JPH06346942A - Liquid sealed type engine mount - Google Patents

Liquid sealed type engine mount

Info

Publication number
JPH06346942A
JPH06346942A JP13838693A JP13838693A JPH06346942A JP H06346942 A JPH06346942 A JP H06346942A JP 13838693 A JP13838693 A JP 13838693A JP 13838693 A JP13838693 A JP 13838693A JP H06346942 A JPH06346942 A JP H06346942A
Authority
JP
Japan
Prior art keywords
elastic
partition body
partition
liquid
elastic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13838693A
Other languages
Japanese (ja)
Inventor
Yoichi Kawamoto
洋一 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Kako Co Ltd
Original Assignee
Kurashiki Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Kako Co Ltd filed Critical Kurashiki Kako Co Ltd
Priority to JP13838693A priority Critical patent/JPH06346942A/en
Publication of JPH06346942A publication Critical patent/JPH06346942A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To damp by an orifice by way of positioning and fixing a partition body against low frequency oscillation, to prevent jumping of a dynamic spring by liquid-operated control by way of easily relatively displacing the partition body without providing a special driving means against high frequency oscillation and to reduce energy required for relative displacement of the partition body. CONSTITUTION:The upper end part of a support cylindrical body 10 and an installation member 3 are connected to each other by an elastic bearing body 4. By fixing a diaphragm 5 on a lower part inner peripheral surface of the support cylindrical body 10, a liquid cell 12 is formed between the diaphragm 5 and the elastic bearing body. By partitioning the liquid cell 12 into a pressure cell 13 and a balancing cell 14 by a partition body 6, an orifice 7 to communicate both of the cells 13, 14 through to each other is formed elastically supported by sandwiching it from above and below by a first elastic member 8 and a second elastic member 9 respectively made in a pre-compressed state, and spring constant of the second elastic member 9 is made smaller than that of the first elastic member 8. Additionally, a driving means to forcibly excite the partition body can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車用エンジンのマ
ウントとして用いられる液体封入式エンジンマウントに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid filled engine mount used as a mount for an automobile engine.

【0002】[0002]

【従来の技術】従来より、この種の液体封入式エンジン
マウントとして、一端部に弾性支承体が取付けられた支
持筒体の内部に液室を画成してこの液室の一部を画成す
るよう板体を配置し、この板体が液室側に対して相対変
位することができるよう弾性部材を介して上記支持筒体
に連結し、この板体の相対変位により液圧の上昇を抑制
しようとしたものが知られている(例えば、特開平3−
24338号公報参照)。このものでは、永久磁石と電
磁石との組み合わせを用いて金属製板体を往復運動させ
るようになっており、この往復運動を高周波振動入力時
に行なわせるようになっている。そして、低周波振動入
力時には板体が相対変位を生じないように、上記弾性部
材のばね定数を上記弾性支承体のばね定数よりも大きく
設定している。つまり、低周波振動入力時に弾性支承体
が変形しても、この変形に追随して上記弾性部材が変形
しないようにされている。
2. Description of the Related Art Conventionally, as a liquid-filled engine mount of this type, a liquid chamber is defined inside a supporting cylinder having an elastic support member attached to one end, and a part of the liquid chamber is defined. So that the plate body is connected to the support cylinder through an elastic member so that the plate body can be displaced relative to the liquid chamber side, and the relative displacement of the plate body increases the hydraulic pressure. There are known ones that have been attempted to be suppressed (for example, JP-A-3-
24338). In this device, a metal plate body is reciprocally moved by using a combination of a permanent magnet and an electromagnet, and this reciprocating motion is performed when high frequency vibration is input. Then, the spring constant of the elastic member is set to be larger than the spring constant of the elastic bearing body so that the plate body does not cause relative displacement when a low frequency vibration is input. That is, even if the elastic support body is deformed when the low frequency vibration is input, the elastic member is prevented from being deformed following this deformation.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記従来の
液体封入式エンジンマウントにおいては、単一の弾性部
材を用いて板体を支持するものであるため、上記板体を
低周波振動に対して相対変位しないよう位置固定するた
めには上記弾性部材全体をかなり高いばね定数に設定、
つまり、かなり硬いものとせざるを得ない。この場合、
上記弾性部材をかなり硬いものとすれば上記位置固定に
ついては満足させられる反面、高周波振動入力時に往復
運動させるために、上記弾性部材のばね定数に変位量を
乗じたものに相当するかなり大きな駆動エネルギーが上
記電磁石において必要となる。そして、1台の自動車に
は比較的多数のエンジンマウントが装着されているた
め、全エンジンマウントの電磁石の作動に要する電気エ
ネルギーは極めて大きいものとなる。一方、駆動エネル
ギーを比較的小さいものとすると、それに対応して板体
の強制変位量が小さいものとなる結果、液圧制御による
動ばね定数の低減化を十分に図ることができなくなる。
However, in the above-mentioned conventional liquid-filled engine mount, since the plate is supported by using a single elastic member, the plate is resistant to low frequency vibration. In order to fix the position so that relative displacement does not occur, set the whole elastic member to a fairly high spring constant,
In other words, it has to be fairly hard. in this case,
If the elastic member is made quite hard, the position fixing is satisfied, but in order to reciprocate at the time of high frequency vibration input, a considerably large driving energy corresponding to the spring constant of the elastic member multiplied by the displacement amount. Are required in the above electromagnet. Since a relatively large number of engine mounts are mounted on one vehicle, the electric energy required to operate the electromagnets of all engine mounts is extremely large. On the other hand, if the driving energy is made relatively small, the amount of forced displacement of the plate body correspondingly becomes small, and as a result, it becomes impossible to sufficiently reduce the dynamic spring constant by the hydraulic pressure control.

【0004】また、このような弾性部材により板体を支
持しているため、この板体を変位させるためには上述の
電磁石など特別の強制的な駆動手段が必要となる上、上
記従来の液体封入式エンジンマウントでは構成の複雑化
を招くことになる。
Further, since the plate member is supported by such an elastic member, in order to displace the plate member, a special compulsory driving means such as the above-mentioned electromagnet is required, and the above-mentioned conventional liquid is used. Enclosed engine mounts add complexity to the configuration.

【0005】本発明は、このような事情に鑑みてなされ
たものであり、その目的とするところは、低周波振動に
対しては仕切体を位置固定してオリフィスによる減衰を
図り、高周波振動に対しては特別な駆動手段を設けるこ
となく上記仕切体を容易に相対変位させて液圧制御によ
る動ばね定数の急増大(動ばねジャンプ)の防止を図る
ことにある。加えて、上記仕切体を強制的に相対変位さ
せるための駆動手段の有無を問わず、その相対変位のた
めに必要とするエネルギーの低減化を図ることにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to fix low-frequency vibration by positioning a partition member to attenuate it by an orifice, thereby reducing high-frequency vibration. On the other hand, it is to prevent the sudden increase of the dynamic spring constant (dynamic spring jump) due to the hydraulic pressure control by easily displacing the partition body without providing a special drive means. In addition, it is intended to reduce the energy required for the relative displacement regardless of the presence or absence of the driving means for forcibly making the relative displacement of the partition body.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、一側端部を振動発生源側
に、他側端部を振動受部側にそれぞれ向けて配置される
支持筒体と、この支持筒体の上記一側端部側に配置され
て上記振動発生源側に連結される取付部材と、この取付
部材と上記支持筒体の一側端部とを互いに連結する環状
の弾性支承体と、上記支持筒体の内周面に連結されて上
記弾性支承体との間に液体が封入された液室を形成する
弾性隔壁部材と、上記液室を上記弾性支承体側の受圧室
と上記弾性隔壁部材側の平衡室とに仕切る仕切体と、上
記仕切体に形成されて上記受圧室と平衡室とを互いに連
通するオリフィスとを備える。そして、上記仕切体を、
この仕切体を振動入力方向両側から挟む互いに独立した
一対の弾性部材を介して上記支持筒体に支持する。加え
て、上記一対の弾性部材を、上記仕切体に向けて振動入
力方向両側から圧縮復元力を作用させるよう予圧縮され
た状態でそれぞれ介装する構成とするものである。
In order to achieve the above-mentioned object, the invention according to claim 1 is arranged so that one end is directed toward the vibration source side and the other end is directed toward the vibration receiving part. A supporting cylinder, a mounting member arranged on the one end side of the supporting cylinder and connected to the vibration source side, and the mounting member and one end of the supporting cylinder. An annular elastic support member that is connected to each other, an elastic partition member that is connected to the inner peripheral surface of the support cylinder and forms a liquid chamber in which liquid is sealed between the elastic support member, and the liquid chamber A partition body is provided for partitioning the pressure receiving chamber on the elastic bearing side and the equilibrium chamber on the elastic partition member side, and an orifice formed in the partition body for communicating the pressure receiving chamber and the equilibrium chamber with each other. And, the partition body,
The partition body is supported by the support cylinder through a pair of independent elastic members sandwiching the partition body from both sides in the vibration input direction. In addition, the pair of elastic members are respectively interposed in a pre-compressed state so as to exert a compression restoring force from both sides in the vibration input direction toward the partition body.

