JP7251875B2 - SONAR SYSTEM, POSITION DIFFERENCE DETECTION METHOD AND PROGRAM - Google Patents
SONAR SYSTEM, POSITION DIFFERENCE DETECTION METHOD AND PROGRAM Download PDFInfo
- Publication number
- JP7251875B2 JP7251875B2 JP2021012939A JP2021012939A JP7251875B2 JP 7251875 B2 JP7251875 B2 JP 7251875B2 JP 2021012939 A JP2021012939 A JP 2021012939A JP 2021012939 A JP2021012939 A JP 2021012939A JP 7251875 B2 JP7251875 B2 JP 7251875B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- underwater
- flow
- positional deviation
- comparison
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Description
本発明はソナーシステム、位置ずれ検出方法及びプログラムに関する。 The present invention relates to a sonar system, positional deviation detection method, and program.
吊下式ソナーは、航空機等(例えば固定翼対潜哨戒機や対潜ヘリコプタ等)から投下され海面に着水後、水上部と水中部に分離される。水上部は、海水に対して浮力を有し、海面上を漂流する。水上部は、水中部から吊下ケーブルを介して受信した水中音波の電気信号や、該水上部に設けられたGPS(Global Positioning System)受信機で計測した該水上部の位置情報を、該水上部の無線通信機及び無線アンテナを介して航空機等や地上又は海上等の情報センタへ送信する。 A suspended sonar is dropped from an aircraft or the like (for example, a fixed-wing anti-submarine patrol aircraft, an anti-submarine helicopter, etc.), and after landing on the sea surface, it is separated into an upper surface and an underwater portion. The upper part of the water has buoyancy against seawater and drifts on the sea surface. The above water surface receives electric signals of underwater sound waves received from the above water surface via a suspension cable, and positional information of the above water surface measured by a GPS (Global Positioning System) receiver provided above the water surface. It is transmitted to an information center on an aircraft, on the ground, or on the sea via a wireless communication device and a wireless antenna in the department.
水中部は、海水よりも比重が大きいため、海中に沈降する。水中部は、音響素子(電歪振動子)を備えている。水中部において、音響素子は、水中の物体から放射される水中音波を受信し受信音波を電気信号に変換し該電気信号を吊下ケーブルの信号線を介して水上部に送信する。アクティブソナー方式の水中部では、内蔵電池から電力供給される増幅回路等で増幅された送信信号(電気信号)を音響素子(電歪振動子)で音波に変換して送波し、水中の物体にて反射された反響音を音響素子(電歪振動子)で受信し該反響音を電気信号に変換し吊下ケーブルの信号線(信号ケーブル)を介して該電気信号を水上部に送信する。 Since the underwater part has a higher specific gravity than seawater, it sinks in the sea. The underwater part has an acoustic element (electrostrictive vibrator). In the underwater part, the acoustic element receives underwater sound waves emitted from an underwater object, converts the received sound waves into electric signals, and transmits the electric signals to the upper part of the water through the signal lines of the suspension cables. In the underwater part of the active sonar system, a transmission signal (electrical signal) amplified by an amplifier circuit powered by a built-in battery is converted into a sound wave by an acoustic element (electrostrictive transducer) and transmitted to detect underwater objects. The acoustic element (electrostrictive transducer) receives the echo sound reflected by the float, converts the echo sound into an electric signal, and transmits the electric signal to the upper part of the water via the signal line (signal cable) of the suspension cable. .
図1(A)は、上方から海面を見下ろした場合の水上部2と水中部3の一例を模式的に示す平面図(xy平面)である。特に制限されないが、図1(A)においてz軸は紙面手前から奥方向を正方向としている。なお、x軸を東西方向、y軸を南北方向としてもよい。図1(A)において、白抜き矢線5は、海面1上を漂流する水上部2の移動方向と移動速度を表している。なお、本明細書では、移動速度を、速度の大きさ(速さ)(スカラー量)とし、移動方向と移動速度をベクトルで表したものを「速度ベクトル」という。 FIG. 1A is a plan view (xy plane) schematically showing an example of the water section 2 and the underwater section 3 when looking down on the sea surface from above. Although not particularly limited, the positive direction of the z-axis in FIG. Note that the x-axis may be the east-west direction, and the y-axis may be the north-south direction. In FIG. 1(A), the white arrow 5 represents the moving direction and moving speed of the upper part of the water 2 drifting on the sea surface 1 . In this specification, the moving speed is defined as the magnitude (speed) (scalar quantity) of the speed, and the moving direction and the moving speed are expressed as a vector, which is referred to as a "speed vector".
図1(B)は、水上部2と水中部3を側面からみた側面模式図である。特に制限されないが、図1(B)において、z軸は海面からの深さ方向を正方向としている。図1(B)は、例えばyz平面に平行な平面から水上部2と水中部3をみた図としてもよいし、図1(A)において、xy座標の第1象限に示した矢線(図1(A)のxy平面の水上部2と水中部3を結ぶ直線)に平行且つxy平面と直交する平面から、水上部2と水中部3の側面をみた図としてもよい。図1(B)において、航空機6は、吊下式ソナーを投下した固定翼対潜哨戒機または対潜ヘリコプタ等である。 FIG. 1B is a schematic side view of the water section 2 and the underwater section 3 as seen from the side. Although not particularly limited, in FIG. 1B, the positive direction of the z-axis is the depth direction from the sea surface. FIG. 1(B) may be, for example, a view of the water section 2 and the underwater section 3 from a plane parallel to the yz plane. 1A may be a view of the side surfaces of the water section 2 and the water section 3 from a plane parallel to the straight line connecting the water section 2 and the water section 3 on the xy plane of FIG. 1A and perpendicular to the xy plane. In FIG. 1B, the aircraft 6 is a fixed-wing anti-submarine patrol aircraft, an anti-submarine helicopter, or the like that drops a suspended sonar.
図1(A)、(B)に示すように、水中部3は水上部2の真下には位置せず、水上部2と水中部3との間に位置のずれが存在する。 As shown in FIGS. 1A and 1B, the underwater section 3 is not located directly below the underwater section 2, and there is a positional deviation between the underwater section 2 and the underwater section 3. FIG.
例えば、特許文献1には、航空機から投下されたソノブイは、風波、海潮流等の影響によりブイ位置が時々刻々と変化し、ブイ位置には投下位置に対し位置誤差(位置ずれ)が生じ、風浪、海潮流等の影響によりハイドロフォンの位置はブイ位置に対して位置誤差(位置ずれ)が生じ、これらのソノブイ等の位置誤差はブイ位置からの水中目標等の位置算出に大きな誤差を生じさせることが記載されている。この問題について以下に説明する。 For example, in Patent Document 1, a sonobuoy dropped from an aircraft changes its position from moment to moment due to the effects of wind waves, sea currents, etc., and a positional error (positional deviation) occurs in the buoy position with respect to the dropped position. Due to the effects of wind waves, sea currents, etc., the position of the hydrophone will cause a positional error (positional deviation) with respect to the buoy position, and the positional error of these sonobuoys, etc. will cause a large error in calculating the position of underwater targets, etc. from the buoy position. It is stated that This problem will be explained below.
現在のところ、水上部2と水中部3の位置のずれを検出する技術は確立されていないというのが実情である。一般に、吊下式ソナーは、水中部3が水上部2の真下に存在するという仮定のもとで使用されている。吊下式ソナーを単純化したモデルでは、海上の風や波浪の影響を受ける水上部2の移動に引っ張られる形で水中部3が水上部2に牽引されていることが想定されている。 At present, the actual situation is that no technology has been established for detecting the positional deviation between the water section 2 and the underwater section 3 . In general, suspended sonars are used under the assumption that the underwater section 3 is directly below the underwater section 2 . In a model that simplifies the suspended sonar, it is assumed that the underwater section 3 is pulled by the above water section 2 in a form that is pulled by the movement of the above water section 2, which is affected by wind and waves on the sea.
