts in the vertical direction, a sway suppressor which is connected to the lower end of the spring and is disposed in water, and the sway suppressor. The buoy is equipped with a sensor for detecting the tension of the spring, and an arithmetic unit for calculating the wave parameters based on the tension by receiving a detection signal from the sensor. A buoy type wave measuring device characterized in that
【請求項2】 請求項1に記載のブイ式波浪計測装置に
おいて、上記演算装置の算出した波浪の諸元に対応する
出力信号を受けて同信号を発信する無線器が上記ブイに
設けられたことを特徴とする、ブイ式波浪計測装置。
2. The buoy type wave measuring device according to claim 1, wherein the buoy is provided with a radio device which receives an output signal corresponding to specifications of the wave calculated by the arithmetic unit and transmits the signal. A buoy type wave measuring device characterized in that
JP16604593A 1993-06-11 1993-06-11 Buoy-type wave measuring apparatus Withdrawn JPH06347266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16604593A JPH06347266A (en) 1993-06-11 1993-06-11 Buoy-type wave measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16604593A JPH06347266A (en) 1993-06-11 1993-06-11 Buoy-type wave measuring apparatus

Publications (1)

Publication Number Publication Date
JPH06347266A true JPH06347266A (en) 1994-12-20

Family

ID=15823937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16604593A Withdrawn JPH06347266A (en) 1993-06-11 1993-06-11 Buoy-type wave measuring apparatus

Country Status (1)

Country Link
JP (1) JPH06347266A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168674A (en) * 2000-11-30 2002-06-14 Oyo Corp Submerged water level meter
WO2013147473A1 (en) * 2012-03-27 2013-10-03 한국건설기술연구원 Method for generating rip current warning
JP2020522645A (en) * 2017-07-28 2020-07-30 湖南工程学院 Real-time monitoring system of fluid scour for self-powered underwater fixed foundation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168674A (en) * 2000-11-30 2002-06-14 Oyo Corp Submerged water level meter
JP4569999B2 (en) * 2000-11-30 2010-10-27 応用地質株式会社 Submerged water level gauge
WO2013147473A1 (en) * 2012-03-27 2013-10-03 한국건설기술연구원 Method for generating rip current warning
AU2013240770B2 (en) * 2012-03-27 2015-07-30 Korea Institute Of Construction Technology Method for generating rip current warning
JP2020522645A (en) * 2017-07-28 2020-07-30 湖南工程学院 Real-time monitoring system of fluid scour for self-powered underwater fixed foundation

Similar Documents

Publication Publication Date Title
JP4134020B2 (en) Tidal level monitoring system, maritime buoy and ground station device for tidal level monitoring system, tidal level monitoring method, tidal level monitoring program
US9939527B2 (en) Subsea measurement system and method of determining a subsea location-related parameter
US9884670B2 (en) Air-based-deployment-compatible underwater vehicle configured to perform vertical profiling and, during information transmission, perform motion stabilization at a water surface, and associated methods
JP3455167B2 (en) Wave information measurement method and device using large floating body
CN103534555A (en) A multidimensional system for monitoring and tracking states and conditions
JP6969053B2 (en) Sea state information measuring device
JP5352492B2 (en) Positioning device and program
JPH06347266A (en) Buoy-type wave measuring apparatus
CN112762935B (en) Positioning method and system based on hull attitude monitoring
JP4636783B2 (en) Floating wind survey method and apparatus
KR101120981B1 (en) Multiplex wave absorption apparatus for rejection derived noise by surface of the sea motion
KR101312555B1 (en) Method for detecting the movement condition of a vessel with regard to a rolling movement resonance
JP4271481B2 (en) Wave measuring device and wave measuring method
JP7279898B2 (en) SONAR SYSTEM, POSITION DIFFERENCE DETECTION METHOD AND PROGRAM
JP7166186B2 (en) Water temperature measuring device and water temperature measuring method
KR101647753B1 (en) Sonar and Motion Compensation Apparatus of Sonar
Shinohara et al. Development of a compact broadband ocean‐bottom seismometer
JP2007127520A (en) Shaking measurement apparatus
RU2270464C1 (en) Method for registration of seismic signals on defined area of seawater and device for realization of said method
JP3951160B2 (en) Tsunami detector
JP4830269B2 (en) Mooring sensor positioning method and apparatus
KR200426753Y1 (en) System for measuring wave meter on board
JP7251875B2 (en) SONAR SYSTEM, POSITION DIFFERENCE DETECTION METHOD AND PROGRAM
JP3897398B2 (en) Measuring method of wave forcing force considering bay water vibration.
CN214097054U (en) Viscosity sensor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905