【0007】また、請求項2記載の発明は、請求項1記
載の発明において、入力振動に応じて上記仕切体を振動
入力方向に強制加振する駆動手段を備える構成とするも
のである。
According to a second aspect of the present invention, in addition to the first aspect of the invention, a drive means for forcibly exciting the partition body in the vibration input direction according to the input vibration is provided.

【0008】さらに、請求項3記載の発明は、請求項1
または請求項2記載の発明において、一対の弾性部材の
内、受圧室を拡大する方向への仕切体の相対変位に抵抗
する側の弾性部材を、他側の弾性部材よりも小さいばね
定数に設定する構成とするものである。
Further, the invention according to claim 3 is the same as claim 1.
Alternatively, in the invention of claim 2, the elastic member of the pair of elastic members, which is resistant to relative displacement of the partition body in the direction of expanding the pressure receiving chamber, is set to have a smaller spring constant than the elastic members of the other side. It is configured to do.

【0009】[0009]

【作用】上記の構成により、請求項1記載の発明では、
取付部材側からの低周波振動の入力により弾性支承体が
撓められて受圧室側が縮小されるため、受圧室側から仕
切体に液圧が作用する。この際、上記オリフィスが形成
された仕切体は振動入力方向両側から一対の弾性部材に
より挟まれ、しかも、この各弾性部材が予圧縮状態とさ
れて互いに異なる方向の圧縮復元力を上記仕切体に作用
させた状態で仕切体を支持しているため、上記仕切体の
上記振動入力方向への移動が制限されて実質的に位置固
定される。このため、上記オリフィスを通して上記受圧
室から平衡室への液体の流動が確保され、この液体の流
動の結果生じるオリフィスを介した液柱共振によって、
上記低周波振動の減衰が図られる。
With the above construction, in the invention according to claim 1,
The elastic support body is bent by the input of the low-frequency vibration from the mounting member side and the pressure receiving chamber side is contracted, so that hydraulic pressure acts on the partition body from the pressure receiving chamber side. At this time, the partition body having the orifice is sandwiched by a pair of elastic members from both sides in the vibration input direction, and the elastic members are pre-compressed so that compression restoring forces in different directions are applied to the partition body. Since the partition body is supported in the actuated state, movement of the partition body in the vibration input direction is restricted and the position is substantially fixed. Therefore, the flow of the liquid from the pressure receiving chamber to the equilibrium chamber is ensured through the orifice, and the liquid column resonance through the orifice resulting from the flow of the liquid causes
Attenuation of the low frequency vibration is achieved.

【0010】一方、上記取付部材側から高周波振動が入
力して上記オリフィスがいわゆる目詰まり状態となった
場合、受圧室の液圧が上昇する。そして、その液圧が、
この液圧の作用方向と逆方向に圧縮復元力を作用させて
いる一側の弾性部材の予圧縮荷重を超えると、仕切体が
その一側の弾性部材に抗して上記受圧室を拡大させる方
向に相対変位する。このため、上記受圧室のそれ以上の
液圧の上昇が阻止されて動ばねジャンプの防止が図られ
る。この際、上記仕切体の相対変位は、上記仕切体を弾
性支持する一対の弾性部材の内の上記一側のもののみの
圧縮復元力を超える力が作用すれば生じるため、仕切体
を支持する弾性部材全体のばね弾性力に抗して相対変位
させる従来の場合と比べ、仕切体を相対変位させるため
のエネルギーの低減化が図られる。
On the other hand, when high-frequency vibration is input from the mounting member side and the orifice is in a so-called clogging state, the hydraulic pressure in the pressure receiving chamber rises. And that hydraulic pressure
When the pre-compression load of the elastic member on one side exerting the compression restoring force in the direction opposite to the acting direction of the hydraulic pressure is exceeded, the partition body expands the pressure receiving chamber against the elastic member on the one side. Relative displacement in the direction. Therefore, the hydraulic pressure is prevented from further increasing in the pressure receiving chamber, and the jump of the dynamic spring is prevented. At this time, the relative displacement of the partition body occurs because a force exceeding the compression restoring force of only one side of the pair of elastic members elastically supporting the partition body acts, so that the partition body is supported. The energy required for the relative displacement of the partition body can be reduced as compared with the conventional case where the relative displacement is performed against the spring elastic force of the entire elastic member.

【0011】また、請求項2記載の発明では、上記請求
項1記載の発明による作用に加えて、上記仕切体を振動
入力方向に強制加振する駆動手段が設けられているた
め、高周波振動入力に際し、上記受圧室の液圧が上昇す
る方向の入力に対して受圧室を拡大する方向に仕切体を
強制的に相対変位させることにより、上記受圧室での液
圧の急上昇が確実に防止され、動ばねのジャンプが確実
に防止される。この際、上記仕切体を相対変位させるの
に必要な駆動エネルギーは、仕切体を弾性支持する一対
の弾性部材の内の一側のもののみに対抗する力があれば
よいため、仕切体を支持する弾性部材全体に抗して相対
変位させる従来の場合と比べ、上記駆動手段の駆動エネ
ルギーの低減化が図られる。
Further, in the invention described in claim 2, in addition to the operation according to the invention described in claim 1, since the drive means for forcibly exciting the partition body in the vibration input direction is provided, the high frequency vibration input is provided. At this time, by forcibly displacing the partition body in the direction in which the pressure receiving chamber is expanded in response to the input in the direction in which the hydraulic pressure in the pressure receiving chamber rises, a sudden increase in hydraulic pressure in the pressure receiving chamber is reliably prevented. The jump of the dynamic spring is surely prevented. At this time, since the driving energy required to relatively displace the partition body has a force that opposes only one side of the pair of elastic members elastically supporting the partition body, the partition body is supported. The drive energy of the drive means can be reduced as compared with the conventional case in which the elastic member is relatively displaced against the entire elastic member.

【0012】さらに、請求項3記載の発明では、上記請
求項1または請求項2記載の発明による作用に加えて、
一対の弾性部材の内、受圧室を拡大させる方向への仕切
体の相対変位に抵抗する側の弾性部材が、他側の弾性部
材よりも小さいばね定数を有しているため、オリフィス
をロックするような高周波振動入力時に、仕切体の上記
受圧室を拡大させる方向への相対変位が、上記小さいば
ね定数に対応して比較的小さい力で生じる。これによ
り、上記仕切体の相対変位による液圧制御に要するエネ
ルギーのより一層の低減化が図られる。
Further, in the invention described in claim 3, in addition to the operation according to the invention described in claim 1 or 2,
Of the pair of elastic members, the elastic member on the side that resists relative displacement of the partition body in the direction of expanding the pressure receiving chamber has a smaller spring constant than the elastic members on the other side, so the orifice is locked. When such a high-frequency vibration is input, relative displacement of the partition body in the direction of expanding the pressure receiving chamber occurs with a relatively small force corresponding to the small spring constant. As a result, the energy required to control the hydraulic pressure due to the relative displacement of the partition body can be further reduced.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は、本発明の第1実施例に係る液体封
入式エンジンマウントを示し、1は筒軸Xが振動入力方
向(図1の上下方向、以下、単に上下方向という)に向
いた支持筒部材、2はこの支持筒部材1の下端開口側を
閉止するカップ状部材、3は上記支持筒部材1の上端開
口側の位置であって上記筒軸X上に配置された取付部
材、4はこの取付部材3と上記支持筒部材1とを互いに
連結する環状の弾性支承体、5は弾性隔壁部材であるゴ
ム薄膜製のドーナッツ状ダイヤフラム、6は仕切体、7
はこの仕切体6に形成された環状オリフィス、8,9は
この仕切体6を支持するための第1および第2の弾性部
材である。
FIG. 1 shows a liquid-sealed engine mount according to a first embodiment of the present invention, in which a cylinder axis X is oriented in a vibration input direction (vertical direction in FIG. 1, hereinafter simply referred to as vertical direction). A support cylinder member, 2 is a cup-shaped member that closes the lower end opening side of the support cylinder member 1, and 3 is a mounting member that is located on the upper end opening side of the support cylinder member 1 and is arranged on the cylinder axis X, Reference numeral 4 denotes an annular elastic support for connecting the mounting member 3 and the support cylinder member 1 to each other, 5 a doughnut-shaped diaphragm made of a rubber thin film which is an elastic partition member, 6 a partition, and 7
Is an annular orifice formed in the partition body 6, and 8 and 9 are first and second elastic members for supporting the partition body 6.