図2(A)、(B)は、実際の吊下式ソナーを模式的に例示する図である。図2(A)、(B)において、白抜き矢線7は、水上部2の風力による移動(移動方向、移動速度)を表している。水上部2に作用しその移動に影響する力(運動エネルギー)としては、風力が支配的である。時々刻々と変化する海面1上の風向及び風速を高精度で観測することは不可能ではないが、コストが高く長時間を要するため、リアルタイムのオペレーションには向いていない。 2A and 2B are diagrams schematically illustrating an actual suspended sonar. In FIGS. 2A and 2B, the white arrow 7 represents the movement (moving direction, moving speed) of the water section 2 due to the wind force. Wind power is dominant as the force (kinetic energy) acting on the water section 2 and affecting its movement. Although it is not impossible to observe the wind direction and wind speed on the sea surface 1 that change from moment to moment with high accuracy, the cost is high and it takes a long time, so it is not suitable for real-time operation.
白抜き矢線8は、水上部2の潮流等による移動(移動方向、移動速度)を表している。水上部2に作用しその移動に影響する力(運動エネルギー)としては、潮流、海流、波浪等、風力以外のものもある。風力以外の潮流、海流、波浪等を全て観測することは、不可能ではないが、コストが高く長時間を要するため、リアルタイムのオペレーションには向いていない。 A white arrow 8 represents movement (moving direction, moving speed) due to tidal current or the like in the upper part of the water 2 . The force (kinetic energy) that acts on the upper part of the water 2 and affects its movement includes forces other than wind power, such as tidal currents, ocean currents, and waves. It is not impossible to observe all tidal currents, ocean currents, and waves other than wind power, but it is expensive and takes a long time, so it is not suitable for real-time operation.
白抜き矢線9は、中層海流による吊下ケーブル4の移動(移動方向、移動速度)を表している。吊下ケーブル4に作用する力(運動エネルギー)としては、例えば深度数100mの中層海流がある。中層海流は、海面上の風力及び波浪の影響が小さく、海面上の波浪等による移動とは異なる方向へ作用する。それらを全て観測することは不可能ではないが、コストが高く長時間を要するため、リアルタイムのオペレーションには向いていない。 A hollow arrow 9 represents the movement (moving direction, moving speed) of the suspension cable 4 due to the middle ocean current. As a force (kinetic energy) acting on the suspension cable 4, there is, for example, a middle ocean current at a depth of 100 m. Intermediate ocean currents are less affected by wind forces and waves on the sea surface, and act in a direction different from movement caused by waves on the sea surface. It is possible to observe all of them, but it is expensive and takes a long time, so it is not suitable for real-time operation.
白抜き矢線10は、水上部2による牽引(移動方向、移動速度)を表している。水中部3の移動に影響する力(運動エネルギー)としては、一般的に、水上部2の移動による牽引が支配的である。 A white arrow 10 represents traction (moving direction, moving speed) by the water section 2 . As the force (kinetic energy) that affects the movement of the underwater section 3, generally, the traction caused by the movement of the underwater section 2 is dominant.
白抜き矢線11は、中層海流による水中部3の移動(移動方向、移動速度)を表している。水中部3の移動に影響する力(運動エネルギー)としては、例えば深度数100mの中層海流もある。中層海流は、水深によって流向及び流速が一定とは限らず、水深によって流向及び流速が異なる場合がある。したがって、それらを全て観測することは不可能ではないが、コストが高く長時間を要するため、リアルタイムのオペレーションには向いていない。 A white arrow 11 represents the movement (moving direction, moving speed) of the underwater part 3 due to the intermediate ocean current. The force (kinetic energy) that affects the movement of the underwater part 3 includes, for example, a middle ocean current at a depth of 100 m. The direction and velocity of the intermediate ocean current are not always constant depending on the depth of the water, and the direction and velocity of the current may vary depending on the depth of the water. Therefore, it is not impossible to observe all of them, but it is costly and takes a long time, so it is not suitable for real-time operation.
水上部2は、風力による移動、及び、潮流等の風力以外による移動の影響を受ける。また、吊下ケーブル4は、中層海流の影響を受ける。水中部3は、水上部2による牽引及び中層海流の影響を受ける。複雑な気象及び海象の影響を、海上及び海中で観測する場合、観測器材のコストが高いことに加えて観測に長時間を要する。このため、水上部2と水中部3の位置ずれは無視できるほど小さいものとして扱われている。 The water section 2 is affected by movement due to wind power and movement due to factors other than wind power such as tidal currents. In addition, the suspension cable 4 is affected by intermediate ocean currents. The submerged part 3 is subject to traction by the submerged part 2 and the mid-level ocean currents. When observing the effects of complicated weather and sea conditions on and under the sea, the cost of observation equipment is high and observation takes a long time. For this reason, the positional deviation between the water section 2 and the underwater section 3 is treated as small enough to be ignored.
しかし、吊下ケーブル4の長さが、例えば数100mに達する場合、水上部2と水中部3の位置ずれの距離も100mを超える場合がある。この場合、吊下式ソナーで検出された水中音波の到来方位及び距離の精度について、起点となる水中部3の位置が正確でない、という問題がより顕在化することになる。 However, when the length of the suspension cable 4 reaches, for example, several 100 m, the distance of positional deviation between the above water section 2 and the underwater section 3 may also exceed 100 m. In this case, regarding the accuracy of the arrival azimuth and distance of underwater sound waves detected by the hanging sonar, the problem that the position of the underwater part 3 that is the starting point is not accurate becomes more obvious.
GPS受信機等を備えたソノブイの普及等、水上部の位置計測精度が向上する傾向にある。このため、水上部と水中部の位置ずれを低コストかつ短時間で検出する技術の実用化が望まれている。 There is a tendency to improve the accuracy of position measurement above water, such as the spread of sonobuoys equipped with GPS receivers. For this reason, it is desired to put into practical use a technique for detecting the positional deviation between the upper part of the water and the underwater part at low cost and in a short period of time.
したがって、本発明は、上記課題を解決するシステム、方法、プログラムを提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a system, method, and program for solving the above problems.
本発明の一つ側面によれば、ソナーシステムは、水中部を吊下げ自己の位置を計測する手段を備えた水上部と、水中部を吊下げない構成とされ自己の位置を計測する手段を備えた比較用水上部と、位置計算手段と、を備えている。前記位置計算手段は、前記水上部と前記比較用水上部で計測されたそれぞれの位置情報から前記水上部と前記比較用水上部の移動方向の差と移動速度の差を算出し、前記水上部と前記比較用水上部の前記移動方向の差と前記移動速度の差に基づき、前記水中部に作用する水流の流向及び流速を求め、前記水流の流向及び流速に基づき、前記水上部と前記水中部の位置ずれ方向と位置ずれ距離を算出する。 According to one aspect of the present invention, a sonar system comprises a water upper portion equipped with means for measuring its own position by suspending the underwater part, and a means for measuring its own position without suspending the underwater part. and a position calculation means. The position calculation means calculates a difference in moving direction and a difference in moving speed between the upper water portion and the upper water portion for comparison from respective positional information measured at the upper water portion and the upper water portion for comparison. Based on the difference in the direction of movement and the difference in speed of movement of the upper portion of the water for comparison, the direction and velocity of the water flow acting on the underwater portion are obtained, and the positions of the upper portion of the water and the underwater portion are determined based on the direction and velocity of the water flow. Calculate the displacement direction and position displacement distance.