【0015】上記支持筒部材1とカップ状部材2とは、
支持筒部材1の下端縁部により構成されるかしめ部1a
によって互いに連結されており、これら両者1,2によ
って有底筒状の支持筒体10が構成されている。上記か
しめ部1aには、上記カップ状部材2の外周縁とともに
上記ダイヤフラム5の外周縁と、上記第1弾性部材8を
保持するための保持筒部材11の下端外周縁11aとが
位置固定されており、上記ダイヤフラム5、上記弾性支
承体4および支持筒部材1により画成された密閉空間に
液体Lが封入されて液室12が形成されている。そし
て、この液室12が上記仕切体6により2つに仕切られ
て、受圧室13がこの仕切体6の上側に、平衡室14が
下側にそれぞれ形成されている。また、上記支持筒部材
1またはカップ状部材2は図示しないブラケットに内嵌
されて上記かしめ部1aによって外周側に突出する部分
で保持され、これにより、振動受部である、例えば車体
側に連結されるようになっている。
The support cylinder member 1 and the cup-shaped member 2 are
Caulked portion 1a constituted by the lower end edge of the support cylinder member 1
Are connected to each other, and the support cylinder 10 having a bottomed cylindrical shape is constituted by the both 1 and 2. The caulking portion 1a has the outer peripheral edge of the cup-shaped member 2, the outer peripheral edge of the diaphragm 5, and the lower peripheral edge 11a of the holding cylinder member 11 for holding the first elastic member 8 fixedly positioned. The liquid L is enclosed in a sealed space defined by the diaphragm 5, the elastic support 4 and the support cylinder member 1 to form a liquid chamber 12. The liquid chamber 12 is divided into two by the partition body 6, the pressure receiving chamber 13 is formed on the upper side of the partition body 6, and the equilibrium chamber 14 is formed on the lower side. Further, the support cylinder member 1 or the cup-shaped member 2 is fitted into a bracket (not shown) and is held by the caulking portion 1a at a portion projecting to the outer peripheral side, whereby the vibration receiving portion, for example, the vehicle body side is connected. It is supposed to be done.

【0016】上記取付部材3は、板部材3aと、この板
部材3aから上記筒軸Xに沿って上向きに突出する連結
ボルト3bと、上記板部材3aから下方に突出する有底
筒部材3cとから構成されている。そして、上記連結ボ
ルト3bを介して、上記取付部材3は、振動発生源側で
ある、例えばエンジン側に連結されるようになってい
る。また、上記筒部材3cの外周面と上記支持筒体1の
上端開口縁1bの内周面との間にゴムの一体加硫成形に
よって上記弾性支承体4が円錐台状に形成されており、
この弾性体支承体4によって上記取付部材3が上記支持
筒体10に対して弾性的に支承されている。
The mounting member 3 includes a plate member 3a, a connecting bolt 3b protruding upward from the plate member 3a along the cylinder axis X, and a bottomed cylindrical member 3c protruding downward from the plate member 3a. It consists of The mounting member 3 is connected to the vibration source side, for example, the engine side, via the connecting bolt 3b. Further, the elastic support body 4 is formed in a truncated cone shape by integral vulcanization molding of rubber between the outer peripheral surface of the cylindrical member 3c and the inner peripheral surface of the upper opening edge 1b of the support cylindrical body 1,
The mounting member 3 is elastically supported on the support cylinder 10 by the elastic body support body 4.

【0017】上記仕切体6は、一対のハット形状の板状
部材15,16が上下に重ねられて形成されており、外
周部の内部に形成された環状の通路によって上記環状オ
リフィス7が構成されている。この環状のオリフィス7
は一端が上記受圧室13に、他端が上記平衡室14にそ
れぞれ開口されており、上記受圧室13および平衡室1
4の液体Lがこのオリフィス7を通して互いに流動する
際の液柱共振により、上下方向に入力する所定の低周波
域の振動の減衰を行うように、その長さおよび断面積な
どが設定されている。上記一対の板状部材15,16の
中央部にはロッド17の頭部17aが貫通した状態で固
定されており、このロッド17の軸部17bはダイヤフ
ラム5を貫通して筒軸Xに沿って下方に延び、下端部に
は半径方向外方に拡がる座部17cが一体的に形成され
ている。
The partition 6 is formed by vertically stacking a pair of hat-shaped plate-shaped members 15 and 16, and the annular orifice 7 is constituted by an annular passage formed inside the outer peripheral portion. ing. This annular orifice 7
Has one end opened to the pressure receiving chamber 13 and the other end opening to the equilibrium chamber 14, respectively.
The length and cross-sectional area of the liquid L of No. 4 are set so as to attenuate vibrations in a predetermined low frequency range input in the vertical direction by liquid column resonance when the liquids L of No. 4 flow through each other through the orifice 7. . A head portion 17a of a rod 17 is fixed to the central portion of the pair of plate-shaped members 15 and 16 in a penetrating state, and a shaft portion 17b of the rod 17 penetrates the diaphragm 5 and extends along the cylinder axis X. A seat portion 17c extending downward and extending outward in the radial direction is integrally formed at the lower end portion.

【0018】上記板状部材15の半径方向外方に屈曲さ
れた外周縁15aの上面と、上記保持筒部材11の半径
方向内方に屈曲された内周縁11bの下面との間には第
1弾性部材8が所定の予圧縮状態で介装される一方、上
記ロッド17の座部17cの下面と、上記カップ状部材
2の上面2aとの間には第2弾性部材9が所定の予圧縮
状態で介装されている。上記第1弾性部材8は環状に形
成されており、その上面が上記保持筒部材11の内周縁
11bの内面に接着などの手段により取付けられてい
る。また、上記第2弾性部材9は中空状に形成されてお
り、その下面が上記カップ部材2の上面に接着などの手
段により取付けられている。つまり、上記仕切体6は上
記第1弾性部材8から下方への圧縮復元力を、上記第2
弾性部材9から上方への圧縮復元力をそれぞれ受けた状
態で、両弾性部材8,9により上下から挟まれており、
これにより、上記仕切体6は支持筒体10に対して上下
方向に弾性的に支持されている。
A first portion is provided between the upper surface of the outer peripheral edge 15a of the plate member 15 which is bent outward in the radial direction and the lower surface of the inner peripheral edge 11b of the holding cylinder member 11 which is bent inward in the radial direction. The elastic member 8 is interposed in a predetermined pre-compression state, while the second elastic member 9 is in a predetermined pre-compression state between the lower surface of the seat portion 17c of the rod 17 and the upper surface 2a of the cup-shaped member 2. It is installed in the state. The first elastic member 8 is formed in an annular shape, and its upper surface is attached to the inner surface of the inner peripheral edge 11b of the holding cylinder member 11 by means such as adhesion. The second elastic member 9 is formed in a hollow shape, and its lower surface is attached to the upper surface of the cup member 2 by means such as adhesion. That is, the partition body 6 applies a downward compressive restoring force from the first elastic member 8 to the second elastic member 8.
The elastic member 9 is sandwiched from above and below by the elastic members 8 and 9 in the state of receiving the upward compressive restoring force,
As a result, the partition 6 is elastically supported in the vertical direction with respect to the support cylinder 10.