本発明の別の一つ側面によれば、水中部を吊下げ自己の位置を計測する手段を備えた水上部を有するソナーシステムにおける前記水中部の位置ずれを検出する方法であって、
水中部を吊下げない構成とされ自己の位置を計測する手段を備えた比較用水上部を、前記水上部とともに水面に配備し、
前記水上部と前記比較用水上部で計測されたそれぞれの位置情報から前記水上部と前記比較用水上部の移動方向の差と移動速度の差を算出し、
前記水上部と前記比較用水上部の前記移動方向の差と前記移動速度の差に基づき、前記水中部に作用する水流の流向及び流速を求め、
前記水流の流向及び流速に基づき、前記水上部と前記水中部の位置ずれ方向と位置ずれ距離を算出する。
According to another aspect of the present invention, there is provided a method for detecting misalignment of an underwater part in a sonar system having an upper part of the water equipped with means for suspending the underwater part and measuring its own position, comprising:
A comparison water upper portion having a structure that does not suspend the underwater portion and equipped with a means for measuring its own position is arranged on the water surface together with the above water portion,
Calculate a difference in moving direction and a difference in moving speed between the upper water portion and the upper water portion for comparison from the respective positional information measured at the upper water portion and the upper water portion for comparison,
Based on the difference in the moving direction and the difference in moving speed between the upper water portion and the upper water portion for comparison, determine the flow direction and flow velocity of the water flow acting on the underwater portion,
Based on the flow direction and flow velocity of the water flow, a positional displacement direction and a positional displacement distance between the above water portion and the above water portion are calculated.
本発明のさらに別の側面によれば、水中部を吊下げ自己の位置を計測する手段を備えた水上部と、水中部を吊下げない構成とされ自己の位置を計測する手段を備えた比較用水上部と、を有するソナーシステムのコンピュータに、
前記水上部と前記比較用水上部で計測されたそれぞれの位置情報から前記水上部と前記比較用水上部の移動方向の差と移動速度の差を算出する処理と、
前記水上部と前記比較用水上部の前記移動方向の差と前記移動速度の差に基づき、前記水中部に作用する水流の流向及び流速を求める処理と、
前記水流の流向及び流速に基づき、前記水上部と前記水中部の位置ずれ方向と位置ずれ距離を算出する処理を実行させるプログラムが提供される。さらに、本発明によれば、上記プログラムを記憶したコンピュータ可読型記録媒体((例えばRAM(Random Access Memory)、ROM(Read Only Memory)、又は、EEPROM(Electrically Erasable and Programmable ROM))等の半導体ストレージ、HDD(Hard Disk Drive)、CD(Compact Disc)、DVD(Digital Versatile Disc))が提供される。
According to yet another aspect of the present invention, a comparison comprising a water upper portion provided with means for suspending the underwater portion and measuring its own position, and a structure not suspending the underwater portion and provided with means for measuring its own position a sonar system computer having an upper water supply;
a process of calculating a difference in moving direction and a difference in moving speed between the upper water portion and the upper water portion for comparison from the respective positional information measured at the upper portion of water and the upper portion of water for comparison;
a process of determining the flow direction and flow velocity of the water flow acting on the underwater part based on the difference in the movement direction and the difference in the movement speed between the water upper part and the comparison water upper part;
A program is provided for executing a process of calculating a displacement direction and a displacement distance between the above water portion and the above water portion based on the direction and velocity of the water flow. Furthermore, according to the present invention, a semiconductor storage such as a computer-readable recording medium (for example, RAM (Random Access Memory), ROM (Read Only Memory), or EEPROM (Electrically Erasable and Programmable ROM)) storing the program , HDD (Hard Disk Drive), CD (Compact Disc), DVD (Digital Versatile Disc)).
本発明によれば、水上部と水中部の位置ずれを低コストかつ短時間で検出することを可能としている。 According to the present invention, it is possible to detect the positional deviation between the upper part of the water and the underwater part at low cost and in a short period of time.
本発明の実施形態について説明する。図3(A)、(B)は、本発明の一実施形態を説明する図である。図3(A)は、上方から海面を見下ろした場合の水上部2と水中部3の一例を模式的に示す平面図(xy平面)である。図3(A)では、x軸を東西方向15、y軸を南北方向14としている。図3(B)は、比較用水上部12、水上部2及び水中部3を側面からみた側面模式図である。図3(A)、(B)においてxyz座標系は図1(A)、(B)と同様である。 An embodiment of the present invention will be described. 3A and 3B are diagrams illustrating an embodiment of the present invention. FIG. 3A is a plan view (xy plane) schematically showing an example of the water section 2 and the underwater section 3 when looking down on the sea surface from above. In FIG. 3A, the x-axis is the east-west direction 15 and the y-axis is the north-south direction 14 . FIG. 3(B) is a schematic side view of the upper water portion 12 for comparison, the upper water portion 2 and the underwater portion 3 as seen from the side. The xyz coordinate system in FIGS. 3A and 3B is the same as in FIGS. 1A and 1B.
本実施形態によれば、不図示の航空機等から海上に投下される吊下式ソナーにおいて、吊下式ソナーが海面上の水上部2と海中の水中部3に分離した後における水上部2と水中部3の位置ずれを検出するために、位置計算手段では、水中部3を吊下しない比較用水上部12の位置を監視する。位置計算手段は、比較用水上部12と水上部2の移動方向及び移動速度の差を検出し、水中部3に作用する水流の流向と流速を算出する。位置計算手段は、水流の流向と流速に基づき水上部と水中部の位置ずれ方向と位置ずれ距離を算出する。 According to the present embodiment, in the suspended sonar that is dropped onto the sea from an aircraft (not shown), the suspended sonar is divided into an upper surface 2 on the surface of the sea and an underwater portion 3 in the sea. In order to detect the displacement of the underwater section 3, the position calculation means monitors the position of the comparison upper water section 12 from which the underwater section 3 is not suspended. The position calculation means detects the difference in moving direction and moving speed between the upper water portion 12 for comparison and the upper water portion 2 and calculates the direction and speed of the water flow acting on the underwater portion 3 . The position calculation means calculates the direction and distance of positional displacement between the upper part of the water and the part of the water based on the direction and velocity of the water flow.
図3(A)、(B)において、白抜き矢線5は、海面1上を漂流する水上部2の移動方向と移動速度、すなわち速度ベクトルを表している。図3(B)において白抜き矢線13は、水中部3に作用する水流を表している。 In FIGS. 3A and 3B, the white arrow 5 represents the moving direction and moving speed of the upper part of the water 2 drifting on the sea surface 1, that is, the speed vector. In FIG. 3B, the white arrow 13 represents the water flow acting on the underwater section 3.
図3(A)、(B)に例示するように、水中部3、吊下ケーブル4及び水中部3で構成される吊下式ソナーに加えて、水上部だけで構成される比較用水上部12を海上に投入する。 As exemplified in FIGS. 3A and 3B, in addition to the suspended sonar composed of the underwater section 3, the suspension cable 4, and the underwater section 3, the comparative water section 12 composed only of the water section into the sea.
本実施形態において、比較用水上部12は、水上部2のみに作用する力(風力等の運動エネルギー)による移動方向及び移動速度を計測するために用いられる。 In this embodiment, the upper water portion 12 for comparison is used to measure the direction and speed of movement due to a force (kinetic energy such as wind force) acting only on the upper water portion 2 .