【0019】また、これら第1および第2の弾性部材
8,9は、図2に示すように、第1弾性部材8のばね定
数K1 が同図に一点鎖線で示すように比較的大きい所定
の値に、第2弾性部材9のばね定数K2 が同図に二点鎖
線で示すように比較的小さい所定の値となるように形成
されている。すなわち、第1弾性部材8が硬く、第2弾
性部材9が軟らかく設定されており、上記第1弾性部材
8がd1 、上記第2弾性部材9がd2 だけ縮んだ状態で
両者が釣り合って仕切体6を所定位置に静止した中立状
態とするようになっている。そして、このような予圧縮
状態の第1および第2の弾性部材8,9により支持され
た仕切体6は、図2に実線で示すように、振動入力に伴
う受圧室13内の液圧上昇によって仕切体6に作用する
押し下げ荷重が0から臨界荷重F1 までの間ではわずか
な下方変位に制限される一方、上記オリフィス7を目詰
まり状態(オリフィスロック状態)とする所定の高周波
域の振動入力に伴う上記液圧上昇による仕切体6への押
し下げ荷重が上記臨界荷重F1 を超えた時点で、上記第
1弾性部材8と外周縁15aとが互いに離れ、上記仕切
体6は上記第2弾性部材9の変位−荷重勾配にのみ支配
されて急激に変位するようになっている。
As shown in FIG. 2, the first and second elastic members 8 and 9 have a predetermined spring constant K1 of the first elastic member 8 which is relatively large as shown by a chain line in FIG. The spring constant K2 of the second elastic member 9 is set to a relatively small predetermined value as shown by the chain double-dashed line in FIG. That is, the first elastic member 8 is set to be hard and the second elastic member 9 is set to be soft, and the first elastic member 8 is contracted by d1 and the second elastic member 9 is contracted by d2. 6 is set in a neutral state in which it is stationary at a predetermined position. The partition body 6 supported by the first and second elastic members 8 and 9 in such a pre-compressed state increases the hydraulic pressure in the pressure receiving chamber 13 due to the vibration input, as shown by the solid line in FIG. The pressing load acting on the partition 6 is limited to a slight downward displacement between 0 and the critical load F1 by the vibration input, while the orifice 7 is in a clogging state (orifice lock state) in a predetermined high frequency vibration input. At the time when the pushing-down load to the partition body 6 due to the increase in the liquid pressure due to the above exceeds the critical load F1, the first elastic member 8 and the outer peripheral edge 15a are separated from each other, and the partition body 6 is the second elastic member. The displacement of 9-the load gradient only governs the displacement.

【0020】つまり、仕切体6を予圧縮状態の2つの弾
性部材8,9により挟んで支持することにより、仕切体
6の支持形態において非線形の弾性支持特性を発揮する
ようになっている。具体的には、低周波域の振動入力に
対しては、上記仕切体6をほぼ中立状態のままに保持し
てオリフィス7を介して受圧室13から平衡室14への
液体Lの流動を確保し、上記液体の流動による液柱共振
によって減衰力を発揮するようになっており、これに対
して、高周波域の振動入力に対しては、上記オリフィス
7が目詰まり状態となって上記仕切体6への押し下げ荷
重が臨界荷重F1 を超え、上記仕切体6を積極的に下方
に変位させて受圧室13の液圧上昇を打ち消すようにな
っている。
That is, by supporting the partition body 6 by sandwiching it by the two elastic members 8 and 9 in the pre-compressed state, a non-linear elastic support characteristic is exhibited in the support mode of the partition body 6. Specifically, for vibration input in the low frequency range, the partition body 6 is maintained in a substantially neutral state and the flow of the liquid L from the pressure receiving chamber 13 to the equilibrium chamber 14 is ensured via the orifice 7. However, the liquid column resonance caused by the flow of the liquid exerts a damping force. On the other hand, the orifice 7 becomes clogged with respect to the vibration input in the high frequency range, and the partition body The pushing-down load to 6 exceeds the critical load F1, and the partition 6 is positively displaced downward to cancel the increase in the hydraulic pressure in the pressure receiving chamber 13.

【0021】なお、図1中5a,5bは上記ダイヤフラ
ム5の内外周位置に埋め込まれた芯材であり、外周側芯
材5aによりダイヤフラム5の外周縁が上記かしめ部1
aで確実に保持されるようになっており、また、内周側
芯材5bにより上記ダイヤフラム5の内周縁が上記ロッ
ド14の外周面に対して確実に所定位置に固定されるよ
うになっている。
Reference numerals 5a and 5b in FIG. 1 denote core members embedded in the inner and outer peripheral positions of the diaphragm 5, and the outer peripheral edge of the diaphragm 5 is surrounded by the outer peripheral core member 5a.
In addition, the inner peripheral side core member 5b securely fixes the inner peripheral edge of the diaphragm 5 to the outer peripheral surface of the rod 14 at a predetermined position. There is.

【0022】つぎに、上記構成の第1実施例の作用・効
果を説明する。
Next, the operation and effect of the first embodiment having the above structure will be described.

【0023】振動発生源の側に取付けられた取付部材3
から上下方向の低周波振動が入力して弾性支承体4が撓
められて取付部材3が下方に変位する場合、受圧室13
が縮小されて内部の液体Lがオリフィス7を通して平衡
室14の側に流動する。この際、上記低周波域では上記
オリフィス7を介して液体Lの流動が可能であるため、
上記受圧室13の液圧上昇に伴う仕切体6への押し下げ
荷重は両弾性部材8,9の予圧縮荷重(圧縮復元力)の
範囲に止まり、このため、上記オリフィス7が形成され
た仕切体6をほぼ同一の中立状態に保持して上下方向へ
の相対移動を制限することができる。これにより、上記
液体Lの流動に伴うオリフィス7を介した液柱共振を有
効に生じさせることができ、この液柱共振により上記低
周波域の入力振動の減衰を図ることができる。
Mounting member 3 mounted on the side of the vibration source
When vertical low frequency vibration is input from the elastic support 4 and the mounting member 3 is displaced downward, the pressure receiving chamber 13
Is reduced and the internal liquid L flows through the orifice 7 to the equilibrium chamber 14 side. At this time, since the liquid L can flow through the orifice 7 in the low frequency range,
The pressing load to the partition 6 due to the increase in the hydraulic pressure of the pressure receiving chamber 13 remains within the range of the pre-compression load (compression restoring force) of the elastic members 8 and 9, so that the partition in which the orifice 7 is formed is formed. It is possible to limit the relative movement in the vertical direction by keeping 6 in the substantially neutral state. As a result, liquid column resonance can be effectively generated through the orifice 7 associated with the flow of the liquid L, and the liquid column resonance can attenuate the input vibration in the low frequency range.

【0024】一方、上記取付部材3から入力する振動が
より高周波側のものとなって上記オリフィス7がロック
状態となった場合、取付部材3の下方変位に伴い上昇し
た受圧室13内の液圧が仕切体6を押し下げる方向に作
用する。そして、この押し下げ荷重が第2弾性部材9の
予圧縮荷重を超えると、仕切体6は比較的軟らかい第2
弾性部材9の荷重−変位特性に対応して急激に下方に変
位する。このため、上記受圧室13の体積が急激に拡大
されてそれ以上の液圧の上昇を阻止することができ、動
ばねジャンプの防止を図ることができる。この場合、第
1弾性部材8は仕切体6と離れて第2弾性部材9のみが
上記仕切体6の相対変位に関与し、しかも、第2弾性部
材9が比較的小さいばね定数に設定されているため、上
記高周波振動入力時の仕切体6を下方に変位させるエネ
ルギーも比較的小さいもので済み、これにより、仕切体
6の移動による液圧制御に要するエネルギーの低減化を
図ることができる。
On the other hand, when the vibration input from the mounting member 3 is on the higher frequency side and the orifice 7 is in the locked state, the hydraulic pressure in the pressure receiving chamber 13 increased as the mounting member 3 is displaced downward. Acts to push down the partition body 6. Then, when this pushing-down load exceeds the pre-compression load of the second elastic member 9, the partition body 6 has a relatively soft second
The elastic member 9 is rapidly displaced downward corresponding to the load-displacement characteristic. For this reason, the volume of the pressure receiving chamber 13 is suddenly expanded to prevent the hydraulic pressure from further increasing, and it is possible to prevent the dynamic spring jump. In this case, the first elastic member 8 is separated from the partition body 6, only the second elastic member 9 is involved in the relative displacement of the partition body 6, and the second elastic member 9 is set to a relatively small spring constant. Therefore, the energy for displacing the partition 6 downward when the high-frequency vibration is input is relatively small, and thus the energy required for the hydraulic pressure control by the movement of the partition 6 can be reduced.