水中部3は、図2を参照して説明したように、中層海流に沿って漂流しようとするが、水上部2から吊下された吊下ケーブル4により中層海流に逆らって移動する。このため、水中部3は、水流13による抵抗を受ける。水流13による抵抗を受けた水中部3は、水上部2の真下からずれた位置に流される。 As described with reference to FIG. 2, the submersible section 3 tries to drift along the middle layer current, but it moves against the middle layer current by the suspension cable 4 suspended from the surface section 2 . Therefore, the underwater section 3 receives resistance from the water flow 13 . The submersible part 3, which receives resistance from the water stream 13, is swept away from directly below the submersible part 2. - 特許庁
比較用水上部12と水上部2は、それぞれGPS受信機(不図示)を備えている。比較用水上部12と水上部2のGPS受信機は、それぞれの位置を緯度及び経度として連続的に計測し、その軌跡から比較用水上部12及び水上部2の移動方向及び移動速度を算出する。 The upper water portion 12 for comparison and the upper water portion 2 are each provided with a GPS receiver (not shown). The GPS receivers of the comparison upper water section 12 and the upper water section 2 continuously measure their respective positions as latitude and longitude, and calculate the moving direction and moving speed of the comparison upper water section 12 and the upper water section 2 from their trajectories.
比較用水上部12の移動方向及び移動速度は、風力等による運動エネルギーが該比較用水上部12のみに作用していることによると想定される。そこで、本実施形態によれば、比較用水上部12の移動方向及び移動速度と水上部2の移動方向及び移動速度の差分を算出し、該移動方向及び移動速度の差分を、水中部3と吊下ケーブル4に作用する水流等による移動方向及び移動速度とする。すなわち、水上部2は比較用水上部12と同様風力等による運動エネルギーの作用を受けるが、水中部3が水流等の作用を受けることから、該水中部3を吊下げる水上部2の移動方向及び移動速度と水中部を吊下げない比較用水上部12の移動方向及び移動速度との間に差が生じる。この差(差分)を水中部3に作用する水流等による移動方向及び移動速度としている。 It is assumed that the movement direction and movement speed of the comparison upper water section 12 are due to the kinetic energy due to wind force or the like acting only on the comparison upper water section 12 . Therefore, according to the present embodiment, the difference between the moving direction and moving speed of the upper water portion 12 for comparison and the moving direction and moving speed of the upper water portion 2 is calculated, and the difference in the moving direction and moving speed is calculated as The moving direction and moving speed of the lower cable 4 due to the water flow or the like. That is, although the upper water portion 2 receives the action of kinetic energy due to wind power and the like in the same way as the upper water portion 12 for comparison, since the underwater portion 3 receives the action of the water current, etc., the moving direction and A difference occurs between the moving speed and the moving direction and moving speed of the comparative water upper part 12 which does not suspend the underwater part. This difference (difference) is used as the moving direction and moving speed of the water flow or the like acting on the underwater section 3 .
吊下式ソナーの水上部2と水中部3の位置ずれとして、例えば、水上部2から見た水中部3までの水平方位(同一平面(水平面)内に投影された方位)、及び水平距離(同一水平面(xy平面)上に投影された二点間の距離)を算出する。 As the positional deviation between the underwater part 2 and the underwater part 3 of the suspended sonar, for example, the horizontal direction (direction projected in the same plane (horizontal plane)) and the horizontal distance ( Calculate the distance between two points projected on the same horizontal plane (xy plane).
図4は、本実施形態を説明する図であり、図3(A)に対応する。図4において、矢線16は、水上部2の移動方向及び移動速度(速度ベクトル→Va)を表している。水上部2の移動方向及び移動速度は、吊下式ソナーの水上部2の移動方向及び移動速度(速度ベクトル)と同義であり、その値は一致する。 FIG. 4 is a diagram for explaining this embodiment, and corresponds to FIG. 3(A). In FIG. 4, an arrow 16 represents the moving direction and moving speed (velocity vector → V a ) of the water section 2 . The moving direction and moving speed of the above water portion 2 are synonymous with the moving direction and moving speed (velocity vector) of the above water portion 2 of the suspended sonar, and their values are the same.
矢線17は、比較用水上部12の移動方向及び移動速度(速度ベクトル→Vb)を表している。 An arrow 17 represents the moving direction and moving speed (velocity vector → V b ) of the upper water portion 12 for comparison.
角度18は、比較用水上部12と水上部2の移動方向のずれ角度θ(ずれ水平方位)を表している。比較用水上部12と水上部2の移動方向のずれ角度は、吊下式ソナーの水中部3に作用する水流等により生じるものと考えられる。 An angle 18 represents a deviation angle θ (horizontal direction of deviation) between the moving direction of the water upper part 12 for comparison and the water upper part 2 . It is considered that the displacement angle between the moving direction of the upper water portion 12 for comparison and the upper water portion 2 is caused by the water flow or the like acting on the underwater portion 3 of the suspension type sonar.
図5は、水上部2の構成を説明する図である。なお、比較用水上部12は、図5の吊下ケーブル4に接続されていないこと(すなわち、吊下ケーブル4を介しての水中部3から電気信号(受信音響信号)の受信や水中部3への信号の送信は行わない)以外は、好ましくは、水上部2の物理構成と同一とされる。図5において、参照番号19は鉛直方向を示し、参照番号23は水上部2の傾斜角度を示している。水上部2はGPS受信機20を備えている。GPS受信機20は、比較用水上部12及び水上部2にそれぞれ装備され、水上部2と比較用水上部12のそれぞれの位置として、緯度及び経度の情報を一定時間毎に連続して無線通信機21へ出力する。無線通信機21は、水上部2と比較用水上部12にそれぞれ装備され、航空機6(図6参照)と無線通信を行う。
FIG. 5 is a diagram for explaining the configuration of the water section 2. As shown in FIG. It should be noted that the upper water portion 12 for comparison is not connected to the suspension cable 4 in FIG. signal transmission is not performed), the physical configuration is preferably the same as that of the water section 2 . In FIG. 5, reference number 19 indicates the vertical direction, and reference number 23 indicates the inclination angle of the water section 2. As shown in FIG. The water section 2 is equipped with a
水上部2と比較用水上部12の無線通信機21は、水上部2と比較用水上部12のGPS受信機20がそれぞれ計測した水上部2と比較用水上部12の位置情報を、水上部2と比較用水上部12にそれぞれ装備された無線アンテナ22を介して、航空機6(図6参照)に送信する。
The
図6は、航空機6と水上部2の機能構成を説明する図である。なお、図6において、比較用水上部12は、水中部3から吊下ケーブル4を介しての電気信号(受信音響信号)の受信や水中部3への送信信号は行わない点以外は、水上部2の機能構成と同一とされる。 FIG. 6 is a diagram for explaining the functional configuration of the aircraft 6 and the water section 2. As shown in FIG. In FIG. 6, the upper water portion 12 for comparison does not receive electrical signals (received acoustic signals) from the underwater portion 3 via the suspension cable 4 and does not transmit signals to the underwater portion 3. 2 is the same as the functional configuration.
航空機6は、機上無線アンテナ62、機上無線通信機61、位置計算部60を備えている。機上無線通信機61は、機上無線アンテナ62が受信した比較用水上部12及び水上部2の位置情報を復調し位置計算部60へ出力する。位置計算部60は、機上無線通信機61から入力した比較用水上部12及び水上部2の位置情報から水上部2と水中部3の位置ずれ水平方位及び位置ずれ水平距離を算出する。
The aircraft 6 has an on-
本実施形態における吊下式ソナーの水中部3の位置ずれ検出の一例について説明する。 An example of positional deviation detection of the underwater section 3 of the suspension type sonar according to the present embodiment will be described.
水上部2のGPS受信機20は、例えば1秒周期で水上部2の位置(緯度及び経度)を計測し、無線通信機21により無線アンテナ22から無線にて送出し、航空機6の機上無線アンテナ62にて受信され、機上無線通信機61から位置計算部60へ出力される。
The
航空機6の位置計算部60は、水上部2の最新の位置情報から所定時間前(例えば30秒前)までの水上部2の位置情報を記憶し、位置情報を次式(1)、(2)によって緯度及び経度のデータ(秒単位)に変換する。経度、緯度は度・分・秒による座標表記が用いられる。
The
位置情報(緯度1~30)→度の値×60×60+分の値×60+秒の値
…(1)
Location information (latitude 1 to 30) → value of degrees x 60 x 60 + value of minutes x 60 + value of seconds
…(1)
位置情報(経度1~30)→(度の値×60×60+分の値×60+秒の値)×cos(位置情報(緯度(deg)))
…(2)
Location information (longitude 1 to 30) → (degree value x 60 x 60 + minute value x 60 + second value) x cos (location information (latitude (deg)))
…(2)
ここで、位置情報(経度1~30)、位置情報(緯度1~30)を配列X[i], Y[i](i=1,..,30)で表す。 Here, position information (longitudes 1 to 30) and position information (latitudes 1 to 30) are represented by arrays X[i], Y[i] (i=1, . . . , 30).
航空機6の位置計算部60では、例えば1秒間毎の位置情報から1秒間に水上部2が移動した移動方向(例えば図4の角度α:例えば南北方向14(y軸)を基準方位とする水平方位)及び移動速度Vaを次式(3)、(4)で算出する。
In the
(i=1,…,30)
…(3)
(i=1,…,30)
…(3)
αは逆正接関数tan-1の主値として-π/2<α<π/2(radian)をとる。 α takes −π/2<α<π/2 (radian) as the principal value of the arctangent function tan −1 .
ここで、αの値を0から359度(deg)の整数の方位として算出する場合、式(3)で求めた主値αに対して、α←INT(α×180/π) (INT(x)はガウス記号[x]に対応しxを超えない最大の整数を返す)の演算を行い、ラジアン(radian)から度(degree)(整数)に変換した上で以下の演算を行う。
(X[i+1]―X[i])/(Y[i+1]-Y[i])≧0であれば、
X[i+1]≧X[i]かつY[i+1]>Y[i]の場合、α←0deg+αdeg
X[i+1]<X[i]かつY[i+1]<Y[i]の場合、α←180deg+αdeg
(X[i+1]―X[i])/(Y[i+1]-Y[i])<0であれば、
X[i+1]>X[i]かつY[i+1]<Y[i]の場合、α←180deg+αdeg
X[i+1]<X[i]かつY[i+1]>Y[i]の場合、α←360deg+αdeg
Here, when calculating the value of α as an integer azimuth from 0 to 359 degrees (deg), α←INT(α×180/π) (INT( x) corresponds to the Gaussian symbol [x] and returns the largest integer that does not exceed x), convert from radian to degree (integer), and then perform the following operations.
If (X[i+1]−X[i])/(Y[i+1]−Y[i])≧0, then
If X[i+1]≧X[i] and Y[i+1]>Y[i], α←0deg+αdeg
If X[i+1]<X[i] and Y[i+1]<Y[i], α←180deg+αdeg
If (X[i+1]-X[i])/(Y[i+1]-Y[i])<0, then
If X[i+1]>X[i] and Y[i+1]<Y[i], α←180deg+αdeg
If X[i+1]<X[i] and Y[i+1]>Y[i], α←360deg+αdeg
(m/秒)
…(4)
(m/sec)
…(4)
水上部2の移動に関する方位基準の速度ベクトル→Va(図4参照)は、次式(5)で規定される。 The azimuth-based velocity vector → V a (see FIG. 4) regarding the movement of the upper part of the water 2 is defined by the following equation (5).
…(5) …(5)
航空機6の位置計算部60では、例えば30秒間の水上部2の移動方向及び移動速度(m/秒)の平均値を算出するようにしてもよい。あるいは、位置計算部60では、位置情報(緯度1)X[1]、及び、30秒前の位置情報(緯度30)X[30]、位置情報(経度1)Y[1]及び30秒前の位置情報Y[30](経度30)について、式(1)により30秒間の水上部2の移動方向及び水上部2の移動距離(30秒間の移動速度ともいう)を算出し、30秒間の水上部2の移動距離に、1/30を乗算して、単位時間(1秒)あたりの水上部2の移動距離、すなわち移動速度(m/秒)を求めるようにしてもよい。
The
比較用水上部12のGPS受信機20は、例えば1秒周期で比較用水上部12の位置(緯度及び経度)を計測し、無線通信機21、無線アンテナ22を介して比較用水上部12の位置情報を出力し、航空機6の機上無線アンテナ62、機上無線通信機61で受信され、比較用水上部12の位置情報は位置計算部60へ供給される。
The
位置計算部60では、上記した水上部2の移動方向及び移動速度を算出と同様の処理を行い、比較用水上部12の移動方向及び比較用水上部12の移動速度(m/秒)の平均値を算出する。
The
航空機6の位置計算部60では、比較用水上部12の移動方向β及び移動速度Vb(m/秒)(図4参照)から、比較用水上部12の移動に関する方位基準の速度ベクトル→Vb(図4参照)の東西方向成分(x成分)Vb-xと南北方向(y成分)Vb-yを算出する。なお、特に制限されないが、東西方向及び南北方向をそれぞれx軸及びy軸に対応させている。
In the
…(6)
… (6)
…(7) … (7)
航空機6の位置計算部60では、水上部2及び比較用水上部12の方位基準の速度ベクトル(移動方向、移動速度)に基づき、水中部3の速度ベクトル→Vc(移動方向、移動速度)を算出する。
The
水上部2、比較用水上部12、水中部3の速度ベクトルをそれぞれ→Va、→Vb、→Vcとすると、以下が成り立つ。すなわち、水上部2は水流等の作用を受ける水中部3を吊下げているが、比較用水上部12は水中部を吊下げていないため水流等の影響を受けず、このため、比較用水上部12の速度ベクトル→Vbから水上部2の速度ベクトル→Vaを差し引いたベクトルが、水中部3の速度ベクトル→Vcとなる。 If the velocity vectors of the upper water portion 2, the upper water portion 12 for comparison, and the underwater portion 3 are → Va , → Vb , and → Vc respectively, the following holds. That is, although the upper water portion 2 suspends the underwater portion 3 that is affected by the water flow, etc., the upper water portion 12 for comparison is not affected by the water flow, etc. because the underwater portion is not suspended. A vector obtained by subtracting the velocity vector of the upper part 2 → V a from the velocity vector of the upper part → V b becomes the velocity vector of the underwater part 3 → V c .
…(8) ... (8)
Vc-xとVc-yは、水中部3の速度ベクトル→Vcの東西方向成分(x成分)と南北方向成分(y成分)(m/秒)である。 V c−x and V c−y are the east-west direction component (x component) and the north-south direction component (y component) (m/sec) of the velocity vector → V c of the underwater section 3 .
航空機6の位置計算部60は、水中部3の速度ベクトルから、次式(9)により水上部2と水中部3の移動方向のずれ角度θ(図4の18)を算出する。
The
…(9) ... (9)
ずれ角度θを0から359deg(整数)として算出する場合、式(9)で求めた主値θに対して演算:θ←INT(θ×180/π) (INT(x)はxを超えない最大の整数を返す)によりラジアン(radian)から度(degree)(整数)に変換した上で以下の演算を行う。
Vc-x/Vc-y≧0であれば、
Vc-x≧0かつVc-y>0の場合、θ←0deg+θdeg
Vc-x<0かつVc-y<0の場合、θ←180deg+θdeg
Vc-x/Vc-y<0であれば、
Vc-x>0かつVc-y<0の場合、θ←180deg+θdeg
Vc-x<0かつVc-y>0の場合、θ←360deg+θdeg
When calculating the deviation angle θ from 0 to 359 deg (integer), the calculation for the principal value θ obtained by Equation (9): θ ← INT (θ × 180/π) (INT (x) does not exceed x returns the largest integer) to convert from radian to degree (integer) and then perform the following operations.