【0025】つまり、本第1実施例によれば、低周波振
動入力に際しては、2つの弾性部材8,9の予圧縮荷重
により仕切体6が実質的に位置固定されて、オリフィス
7を介した液柱共振による上記低周波振動の減衰を確実
に図ることができる一方、高周波振動入力の際、すなわ
ち、オリフィス7がロックして予圧縮荷重以上の押し下
げ荷重が作用する際は、仕切体6を受圧室13を拡大す
る側へたやすくかつ比較的小さい力で変位させることが
でき、動ばねジャンプを回避して荷重伝達率の増大を防
止することができる。また、上記2つの弾性部材8,9
のそれぞれのばね定数の設定および予圧縮の設定を変化
させて図2における臨界荷重F1 を変化させることによ
り、上記動ばねジャンプを回避したい高周波の周波数を
変化させることができる。
That is, according to the first embodiment, when the low frequency vibration is input, the partition body 6 is substantially fixed in position by the precompression load of the two elastic members 8 and 9, and the partition body 6 passes through the orifice 7. While the damping of the low-frequency vibration due to the liquid column resonance can be ensured, the partition 6 is set when the high-frequency vibration is input, that is, when the orifice 7 is locked and a downward load equal to or greater than the precompression load acts. It is possible to easily displace the pressure receiving chamber 13 to the side to be enlarged and to displace it with a comparatively small force, and it is possible to avoid a dynamic spring jump and prevent an increase in load transmissibility. In addition, the two elastic members 8 and 9
By changing the setting of the respective spring constants and the setting of the precompression to change the critical load F1 in FIG. 2, it is possible to change the frequency of the high frequency at which it is desired to avoid the dynamic spring jump.

【0026】図3は、上記第1実施例のものと、この第
1実施例における第1および第2弾性部材8,9を省略
して仕切体6を上記第1実施例の中立状態と同位置に固
定したもの(比較例)との比較試験を行った結果を示し
ている。同図において、tanδで示す破線は上記第1
実施例および比較例における減衰特性を、Kd で示す実
線は上記第1実施例による動ばね定数を、また、Kd0で
示す一点鎖線は上記比較例による動ばね定数をそれぞれ
示す。なお、本比較試験で用いた上記第1実施例におけ
る第1および第2弾性部材8,9の各ばね定数の設定は
図4に示すようにされている。すなわち、第1弾性部材
8のばね定数K1 が25kgf/mmに、第2弾性部材
9のばね定数K2 が2.5kgf/mmにそれぞれ設定
されている。また、臨界荷重F1 が1.0kgfに設定
されて、両弾性部材8,9の予圧縮により1.0kgf
以下の荷重では仕切体6の相対変位が規制される一方、
押し下げ荷重が1.0gkfを超えると仕切体6が下方
に相対変位を生じるようになっている。
FIG. 3 is the same as that of the first embodiment, but omits the first and second elastic members 8 and 9 in the first embodiment, and the partition body 6 is the same as the neutral state of the first embodiment. The result of having performed the comparative test with what was fixed in a position (comparative example) is shown. In the figure, the broken line indicated by tan δ is the first
With respect to the damping characteristics in the examples and the comparative examples, the solid line indicated by Kd indicates the dynamic spring constant according to the first embodiment, and the alternate long and short dash line indicated by Kd0 indicates the dynamic spring constant according to the comparative example. The spring constants of the first and second elastic members 8 and 9 in the first embodiment used in this comparative test are set as shown in FIG. That is, the spring constant K1 of the first elastic member 8 is set to 25 kgf / mm, and the spring constant K2 of the second elastic member 9 is set to 2.5 kgf / mm. Also, the critical load F1 is set to 1.0 kgf, and 1.0 kgf is set by pre-compression of both elastic members 8 and 9.
While the relative displacement of the partition 6 is regulated by the following loads,
When the pushing load exceeds 1.0 gkf, the partition body 6 is relatively displaced downward.

【0027】この試験結果によれば、低周波振動の減衰
について、上記第1実施例と比較例とでほぼ同様の低周
波域で減衰のピークを生じており、従って、第1実施例
において上記両弾性部材8,9の予圧縮による仕切体6
の位置固定が有効に行われている。また、高周波振動入
力によるオリフィスロック後の液圧上昇に伴う動ばねジ
ャンプについて、比較例のものがΔKd0急増しているの
に対して、第1実施例のものがΔKd とかなり小さい値
に抑えられている。
According to the test results, regarding the attenuation of the low frequency vibration, the peak of the attenuation is generated in the low frequency region which is almost the same between the first embodiment and the comparative example. Partition 6 by pre-compression of both elastic members 8 and 9
The position is fixed effectively. Regarding the dynamic spring jump due to the rise in hydraulic pressure after the orifice lock due to the high frequency vibration input, the comparative example has a sharp increase of ΔKd0, while the first example has a considerably small value of ΔKd. ing.

【0028】図5は本発明の第2実施例に係る液体封入
式エンジンマウントを示し、18は第2弾性部材として
のコイルスプリング、19はカップ状部材2の上面2a
にこのカップ状部材2と絶縁された状態で位置固定され
た電極部材、20はこの電極部材19に設けられた電磁
コイルであり、上記電極部材19と電磁コイル20とに
よって仕切体6を強制加振するための駆動手段21が構
成されている。
FIG. 5 shows a liquid-sealed engine mount according to a second embodiment of the present invention, in which 18 is a coil spring as a second elastic member and 19 is an upper surface 2a of the cup-shaped member 2.
The electrode member 20 is fixed in position while being insulated from the cup-shaped member 2, and 20 is an electromagnetic coil provided on the electrode member 19. The partition member 6 is forcibly applied by the electrode member 19 and the electromagnetic coil 20. The driving means 21 for shaking is configured.

【0029】上記コイルスプリング18は、所定量予圧
縮された状態で上記カップ状部材2とロッド17の座部
17bとの間に介装されており、第1弾性部材8ととも
に仕切体6を上下から挟み付けて弾性支持するようにな
っている。上記コイルスプリング18のばね定数は、第
1実施例における第2弾性部材9のばね定数K2 と同値
となるように設定されており、これにより、上記第1実
施例と同様、オリフィス7を介して液体Lが流動してい
る間は上記仕切体6を実質的に位置固定する一方、上記
オリフィス7がロックした後は上記仕切体6を上記コイ
ルスプリング18の撓み特性にのみ基いて上記仕切体6
を下方に相対変位させるよう、非線形の弾性支持特性を
発揮するようになっている。
The coil spring 18 is interposed between the cup-shaped member 2 and the seat portion 17b of the rod 17 in a state of being pre-compressed by a predetermined amount, and the partition body 6 is vertically moved together with the first elastic member 8. It is sandwiched and elastically supported. The spring constant of the coil spring 18 is set to be the same value as the spring constant K2 of the second elastic member 9 in the first embodiment, so that, as in the first embodiment, the spring constant is set via the orifice 7. The partition body 6 is substantially fixed in position while the liquid L is flowing, and after the orifice 7 is locked, the partition body 6 is based on only the bending characteristic of the coil spring 18.
Non-linear elastic support characteristics are exerted so as to relatively displace the lower part.

【0030】上記電極部材19の上面と座部17bの下
面とは、両者間に、上記仕切体6が中立状態において所
定量の隙間22が存するよう位置付けられており、上記
電磁コイル20への電流のON・OFFによって上記座
部17bを電極部材19に引き付けて密着させた状態
と、上記隙間22だけ離した状態とに変換可能になって
いる。つまり、ONにより上記仕切体6を中立状態から
上記隙間22だけ下方に相対変位させる一方、OFFに
より上記コイルスプリング18の圧縮復元力により上記
仕切体6を元の中立状態に復元させるようになってい
る。そして、このON・OFFは入力振動の方向に応じ
て自動的に繰り返して仕切体6を上下方向に往復運動さ
せるよう制御され、取付部材3を下方に変位させる側の
振動入力時にONとされ、逆に、上方に変位させる側の
振動入力時にOFFとされるようになっている。加え
て、このON・OFF制御は、オリフィス7をロックす
るような高周波振動入力時に開始されるようになってい
る。
The upper surface of the electrode member 19 and the lower surface of the seat portion 17b are positioned so that a predetermined amount of gap 22 exists between the partition member 6 and the electromagnetic coil 20 when the partition member 6 is in the neutral state. By turning on and off, the seat 17b can be converted into a state in which the seat 17b is attracted to the electrode member 19 and brought into close contact therewith, and a state in which only the gap 22 is separated. That is, when the partition body 6 is relatively displaced downward from the neutral state by the gap 22 by the ON state, the partition body 6 is restored to the original neutral state by the compression restoring force of the coil spring 18 when it is OFF. There is. Then, this ON / OFF is automatically and repeatedly controlled according to the direction of the input vibration so as to reciprocate the partition body 6 in the vertical direction, and is turned ON at the time of the vibration input on the side for displacing the mounting member 3 downward, On the contrary, it is turned off when the vibration of the side to be displaced upward is input. In addition, this ON / OFF control is started at the time of high frequency vibration input that locks the orifice 7.