If V c−x /V c−y ≧0, then
If V c−x ≧0 and V c−y >0, then θ←0deg+θdeg
If V c−x <0 and V c−y <0, then θ←180deg+θdeg
If V c - x /V c - y < 0, then
If V c−x >0 and V c−y <0, then θ←180deg+θdeg
If V c−x <0 and V c−y >0, then θ←360deg+θdeg
ずれ角度θは、図4のxy平面での角度であり、水上部2と水中部3の位置ずれ角度(位置ずれ水平方位)ともいう。 The deviation angle θ is an angle in the xy plane of FIG. 4, and is also called a position deviation angle (horizontal direction of position deviation) between the underwater part 2 and the underwater part 3 .
水中部3の位置ずれ水平方位は水流13(図3)の流向とほぼ同じ方位である。 The displacement horizontal direction of the underwater part 3 is substantially the same direction as the flow direction of the water flow 13 (FIG. 3).
ただし、より高精度の位置ずれ水平方位を算出するには、例えば数100mの長さがある吊下ケーブル4が水流の影響を受け、吊下ケーブル4は上空から俯瞰したときに直線にならず、水流の抵抗により水流の流向の方向にカーブした曲線になっていることを考慮する必要がある。 However, in order to calculate the misalignment horizontal direction with higher accuracy, for example, the suspension cable 4 having a length of several hundred meters is affected by water flow, and the suspension cable 4 does not become straight when viewed from the sky. , it is necessary to consider that the curve is curved in the direction of the water flow due to the resistance of the water flow.
この場合、吊下ケーブル4の曲線化による水中部3の位置ずれ方向のずれ角度については、例えば、水中部3及び吊下ケーブル4の流体運動シミュレーションモデルを作成し、水流13の流速及び吊下ケーブル4の長さから算出するようにしてもよい。あるいは、水槽内に水中部3を沈めて吊下し水中部3を水平方向に移動させるか水槽内で水流を起こすことにより、既知の流速の水流13の場合に、吊下ケーブル4の上側起点となる水上部2と水中部3の位置ずれ方向が何度であるか計測し、少なくとも水中部3に作用する水流の流速と、水上部2と水中部3の位置ずれ角度(位置ずれ水平方位)の換算テーブルを予め作成するという手法を用いてもよい。 In this case, regarding the deviation angle in the positional deviation direction of the underwater section 3 due to the curving of the suspension cable 4, for example, a fluid motion simulation model of the underwater section 3 and the suspension cable 4 is created, and the flow velocity of the water flow 13 and the suspension It may be calculated from the length of the cable 4 . Alternatively, by submerging and suspending the underwater part 3 in the water tank and moving the underwater part 3 in the horizontal direction or by generating a water flow in the water tank, in the case of a water flow 13 with a known flow rate, the upper starting point of the suspension cable 4 By measuring the degree of displacement between the upper water portion 2 and the underwater portion 3, at least the flow velocity of the water flow acting on the underwater portion 3 and the displacement angle between the upper water portion 2 and the underwater portion 3 (displacement horizontal direction ) may be used to create a conversion table in advance.
位置計算部60は、水中部3の位置ずれ距離について、次式(10)により水中部3の移動速度Vc(m/秒)を算出する。水中部3の移動速度(m/秒)は、図3(B)等に示す水流13の流速(m/秒)と同じである。水中部3に作用する水流13の流速Vc(m/秒)は、次式で求められる。
The
…(10) ... (10)
位置計算部60は、水中部3に作用する水流13の流速(m/秒)から、水上部2と水中部3の位置ずれ距離を算出する。その算出方法としては、例えば以下の手法を用いることができる。
The
水中部3及び吊下ケーブル4の流体運動シミュレーションモデルを作成して、水流(m/秒)及び吊下ケーブル4の長さから、水上部2と水中部3の位置ずれ距離を算出する。 A fluid motion simulation model of the underwater section 3 and the suspension cable 4 is created, and the displacement distance between the underwater section 2 and the underwater section 3 is calculated from the water flow (m/sec) and the length of the suspension cable 4 .
水槽内に水中部3を沈めて吊下し、水中部3を水平方向に移動させるか水槽内で水流(m/秒)を起こす等の手法により、既知の流速の水流13の場合に、吊下ケーブル4の上側起点となる水上部2と水中部3の位置ずれが何m生じるか計測し、少なくとも水中部3に作用する水流13の流速と位置ずれ距離の換算テーブルを予め作成しておく。位置計算部60では、水中部3に作用する水流13の流速(m/秒)から換算テーブルを参照して水上部2と水中部3の位置ずれ距離を算出する。
In the case of a water flow 13 with a known flow velocity, the underwater part 3 is submerged in a water tank and suspended, and the water flow 13 with a known flow velocity is suspended by moving the underwater part 3 in the horizontal direction or by generating a water flow (m/sec) in the water tank. Measure how many meters the displacement occurs between the upper water portion 2 and the underwater portion 3, which are the upper starting point of the lower cable 4, and prepare in advance a conversion table of at least the flow velocity of the water flow 13 acting on the underwater portion 3 and the displacement distance. . The
航空機6の位置計算部60は、上記処理により得られた、吊下式ソナーの水上部2と水中部3の位置ずれ方位(水平方位)及び位置ずれ距離(水平距離)から、吊下式ソナーにより受信した水中音波の方位及び距離の起点となる水中部3の補正位置(図4のxy2次元座標上に投影した位置)を例えば次式(11)、(12)により算出する。
The
水中部3の補正位置(南北方向)=[水上部2の位置]+[水中部3の位置ずれ水平距離(m)]×cos([水中部3の位置ずれ水平方位(deg)])
…(11)
Corrected position of underwater section 3 (north-south direction) = [position of underwater section 2] + [horizontal distance of displacement of underwater section 3 (m)] x cos ([horizontal direction of displacement of underwater section 3 (deg)])
…(11)
水中部3の補正位置(東西方向)=[水上部2の位置]+[水中部3の位置ずれ水平距離(m)]×sin([水中部3の位置ずれ水平方位(deg)])
…(12)
Corrected position of underwater part 3 (east-west direction) = [position of underwater part 2] + [horizontal distance of displacement of underwater part 3 (m)] x sin ([horizontal direction of displacement of underwater part 3 (deg)])
…(12)
なお、GPS受信機及び無線通信機は、当業者にとってよく知られており、その詳細な動作は説明を省略する。なお、GPS受信機は、GPS、準天頂衛星(QZSS)等の衛星測位システムの総称であるGNSS(Global Navigation Satellite System / 全球測位衛星システム)と読み替えてもよいことは勿論である。 GPS receivers and wireless communication devices are well known to those skilled in the art, and detailed descriptions of their operations will be omitted. It goes without saying that the GPS receiver may be read as GNSS (Global Navigation Satellite System), which is a general term for satellite positioning systems such as GPS and Quasi-Zenith Satellite (QZSS).
本実施形態によれば、吊下式ソナーの水上部2と水中部3の位置ずれ水平方向及び位置ずれ水平距離について、航空機6から投下した比較用水上部12の位置と水上部2の位置を観測して補正計算する。このため、吊下式ソナーにより受信した水中音波の受信位置の起点となる水中部3の位置の計算精度を向上させることができる。本実施形態によれば、吊下ケーブル4の長さが数100m程度の吊下式ソナーにも対応可能としている。 According to the present embodiment, the positions of the comparison water section 12 dropped from the aircraft 6 and the positions of the water section 2 are observed with respect to the horizontal direction of positional deviation and the horizontal distance of positional deviation between the water section 2 and the underwater section 3 of the suspended sonar. and calculate the correction. Therefore, it is possible to improve the calculation accuracy of the position of the underwater section 3 which is the starting point of the reception position of the underwater sound waves received by the hanging sonar. According to this embodiment, it is possible to cope with a suspension type sonar having a length of the suspension cable 4 of about several hundred meters.