【0031】なお、上記液体封入式エンジンマウントの
その他の構成は第1実施例のものと同様であるために、
同一部材には同一符号を付して、その説明は省略する。
Since the other construction of the liquid-filled engine mount is the same as that of the first embodiment,
The same members are designated by the same reference numerals and the description thereof will be omitted.

【0032】上記第2実施例の場合、低周波振動入力時
には上記ON・OFF制御は行われず、仕切体6は予圧
縮状態の第1弾性部材8およびコイルスプリング18に
より挟み付けられてほぼ中立状態に保持される。このた
め、仕切体6に形成されたオリフィス7を介しての液体
Lの流動を確保することができ、そして、この液体Lの
流動の結果、上記オリフィス7を介した液柱共振が生
じ、この液柱共振により上記低周波振動の減衰を図るこ
とができる。
In the case of the second embodiment, the ON / OFF control is not performed at the time of inputting the low frequency vibration, and the partition body 6 is sandwiched by the first elastic member 8 and the coil spring 18 in the pre-compression state and is in a substantially neutral state. Held in. Therefore, it is possible to ensure the flow of the liquid L through the orifice 7 formed in the partition body 6, and as a result of the flow of the liquid L, liquid column resonance occurs through the orifice 7, The liquid column resonance can reduce the low frequency vibration.

【0033】一方、高周波振動入力時には上記電磁コイ
ル20への電流のON・OFF制御が行われて、仕切体
6が上記振動入力の方向に応じて上下方向に強制的に往
復運動される。これにより、受圧室13内の液圧が上昇
する方向の振動入力時に上記仕切体6が下方に強制変位
されて受圧室13が拡大されるため、受圧室13内の液
圧上昇を防止することができ、高周波振動入力時の低動
ばね化を積極的に図ることができる。この際、上記電流
ONによる座部17bの吸引力は、ばね定数が低く設定
されたコイルスプリング18の圧縮復元力以上であれば
よく、これにより、仕切体6の強制変位による液圧の制
御を比較的小さい駆動エネルギー、すなわち、比較的少
ない電気エネルギーで行うことができる。
On the other hand, at the time of high frequency vibration input, ON / OFF control of the current to the electromagnetic coil 20 is performed, and the partition body 6 is forcibly reciprocated in the vertical direction according to the direction of the vibration input. As a result, when the vibration input in the direction in which the hydraulic pressure in the pressure receiving chamber 13 increases, the partition 6 is forcibly displaced downward and the pressure receiving chamber 13 is expanded, so that the hydraulic pressure in the pressure receiving chamber 13 is prevented from rising. Therefore, it is possible to positively reduce the dynamic spring when high frequency vibration is input. At this time, the suction force of the seat portion 17b due to the current ON may be equal to or larger than the compression restoring force of the coil spring 18 whose spring constant is set low, whereby the fluid pressure can be controlled by the forced displacement of the partition body 6. It can be performed with relatively small driving energy, that is, with relatively little electric energy.

【0034】図6は本発明の第3実施例に係る液体封入
式エンジンマウントを示し、23は第1保持部材11の
内周縁11bの下面に接着などの手段により取付けられ
た環状の第1弾性部材、24は環状の第2保持部材、2
5はこの第2保持部材24に接着などの手段により取付
けられた環状の第2弾性部材である。
FIG. 6 shows a liquid-sealed engine mount according to the third embodiment of the present invention, in which 23 is a ring-shaped first elastic member attached to the lower surface of the inner peripheral edge 11b of the first holding member 11 by means such as adhesion. Member, 24 is an annular second holding member, 2
Reference numeral 5 is an annular second elastic member attached to the second holding member 24 by means such as adhesion.

【0035】上記第2保持部材24は、その外周縁24
aが上記第1保持部材11の外周縁11aとともに支持
筒部材1のかしめ部1aにより保持されて支持筒体1に
固定されており、その内周縁24bが仕切体6の外周縁
15aの所定の下方位置に位置付けられている。この第
2保持部材24の内周縁24bの上面と、上記仕切体6
の外周縁15aとの間に上記第2弾性部材25が介装さ
れて所定の予圧縮状態とされている。
The second holding member 24 has an outer peripheral edge 24.
a is held by the caulked portion 1a of the support tubular member 1 together with the outer peripheral edge 11a of the first holding member 11 and is fixed to the support tubular body 1, and its inner peripheral edge 24b is a predetermined outer peripheral edge 15a of the partition body 6. It is located in the lower position. The upper surface of the inner peripheral edge 24b of the second holding member 24 and the partition 6
The second elastic member 25 is interposed between the outer peripheral edge 15a and the outer peripheral edge 15a to be in a predetermined pre-compression state.

【0036】一方、上記第1弾性部材23は上記第1保
持部材11の内周縁11bと、仕切体6の外周縁15a
との間に介装されて所定の予圧縮状態とされている。そ
して、上記仕切体6は、この第1弾性部材23から下方
への圧縮復元力と、上記第2弾性部材25から上方への
圧縮復元力とを受けた状態で、これら第1および第2弾
性部材23,25により上下から挟み付けられて所定の
中立状態に保持されている。
On the other hand, the first elastic member 23 has an inner peripheral edge 11b of the first holding member 11 and an outer peripheral edge 15a of the partition body 6.
And a predetermined pre-compression state. Then, the partition body 6 receives the downward compression restoring force from the first elastic member 23 and the upward compression restoring force from the second elastic member 25, and then the first and second elastic members. It is sandwiched by the members 23 and 25 from above and below and is held in a predetermined neutral state.

【0037】上記第1および第2弾性部材23,25は
図7に示すように、同一のばね定数K1 ,K2 とを有す
るように設定されており、これら両弾性部材23,25
がそれぞれ同一の圧縮変位量となるまで予圧縮されてい
る。そして、オリフィス7を介した液体Lの流動が確保
されるような所定の低周波振動入力時において仕切体6
に作用する荷重(液圧)の範囲では上記予圧縮により上
記仕切体6を上記中立状態に実質的に位置固定する一
方、上記オリフィス7がロックした際の上記仕切体6に
作用する荷重の範囲では上記仕切体6を上記第1弾性部
材23もしくは第2弾性部材25の一方の撓み特性にの
み基いて上記仕切体6を相対変位させるようになってい
る。
As shown in FIG. 7, the first and second elastic members 23 and 25 are set to have the same spring constants K1 and K2.
Are pre-compressed until they have the same compression displacement amount. The partition member 6 is supplied when a predetermined low-frequency vibration is input so that the flow of the liquid L through the orifice 7 is ensured.
In the range of the load (hydraulic pressure) that acts on the partition body 6, the partition body 6 is substantially positionally fixed in the neutral state by the precompression, while the range of the load that acts on the partition body 6 when the orifice 7 is locked. Then, the partition body 6 is relatively displaced based on only the bending characteristic of one of the first elastic member 23 and the second elastic member 25.

【0038】なお、上記液体封入式エンジンマウントの
その他の構成は第2実施例のものと同様であるために、
同一部材には同一符号を付して、その説明は省略する。
Since the other construction of the liquid-filled engine mount is the same as that of the second embodiment,
The same members are designated by the same reference numerals and the description thereof will be omitted.

【0039】上記第3実施例の場合、低周波振動入力時
には電磁コイル20へのON・OFF制御は行われず、
仕切体6は予圧縮状態の両弾性部材23および25によ
り挟み付けられてほぼ中立状態に保持され、これによ
り、上記第2実施例と同様に、オリフィス7を介した液
柱共振により低周波振動の減衰を図ることができる。
In the case of the third embodiment, the ON / OFF control to the electromagnetic coil 20 is not performed at the time of inputting the low frequency vibration,
The partition body 6 is sandwiched by both elastic members 23 and 25 in the pre-compressed state and is held in a substantially neutral state, whereby the liquid column resonance through the orifice 7 causes low-frequency vibration as in the second embodiment. Can be attenuated.

【0040】一方、高周波振動入力時には上記電磁コイ
ル20への電流のON・OFF制御が行われて、仕切体
6が上記振動入力の方向に応じて上下方向に強制的に往
復運動され、これにより、上記第2実施例と同様に、上
記仕切体6が下方に強制変位されて受圧室13内の液圧
上昇を防止することができ、高周波振動入力時の低動ば
ね化を図ることができる。この際、上記電流ONによる
座部17bの吸引力は、一対の弾性部材23,25の内
の一方の圧縮復元力以上であればよく、これにより、仕
切体6の強制変位による液圧の制御を、仕切体が単一の
弾性部材で弾性支持された場合と比べ、小さい駆動エネ
ルギー、すなわち、比較的少ない電気エネルギーで行う
ことができる。
On the other hand, at the time of high frequency vibration input, ON / OFF control of the current to the electromagnetic coil 20 is performed, and the partition 6 is forcibly reciprocated in the vertical direction according to the direction of the vibration input. Similarly to the second embodiment, the partition body 6 is forcibly displaced downward to prevent the hydraulic pressure in the pressure receiving chamber 13 from rising, and a low dynamic spring at the time of high frequency vibration input can be achieved. . At this time, the suction force of the seat portion 17b due to the current ON may be equal to or greater than the compression restoring force of one of the pair of elastic members 23 and 25, and thereby the hydraulic pressure control by the forced displacement of the partition body 6 is performed. In comparison with the case where the partition body is elastically supported by a single elastic member, it is possible to carry out with a small driving energy, that is, with relatively little electric energy.

【0041】しかも、この第3実施例の場合、上記仕切
体6、第1・第2保持部材11、24、および、第1・
第2弾性部材23,25を支持筒体10への組付けに先
だって予め所定状態に組み付けておくことができ、この
一体化されたものをかしめ部1aで位置固定することに
より、一対の弾性部材23,25で挟んで弾性支持され
た仕切体6の支持筒体10への組み付けを容易に行うこ
とができる。
Moreover, in the case of the third embodiment, the partition body 6, the first and second holding members 11 and 24, and the first and second holding members are formed.
The second elastic members 23 and 25 can be assembled in a predetermined state in advance before being assembled to the support cylindrical body 10. By fixing the integrated one with the caulking portion 1a, a pair of elastic members can be obtained. The partition body 6 elastically supported by being sandwiched by 23 and 25 can be easily assembled to the support cylindrical body 10.

【0042】なお、本発明は上記実施例に限定されるも
のではなく、その他種々の変形例を包含するものであ
る。すなわち、上記実施例では、駆動手段21として電
磁石19,20により構成しているが、これに限らず、
例えば電磁アクチュエータもしくは圧電アクチュエータ
などにより構成してもよい。
The present invention is not limited to the above embodiment, but includes various other modifications. That is, in the above embodiment, the drive means 21 is constituted by the electromagnets 19 and 20, but the invention is not limited to this.
For example, an electromagnetic actuator or a piezoelectric actuator may be used.

【0043】[0043]

【発明の効果】以上説明したように、請求項1記載の発
明における液体封入式エンジンマウントによれば、一対
の弾性部材で仕切体を上下から挟み、かつ、それら一対
の弾性部材を予圧縮状態として互いに逆方向に圧縮復元
力を作用させた状態で上記仕切体を支持するようにして
いるため、上記予圧縮荷重までの範囲で上記オリフィス
が形成された仕切体の振動入力方向への相対変位を制限
して上記オリフィスを上記振動入力方向に対して実質的
に位置固定することができる。このため、取付部材側か
ら入力する低周波振動に対して、受圧室から平衡室側へ
のオリフィスを介した液体の流動を確保することがで
き、その流動の結果生じる液柱共振により上記低周波振
動の減衰を図ることができる。
As described above, according to the liquid-filled engine mount of the first aspect of the invention, the partition body is sandwiched by the pair of elastic members from above and below, and the pair of elastic members is in the pre-compressed state. As a result, the partition body is supported in a state in which compression restoring forces act in opposite directions, so that relative displacement in the vibration input direction of the partition body in which the orifice is formed within the range up to the precompression load. Can be restricted to substantially fix the position of the orifice with respect to the vibration input direction. Therefore, it is possible to secure the flow of the liquid from the pressure receiving chamber to the equilibrium chamber side through the orifice with respect to the low frequency vibration input from the mounting member side, and the liquid column resonance generated as a result of the flow causes the low frequency vibration. Vibration can be damped.

【0044】一方、上記取付部材側から高周波振動が入
力して上記オリフィスが目詰まり状態となった場合、受
圧室の液圧が上昇して上記一対の弾性部材の内の一側の
ものである平衡室側の弾性部材の予圧縮荷重を超えるこ
とにより、その液圧により仕切体を上記一側の弾性部材
に抗して上記受圧室を拡大させる方向に相対変位させる
ことができる。このため、上記受圧室のそれ以上の液圧
の上昇を阻止することができ、動ばねジャンプの防止を
図ることができる。
On the other hand, when high-frequency vibration is input from the side of the mounting member and the orifice is clogged, the hydraulic pressure in the pressure receiving chamber rises and is one side of the pair of elastic members. By exceeding the precompression load of the elastic member on the side of the equilibrium chamber, it is possible to relatively displace the partition body in the direction of enlarging the pressure receiving chamber against the elastic member on the one side by its hydraulic pressure. Therefore, it is possible to prevent the hydraulic pressure from further increasing in the pressure receiving chamber, and it is possible to prevent the dynamic spring jump.

【0045】このため、仕切体を位置固定したり強制的
に相対変位させたりするための特別な駆動手段を設ける
ことなく、低周波振動の減衰と高周波振動での動ばねジ
ャンプ防止との両立を図ることができる。
For this reason, both low frequency vibration damping and dynamic spring jump prevention at high frequency vibrations can be achieved without providing special drive means for fixing the position of the partition body or forcibly making relative displacement. Can be planned.

【0046】しかも、上記仕切体はこれを弾性支持する
一対の弾性部材の内の一側のもののみの圧縮復元力を超
える力を作用させれば相対変位することができ、板体を
単一の弾性部材で支持しこの単一の弾性部材全体のばね
弾性力に抗して相対変位させる従来の場合と比べ、仕切
体の相対変位による液圧制御に要するエネルギーを低減
化することができる。
Moreover, the partition body can be relatively displaced by applying a force exceeding the compression restoring force of only one side of the pair of elastic members elastically supporting the partition body, so that the plate body can be made into a single plate. It is possible to reduce the energy required for the hydraulic pressure control by the relative displacement of the partition body, as compared with the conventional case in which the elastic member is supported and the relative displacement is performed against the spring elastic force of the single elastic member.

【0047】また、請求項2記載の発明によれば、上記
請求項1記載の発明による効果に加えて、上記仕切体を
振動入力方向に強制加振する駆動手段が設けられている
ため、高周波振動入力に際し、上記受圧室の液圧が上昇
する方向の入力に対して受圧室を拡大する方向に仕切体
を強制的に相対変位させることにより、上記受圧室での
液圧の急上昇を確実に防止することができ、動ばねのジ
ャンプを確実に防止することができる。しかも、上記仕
切体を相対変位させるのに必要な駆動エネルギーは、仕
切体を弾性支持する一対の弾性部材の内の一側のものの
みに対抗する力があればよいため、板体を単一の弾性部
材で支持しこの単一の弾性部材全体に抗して相対変位さ
せる従来の場合と比べ、上記駆動手段の駆動エネルギー
の低減化を図ることができる。
According to the second aspect of the present invention, in addition to the effect of the first aspect of the present invention, a driving means for forcibly exciting the partition body in the vibration input direction is provided, so that high frequency At the time of vibration input, by forcibly displacing the partition body in the direction of expanding the pressure receiving chamber with respect to the input in the direction in which the hydraulic pressure of the pressure receiving chamber rises, a sudden increase in hydraulic pressure in the pressure receiving chamber is ensured. Therefore, the jump of the dynamic spring can be surely prevented. Moreover, the drive energy required to relatively displace the partition body only needs to have a force that opposes only one side of the pair of elastic members elastically supporting the partition body, so that the plate body The driving energy of the driving means can be reduced as compared with the conventional case in which the elastic member is supported and relatively displaced against the entire single elastic member.