本実施形態によれば、吊下式ソナーの水上部と水中部の位置ずれが生じる原因となる気象及び海象を観測することなく、比較用水上部を用いることにより、水上部のみに作用する運動エネルギーを観測して補正を行う。このため、水上部2と水中部3の位置ずれを、遅延時間なく、リアルタイムに推定することを可能としている。 According to this embodiment, the kinetic energy that acts only on the upper water portion is used by using the upper water portion for comparison without observing weather and sea conditions that cause positional deviation between the upper water portion and the underwater portion of the suspended sonar. is observed and corrected. Therefore, it is possible to estimate the positional deviation between the underwater part 2 and the underwater part 3 in real time without any delay time.
図7は、本発明の実施の形態を説明する図であり、図6の位置計算部60をコンピュータ装置200に実装した場合の構成を説明する図である。図7を参照すると、コンピュータ装置200は、プロセッサ201と、RAM(Random Access Memory)、ROM(Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の半導体メモリ等(あるいは、HDD(Hard Disk Drive)等であってもよい)のメモリ202と、表示装置203と、図6の機上無線通信機61に接続するインタフェース204(バスインタフェース)を備えている。プロセッサ201はDSP(Digital Signal Processor)であってもよい。メモリ202に格納されたプログラム205を実行することで、プロセッサ201は、図6の位置計算部60の処理を実行する。
FIG. 7 is a diagram for explaining the embodiment of the present invention, and is a diagram for explaining the configuration when the
なお、上記の特許文献1の開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施の形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ乃至選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。 The disclosure of Patent Document 1 above is incorporated herein by reference. Within the framework of the full disclosure of the present invention (including the scope of claims), modifications and adjustments of the embodiments and examples are possible based on the basic technical concept thereof. Also, various combinations and selections of various disclosure elements (including each element of each claim, each element of each embodiment, each element of each drawing, etc.) are possible within the scope of the claims of the present invention. . That is, the present invention naturally includes various variations and modifications that can be made by those skilled in the art according to the entire disclosure including claims and technical ideas.
1 海面
2 水上部
3 水中部
4 吊下ケーブル
5 速度ベクトル(移動方向、移動速度)
6 航空機
7 風力による移動
8 潮流等による移動
9 中層海流による移動
10 水上部による牽引
11 中層海流による移動
12 比較用水上部
13 水流
14 南北方向
15 東西方向
16 水上部の速度ベクトル
17 比較用水上部の速度ベクトル(移動方向、移動速度)
18 比較用水上部と水上部の移動方向のずれ角度
19 鉛直方向
20 GPS受信機
21 無線通信機
22 無線アンテナ
23 水上部の傾斜角度
60 位置計算部
61 機上無線通信機
62 機上無線アンテナ
200 コンピュータ装置
201 プロセッサ
202 メモリ
203 表示装置
204 インタフェース
205 プログラム
1 Sea surface 2 Above water 3 Underwater 4 Suspension cable 5 Velocity vector (moving direction, moving speed)
6 Airplane 7 Movement by wind force 8 Movement by tidal current 9 Movement by intermediate current 10 Traction by upper water 11 Movement by intermediate current 12 Upper water for comparison 13 Water flow 14 North-south direction 15 East-west direction 16 Velocity vector above water 17 Velocity above water for comparison vector (moving direction, moving speed)
18 Misalignment angle between moving direction above water and above water for comparison 19
Claims (10)
水中部を吊下げない構成とされ自己の位置を計測する手段を備えた比較用水上部と、
位置計算手段と、
を備え、
前記位置計算手段は、前記水上部と前記比較用水上部で計測されたそれぞれの位置情報から前記水上部と前記比較用水上部の移動方向の差と移動速度の差を算出し、
前記水上部と前記比較用水上部の前記移動方向の差と前記移動速度の差に基づき、前記水中部に作用する水流の流向及び流速を求め、
前記水流の流向及び流速に基づき、前記水上部と前記水中部の位置ずれ方向と位置ずれ距離を算出する、ソナーシステム。 a water part equipped with a means for suspending the water part and measuring its own position;
a comparison water upper portion having a structure that does not suspend the underwater portion and equipped with a means for measuring its own position;
a position calculation means;
with
The position calculation means calculates a difference in moving direction and a difference in moving speed between the upper water portion and the upper water portion for comparison from respective position information measured at the upper portion of water and the upper portion of water for comparison, and
Based on the difference in the moving direction and the difference in moving speed between the upper water portion and the upper water portion for comparison, determine the flow direction and flow velocity of the water flow acting on the underwater portion,
A sonar system for calculating a positional deviation direction and a positional deviation distance between the above water portion and the underwater portion based on the direction and velocity of the water flow.
前記水上部と前記水中部の位置ずれ方向を、前記水流の流向とするか、あるいは、
前記水中部と吊下ケーブルの流体運動シミュレーション又は水槽内での水流実験で予め取得した、前記水流の流速と、前記水上部と前記水中部の位置ずれ方向及び位置ずれ距離との関係に基づき、前記水上部と前記水中部の位置ずれ方向と位置ずれ距離を算出する、請求項1又は2記載のソナーシステム。 When the position calculation means calculates the direction and distance of positional displacement between the above water portion and the underwater portion based on the direction and velocity of the water flow,
making the direction of positional deviation between the above water portion and the above water portion the flow direction of the water flow, or
Based on the relationship between the flow velocity of the water flow and the displacement direction and displacement distance between the water upper part and the underwater part, which are obtained in advance by a fluid motion simulation of the underwater part and the suspension cable or a water flow experiment in a water tank, 3. The sonar system according to claim 1, wherein a displacement direction and a displacement distance between said above water portion and said underwater portion are calculated.
水中部を吊下げない構成とされ自己の位置を計測する手段を備えた比較用水上部を、前記水上部とともに水面に配備し、
前記水上部と前記比較用水上部で計測されたそれぞれの位置情報から前記水上部と前記比較用水上部の移動方向の差と移動速度の差を算出し、
前記水上部と前記比較用水上部の前記移動方向の差と前記移動速度の差に基づき、前記水中部に作用する水流の流向及び流速を求め、
前記水流の流向及び流速に基づき、前記水上部と前記水中部の位置ずれ方向と位置ずれ距離を算出する、位置ずれ検出方法。 A method for detecting displacement of an underwater part in a suspended sonar system having an upper part of the water and means for measuring the position of the underwater part by suspending the underwater part, comprising:
A comparison water upper portion having a structure that does not suspend the underwater portion and equipped with a means for measuring its own position is arranged on the water surface together with the above water portion,
Calculate a difference in moving direction and a difference in moving speed between the upper water portion and the upper water portion for comparison from the respective positional information measured at the upper water portion and the upper water portion for comparison,
Based on the difference in the moving direction and the difference in moving speed between the upper water portion and the upper water portion for comparison, determine the flow direction and flow velocity of the water flow acting on the underwater portion,
A positional deviation detection method for calculating a positional deviation direction and a positional deviation distance between the above water portion and the underwater portion based on the flow direction and flow velocity of the water flow.