【0048】さらに、請求項3記載の発明によれば、上
記請求項1または請求項2記載の発明による効果に加え
て、一対の弾性部材の内、受圧室を拡大する方向への仕
切体の相対変位に抵抗する側の弾性部材のばね定数を、
他側の弾性部材のばね定数よりも小さく設定しているた
め、オリフィスをロックさせるような高周波振動の入力
に対して上記受圧室が拡大する方向への仕切体の相対変
位を、上記小さいばね定数に対応して比較的小さい力で
生じさせることができる。これにより、上記仕切体の相
対変位による高周波振動入力時の液圧制御に要するエネ
ルギーのより一層の低減化を図ることができる。
Furthermore, according to the invention of claim 3, in addition to the effect of the invention of claim 1 or claim 2, among the pair of elastic members, the partition body in the direction of expanding the pressure receiving chamber is formed. The spring constant of the elastic member on the side that resists relative displacement is
Since it is set smaller than the spring constant of the elastic member on the other side, the relative displacement of the partition body in the direction in which the pressure-receiving chamber expands in response to the input of high-frequency vibration that locks the orifice, is set to the small spring constant. Can be generated with a relatively small force. As a result, it is possible to further reduce the energy required for hydraulic pressure control at the time of high frequency vibration input due to the relative displacement of the partition body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing a first embodiment of the present invention.

【図2】第1実施例の一対の弾性部材および仕切体の荷
重と変位との関係図である。
FIG. 2 is a relationship diagram of load and displacement of a pair of elastic members and a partition body according to the first embodiment.

【図3】比較試験における周波数と、動ばね定数および
減衰特性との関係図である。
FIG. 3 is a relationship diagram of a frequency, a dynamic spring constant, and a damping characteristic in a comparative test.

【図4】比較試験での一対の弾性部材および仕切体の荷
重と変位との関係図である。
FIG. 4 is a relationship diagram of load and displacement of a pair of elastic members and a partition body in a comparative test.

【図5】第2実施例を示す縦断面図である。FIG. 5 is a vertical sectional view showing a second embodiment.

【図6】第3実施例を示す縦断面図である。FIG. 6 is a vertical sectional view showing a third embodiment.

【図7】第3実施例の一対の弾性部材および仕切体の荷
重と変位との関係図である。
FIG. 7 is a relationship diagram of load and displacement of a pair of elastic members and a partition body according to the third embodiment.

【符号の説明】[Explanation of symbols]

3 取付部材 4 弾性支承体 5 ダイヤフラム(弾性隔壁部材) 6 仕切体 7 オリフィス 8,23 第1弾性部材 9,25 第2弾性部材 10 支持筒体 12 液室 13 受圧室 14 平衡室 18 コイルスプリング(第2弾性部材) 21 駆動手段 3 Mounting member 4 Elastic support member 5 Diaphragm (elastic partition member) 6 Partition member 7 Orifice 8,23 First elastic member 9,25 Second elastic member 10 Support cylinder 12 Liquid chamber 13 Pressure receiving chamber 14 Balance chamber 18 Coil spring ( Second elastic member) 21 Drive means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一側端部を振動発生源側に、他側端部を
振動受部側にそれぞれ向けて配置される支持筒体と、こ
の支持筒体の上記一側端部側に配置されて上記振動発生
源側に連結される取付部材と、この取付部材と上記支持
筒体の一側端部とを互いに連結する環状の弾性支承体
と、上記支持筒体の内周面に連結されて上記弾性支承体
との間に液体が封入された液室を形成する弾性隔壁部材
と、上記液室を上記弾性支承体側の受圧室と上記弾性隔
壁部材側の平衡室とに仕切る仕切体と、上記仕切体に形
成されて上記受圧室と平衡室とを互いに連通するオリフ
ィスとを備えており、 上記仕切体は、この仕切体を振動入力方向両側から挟む
互いに独立した一対の弾性部材を介して上記支持筒体に
支持され、 上記一対の弾性部材は、上記仕切体に向けて振動入力方
向両側から圧縮復元力を作用させるよう予圧縮された状
態でそれぞれ介装されていることを特徴とする液体封入
式エンジンマウント。
1. A support cylinder body having one side end portion facing the vibration source side and the other side end portion facing the vibration receiving portion side, and the one side end portion side of the support cylinder body. And a ring-shaped elastic support that connects the mounting member and one end of the support cylinder to each other, and a mounting member that is connected to the vibration source side, and is connected to the inner peripheral surface of the support cylinder. And an elastic partition member that forms a liquid chamber in which a liquid is sealed between the elastic support member and a partition member that partitions the liquid chamber into a pressure receiving chamber on the elastic support member side and an equilibrium chamber on the elastic partition member side. And an orifice that is formed in the partition body and connects the pressure receiving chamber and the equilibrium chamber to each other, and the partition body includes a pair of independent elastic members that sandwich the partition body from both sides in the vibration input direction. Is supported by the support cylinder through the pair of elastic members facing the partition body. Fluid-filled engine mount, characterized in that are interposed respectively pre-compressed state to exert a compressive restoring force from the vibration input direction on both sides.
【請求項2】 請求項1において、 仕切体を入力振動に応じて振動入力方向に強制加振する
駆動手段を備えている液体封入式エンジンマウント。
2. The liquid-filled engine mount according to claim 1, further comprising drive means for forcibly exciting the partition body in a vibration input direction in response to input vibration.
【請求項3】 請求項1または請求項2において、 一対の弾性部材の内、受圧室を拡大する方向への仕切体
の相対変位に抵抗する側の弾性部材は、他側の弾性部材
よりも小さいばね定数を有するように構成されている液
体封入式エンジンマウント。
3. The elastic member according to claim 1 or 2, wherein the elastic member on the side that resists relative displacement of the partition body in the direction of enlarging the pressure receiving chamber is more elastic than the elastic members on the other side. A liquid filled engine mount configured to have a low spring constant.
JP13838693A 1993-06-10 1993-06-10 Liquid sealed type engine mount Withdrawn JPH06346942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13838693A JPH06346942A (en) 1993-06-10 1993-06-10 Liquid sealed type engine mount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13838693A JPH06346942A (en) 1993-06-10 1993-06-10 Liquid sealed type engine mount

Publications (1)

Publication Number Publication Date
JPH06346942A true JPH06346942A (en) 1994-12-20

Family

ID=15220734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13838693A Withdrawn JPH06346942A (en) 1993-06-10 1993-06-10 Liquid sealed type engine mount

Country Status (1)

Country Link
JP (1) JPH06346942A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10507715B1 (en) 2018-06-04 2019-12-17 Hyundai Motor Company Mount assembly for vehicle
US10611227B2 (en) 2018-06-04 2020-04-07 Hyundai Motor Company Mount assembly for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10507715B1 (en) 2018-06-04 2019-12-17 Hyundai Motor Company Mount assembly for vehicle
US10611227B2 (en) 2018-06-04 2020-04-07 Hyundai Motor Company Mount assembly for vehicle

Similar Documents

Publication Publication Date Title
US7188830B2 (en) Fluid-filled active damping apparatus
JP4699863B2 (en) Vibration isolator
JP3557837B2 (en) Fluid-filled vibration isolator
US5273262A (en) Hydraulic mount with low amplitude, low-to-medium frequency vibration isolation
EP1498637B1 (en) Vibration control equipment
EP3477150B1 (en) Hydraulic mount apparatus
JP2004150546A (en) Engine mount
JPH10184774A (en) Vibration control device
JPH0949541A (en) Fluid filling type vibration proofing device
JPH06346942A (en) Liquid sealed type engine mount
JP2004003614A (en) Vibration control equipment
JP2004003615A (en) Vibration control equipment
JP2002206591A (en) Liquid sealing type vibration control device
JPH06117475A (en) Vibration isolating mount device
WO2004067992A1 (en) Liquid-seal vibration isolating device
JP2001003980A (en) Active vibration isolating support device
JP4590289B2 (en) Anti-vibration support device
JP2006266425A (en) Liquid filled active vibration damper
JP4079072B2 (en) Active fluid filled vibration isolator
JPH02240430A (en) Fluid sealed type tubular mount device
JPH09144805A (en) Liquid-sealed type mount
JPH0925986A (en) Liquid-in type mount
JP2004218753A (en) Fluid sealing type vibration control device
JP3474249B2 (en) Liquid-filled engine mount
JPH0233896B2 (en) EKIFUNYUBOSHINSOCHI

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905