前記水上部と前記水中部の位置ずれ方向を、前記水流の流向とするか、あるいは、
前記水中部と吊下ケーブルの流体運動シミュレーション又は水槽内での水流実験で予め取得した、前記水流の流速と、前記水上部と前記水中部の位置ずれ方向及び位置ずれ距離との関係に基づき、前記水上部と前記水中部の位置ずれ方向と位置ずれ距離を算出する、請求項5又は6記載の位置ずれ検出方法。 In calculating the positional displacement direction and positional displacement distance between the above water portion and the above water portion based on the flow direction and flow velocity of the water flow,
making the direction of positional deviation between the above water portion and the above water portion the flow direction of the water flow, or
Based on the relationship between the flow velocity of the water flow and the displacement direction and displacement distance between the water upper part and the underwater part, which are obtained in advance by a fluid motion simulation of the underwater part and the suspension cable or a water flow experiment in a water tank, 7. The positional deviation detection method according to claim 5, wherein a positional deviation direction and a positional deviation distance between said water portion and said underwater portion are calculated.
水中部を吊下げない構成とされ自己の位置を計測する手段を備えた比較用水上部と、を有するソナーシステムのコンピュータに、
前記水上部と前記比較用水上部で計測されたそれぞれの位置情報から前記水上部と前記比較用水上部の移動方向の差と移動速度の差を算出する処理と、
前記水上部と前記比較用水上部の前記移動方向の差と前記移動速度の差に基づき、前記水中部に作用する水流の流向及び流速を求める処理と、
前記水流の流向及び流速に基づき、前記水上部と前記水中部の位置ずれ方向と位置ずれ距離を算出する処理と、
を実行させるプログラム。 a water part equipped with a means for suspending the water part and measuring its own position;
a sonar system computer having a comparison water top configured to not suspend the water portion and provided with means for measuring its own position;
a process of calculating a difference in moving direction and a difference in moving speed between the upper water portion and the upper water portion for comparison from the respective positional information measured at the upper portion of water and the upper portion of water for comparison;
a process of determining the flow direction and flow velocity of the water flow acting on the underwater part based on the difference in the movement direction and the difference in the movement speed between the water upper part and the comparison water upper part;
a process of calculating a positional deviation direction and a positional deviation distance between the above water portion and the above water portion based on the flow direction and flow velocity of the water flow;
program to run.
前記水上部と前記水中部の位置ずれ方向を、前記水流の流向とするか、あるいは、
前記水中部と吊下ケーブルの流体運動シミュレーション又は水槽内での水流実験で予め取得した、前記水流の流速と、前記水上部と前記水中部の位置ずれ方向及び位置ずれ距離との関係に基づき、前記水上部と前記水中部の位置ずれ方向と位置ずれ距離を算出する、請求項8又は9記載のプログラム。 In calculating the positional displacement direction and positional displacement distance between the above water portion and the above water portion based on the flow direction and flow velocity of the water flow,
making the direction of positional deviation between the above water portion and the above water portion the flow direction of the water flow, or
Based on the relationship between the flow velocity of the water flow and the displacement direction and displacement distance between the water upper part and the underwater part, which are obtained in advance by a fluid motion simulation of the underwater part and the suspension cable or a water flow experiment in a water tank, 10. The program according to claim 8 or 9, which calculates a positional deviation direction and a positional deviation distance between the above water portion and the underwater portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021012939A JP7251875B2 (en) | 2021-01-29 | 2021-01-29 | SONAR SYSTEM, POSITION DIFFERENCE DETECTION METHOD AND PROGRAM |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021012939A JP7251875B2 (en) | 2021-01-29 | 2021-01-29 | SONAR SYSTEM, POSITION DIFFERENCE DETECTION METHOD AND PROGRAM |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022116651A JP2022116651A (en) | 2022-08-10 |
JP7251875B2 true JP7251875B2 (en) | 2023-04-04 |
Family
ID=82749777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021012939A Active JP7251875B2 (en) | 2021-01-29 | 2021-01-29 | SONAR SYSTEM, POSITION DIFFERENCE DETECTION METHOD AND PROGRAM |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7251875B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004345434A (en) | 2003-05-21 | 2004-12-09 | Nec Corp | Sea area intrusion warning method |
JP2005345414A (en) | 2004-06-07 | 2005-12-15 | Nec Corp | Mooring sensor positioning method and system |
US20060178829A1 (en) | 2003-02-19 | 2006-08-10 | Thierry Gaiffe | Global acoustic positioning system and device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06289132A (en) * | 1993-03-30 | 1994-10-18 | Mitsubishi Precision Co Ltd | Ones own position measuring type sonobuoy device and its position computing system |
-
2021
- 2021-01-29 JP JP2021012939A patent/JP7251875B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060178829A1 (en) | 2003-02-19 | 2006-08-10 | Thierry Gaiffe | Global acoustic positioning system and device |
JP2004345434A (en) | 2003-05-21 | 2004-12-09 | Nec Corp | Sea area intrusion warning method |
JP2005345414A (en) | 2004-06-07 | 2005-12-15 | Nec Corp | Mooring sensor positioning method and system |
Non-Patent Citations (2)
Title |
---|
Pazan, Stephen E. 外1名,"Recovery of Near-Surface Velocity from Undrogued Drifters",JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY,2001年,Volume 18, Number 3,Pages 476-489,<URL: https://doi.org/10.1175/1520-0426(2001)018<0476:RONSVF>2.0.CO;2 > |
寄高博行 外2名,"相模湾における漂流実験と吹送流について",水路部技報,2001年03月,第19号,Pages 55-60,<URL: https://www1.kaiho.mlit.go.jp/GIJUTSUKOKUSAI/KENKYU/report/tbh19/tbh19-07.pdf > |
Also Published As
Publication number | Publication date |
---|---|
JP2022116651A (en) | 2022-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108955678B (en) | A kind of deep-sea vehicle communication location navigation time service integral method and system | |
CN110208812A (en) | Unmanned vehicles seabed dimensional topography detection device and method partly latent | |
CN109116360B (en) | A kind of deep-sea real-time high-precision locating method and system | |
CN109737956A (en) | A kind of SINS/USBL phase difference tight integration navigation locating method based on double response device | |
CN110294080B (en) | Method for realizing underwater accurate operation by using ultra-short baseline | |
CN109029460B (en) | Air navigation aid, system and device of the deep-sea vehicle to monitor surface platform ranging | |
CN110855343A (en) | Underwater sound positioning and timing buoy and working method thereof | |
CN109884730B (en) | Virtual array passive detection method based on deep-sea underwater glider platform | |
CN111142144B (en) | Underwater acoustic positioning and timing buoy and underwater positioning method | |
CN109884647A (en) | The node apparatus and distributed node system of underwater sound passive detection or Passive Positioning | |
JP2018084445A (en) | Underwater acoustic positioning system | |
CN108919324B (en) | Positioning method of underwater glider | |
KR101827742B1 (en) | Asv(autonomous surface vehicle) for shallow water survey competent movement and horizontal maintenance using drone | |
CN109059746A (en) | A kind of bathymetric surveying method based on accurate POS | |
JP7279898B2 (en) | SONAR SYSTEM, POSITION DIFFERENCE DETECTION METHOD AND PROGRAM | |
Cruz et al. | A versatile acoustic beacon for navigation and remote tracking of multiple underwater vehicles | |
JP6951615B2 (en) | Sea state information measurement buoy and sea state information measurement device | |
CN115390012B (en) | Multi-transponder coordinate measuring method, device and system for HOV (Hov) accurate positioning | |
JP2002250766A (en) | Method and system for underwater towed body position measurement | |
JP7251875B2 (en) | SONAR SYSTEM, POSITION DIFFERENCE DETECTION METHOD AND PROGRAM | |
JPH09145821A (en) | Underwater object position measuring device | |
WO2020096495A1 (en) | Method for positioning underwater objects | |
CN113608168B (en) | Real-time self-calibration system and method for position of underwater sound receiver for water surface movable platform | |
CN111948676B (en) | Real-time acquisition method for reference element position in long baseline positioning system of buoy | |
CN113218372B (en) | Calibration system and method for position of seabed datum point |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220510 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230215 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230316 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7251875 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |