JP4699863B2 - Vibration isolator - Google Patents

Vibration isolator Download PDF

Info

Publication number
JP4699863B2
JP4699863B2 JP2005312734A JP2005312734A JP4699863B2 JP 4699863 B2 JP4699863 B2 JP 4699863B2 JP 2005312734 A JP2005312734 A JP 2005312734A JP 2005312734 A JP2005312734 A JP 2005312734A JP 4699863 B2 JP4699863 B2 JP 4699863B2
Authority
JP
Japan
Prior art keywords
liquid chamber
hydraulic pressure
space
vibration
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005312734A
Other languages
Japanese (ja)
Other versions
JP2007120598A (en
Inventor
哲 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005312734A priority Critical patent/JP4699863B2/en
Publication of JP2007120598A publication Critical patent/JP2007120598A/en
Application granted granted Critical
Publication of JP4699863B2 publication Critical patent/JP4699863B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

本発明は、振動を発生する部材からの振動の伝達を防止する流体封入式の防振装置に係り、特に、自動車のエンジンマウント等に好適に用いられる防振装置に関する。   The present invention relates to a fluid-filled vibration isolator that prevents transmission of vibration from a member that generates vibration, and more particularly, to a vibration isolator that is suitably used for an engine mount of an automobile.

例えば、乗用車等の車両では、振動発生部となるエンジンと振動受け部となる車体との間にエンジンマウントとしての防振装置が配設されており、この防振装置がエンジンから発生する振動を吸収し、車体側に伝達されるのを阻止するような構造となっている。この種の防振装置としては、幅広い周波数の振動に対応すべく、主液室及び副液室と、これらの液室をそれぞれ連通する複数本のオリフィスが設けられ、入力振動の周波数に応じて、複数本のオリフィスのうち1本のオリフィスにより主液室と副液室とが連通するように、電磁ソレノイド等により駆動されるバルブ機構により複数本のオリフィスを選択的に開閉するものが知られている。   For example, in a vehicle such as a passenger car, a vibration isolator as an engine mount is disposed between an engine serving as a vibration generating unit and a vehicle body serving as a vibration receiving unit, and the vibration isolating device generates vibration generated from the engine. It is structured to absorb and prevent transmission to the vehicle body side. This type of vibration isolator is provided with a main liquid chamber and a sub liquid chamber, and a plurality of orifices communicating with each of these liquid chambers in order to cope with vibrations in a wide range of frequencies. Among the plurality of orifices, one that selectively opens and closes the plurality of orifices by a valve mechanism driven by an electromagnetic solenoid or the like so that the main liquid chamber and the sub liquid chamber communicate with each other by one orifice is known. ing.

つまり、この防振装置には、オリフィスの開閉状態を制御し、複数のオリフィス間で液体の通路を切り替える為の電気的な電磁ソレノイド等が必要なだけでなく、これら電磁ソレノイド等を入力振動の周波数等に基づいて動作させ、オリフィスを切り替えさせるコントローラが構造上、必要であった。しかし、これらの電磁ソレノイド及びコントローラは、比較的高価なものであり、またこれらの部品は防振装置の構造を著しく複雑化すると共に、車両への取付作業を煩雑なものにする要因となっていた。   In other words, this vibration isolator requires not only an electric electromagnetic solenoid for controlling the opening / closing state of the orifice and switching the liquid passage between the plurality of orifices, but also the electromagnetic solenoid etc. A controller that operates based on the frequency or the like and switches the orifice is structurally necessary. However, these electromagnetic solenoids and controllers are relatively expensive, and these components significantly complicate the structure of the vibration isolator and make the installation work on the vehicle complicated. It was.

上記のような問題に鑑み、本出願の発明者等は、特許文献1において、主液室と副液室がシェイクオリフィス及びアイドルオリフィスによりそれぞれ連通されると共に、アイドルオリフィスの一部を形成すると共に副液室に連通したシリンダ空間内に配置されたプランジャ部材が、シェイク振動の入力時には主液室の液圧によりアイドルオリフィスを閉塞する閉塞位置へ移動し、アイドル振動の入力時にはプランジャ部材をコイルスプリングの付勢力によりアイドルオリフィスを開放する開放位置へ移動させる防振装置を開示している。   In view of the above problems, the inventors of the present application disclosed in Patent Document 1 that the main liquid chamber and the sub liquid chamber are communicated with each other by a shake orifice and an idle orifice, and form a part of the idle orifice. The plunger member arranged in the cylinder space communicating with the sub liquid chamber moves to the closed position where the idle orifice is closed by the hydraulic pressure of the main liquid chamber when the shake vibration is input, and the plunger member is moved to the coil spring when the idle vibration is input. An anti-vibration device is disclosed in which the idle orifice is moved to an open position where the idle orifice is opened.

すなわち、特許文献1の防振装置では、外筒内の空間を主液室と副液室とに区画する仕切部材が設けられると共に、この仕切部材の内周側に形成されたシリンダ室内にプランジャ部材が軸方向へ移動可能に配置されており、振動入力時には、主液室内に大きな液圧変化生じることにより、この液圧変化に伴って主液室内の液体が逆止弁を通してシリンダ室内の主液室側の空間(液圧空間)に流入し、この液圧空間内の液圧を主液室内の液圧上昇時の液圧(最高圧)と平衡するまで上昇させる。   That is, in the vibration isolator of Patent Document 1, a partition member that divides the space in the outer cylinder into a main liquid chamber and a sub liquid chamber is provided, and a plunger is provided in a cylinder chamber formed on the inner peripheral side of the partition member. The members are arranged so as to be movable in the axial direction, and when a vibration is input, a large fluid pressure change occurs in the main fluid chamber. The fluid flows into the space (hydraulic pressure space) on the liquid chamber side, and the fluid pressure in the fluid pressure space is increased until it is balanced with the fluid pressure (maximum pressure) when the fluid pressure is increased in the main fluid chamber.

このとき、相対的に周波数が低く振幅が大きいシェイク振動が入力する場合には、液圧空間内の相対的に大きい液圧振幅によりプランジャ部材がコイルスプリングの付勢力に抗して開放位置から閉塞位置まで移動し、この閉塞位置に保持される。また相対的に周波数が高く振幅が小さいアイドル振動が入力する場合には、液圧空間内の液圧振幅が相対的に小さいものになるので、プランジャ部材が開放位置にある場合にはコイルスプリングの付勢力により開放位置に保持され、閉塞位置にある場合にはコイルスプリングの付勢力により開放位置に復帰する。このとき、液圧空間内の液圧が上昇すると、この液圧によりプランジャ部材の開放位置への移動が阻止されるので、特許文献1には、プランジャ部材にその下面中心部から副液室内まで突出する軸部を設けると共に、この軸部の中心部を貫通する貫通穴を穿設し、プランジャ部材が開放位置側へ移動する際に、前記貫通穴を通して液圧空間内の液体を副液室内へ流出させて液圧空間内の液圧上昇する技術も開示されている(特許文献1の図13参照)。
国際公開WO2004/081408号
At this time, when a shake vibration having a relatively low frequency and a large amplitude is input, the plunger member is blocked from the open position against the biasing force of the coil spring by the relatively large hydraulic pressure amplitude in the hydraulic pressure space. It moves to the position and is held in this closed position. Further, when idle vibration having a relatively high frequency and a small amplitude is input, the hydraulic pressure amplitude in the hydraulic pressure space is relatively small. Therefore, when the plunger member is in the open position, the coil spring It is held in the open position by the urging force, and when it is in the closed position, it returns to the open position by the urging force of the coil spring. At this time, if the hydraulic pressure in the hydraulic pressure space increases, the hydraulic pressure prevents the plunger member from moving to the open position. A projecting shaft portion is provided and a through hole penetrating the central portion of the shaft portion is formed, and when the plunger member moves to the open position side, the liquid in the hydraulic space is allowed to pass through the through hole. There is also disclosed a technique for increasing the hydraulic pressure in the hydraulic space by flowing out into the hydraulic pressure space (see FIG. 13 of Patent Document 1).
International Publication WO 2004/081408

しかしながら、特許文献1のような防振装置で、プランジャ部材が開放位置側へ移動する際に、液圧空間内の液体を副液室内へ流出させるための貫通穴(液圧解放路)をプランジャ部材の下面中心部から副液室内まで突出する軸部(ガイド軸)に設けると、副液室内にガイド軸との干渉を避けるためのスペースを確保する必要があることから、副液室の軸方向に沿った寸法を短くできなくなる。   However, in the vibration isolator as in Patent Document 1, when the plunger member moves to the open position side, the plunger is provided with a through hole (hydraulic release path) for allowing the liquid in the hydraulic space to flow into the sub liquid chamber. If it is provided on the shaft (guide shaft) that protrudes from the center of the lower surface of the member to the sub liquid chamber, it is necessary to secure a space in the sub liquid chamber to avoid interference with the guide shaft. The dimension along the direction cannot be shortened.

従って、特許文献1のような防振装置では、プランジャ部材の軸部に液圧解放路を設けることにより、副液室の軸方向への寸法を拡張する必要が生じるので、装置全体の軸方向に沿ったサイズも大型化してしまう。   Therefore, in the vibration isolator as in Patent Document 1, it is necessary to expand the dimension of the auxiliary liquid chamber in the axial direction by providing the hydraulic pressure release path in the shaft portion of the plunger member. The size along the line will also increase.

本発明の目的は、上記事実を考慮して、入力振動が低周波域振動から高周波域振動に変化した際に、液圧解放路を通して液圧空間内の液体を副液室内へ流出させることによりプランジャ部材を開放位置側へ円滑に移動でき、かつ液圧解放路の設置により装置サイズが大型化しない防振装置を提供することにある。   The object of the present invention is to allow the liquid in the hydraulic pressure space to flow into the sub liquid chamber through the hydraulic pressure release passage when the input vibration changes from the low frequency vibration to the high frequency vibration in consideration of the above fact. An object of the present invention is to provide a vibration isolator capable of smoothly moving the plunger member to the open position side and preventing the size of the apparatus from increasing due to the installation of a hydraulic pressure release path.

上記の目的を達成するため、本発明の第1態様に係る防振装置は、振動発生部及び振動受け部の一方に連結される第1の取付部材と、振動発生部及び振動受け部の他方に連結される第2の取付部材と、前記第1の取付部材と前記第2の取付部材との間に配置された弾性体と、前記弾性体を隔壁の一部として液体が封入され、該弾性体の弾性変形に伴って内容積が変化する主液室と、液体が封入され内容積が拡縮可能とされた副液室と、前記主液室と前記副液室とを互いに連通する第1の制限通路と、前記主液室と前記副液室とを互いに連通し、前記第1の制限通路よりも液体の流通抵抗が小さい第2の制限通路と、前記主液室と前記副液室との間に設けられ、液体が封入されたシリンダ室と、前記シリンダ室内を、前記第2の制限通路の一部を構成すると共に前記副液室に連通したオリフィス空間と前記第2の制限通路から隔離された液圧空間とに区画し、前記オリフィス空間及び前記液圧空間の拡縮方向に沿って所定の開放位置と閉塞位置との間で移動可能とされたプランジャ部材と、前記オリフィス空間内に面するように設けられ、前記第2の制限通路における該オリフィス空間と他の部分とを連通させるオリフィス開口と、前記プランジャ部材を、前記液圧空間を縮小する前記開放位置側へ付勢する付勢部材と、前記主液室と前記液圧空間との間に配置され、前記主液室内の液圧変化に伴って該主液室と前記液圧空間との一方向へのみ液体を流出させ得る逆止弁と、前記液圧空間を前記副液室へ連通させると共に、前記拡縮方向に沿って前記主液室及び前記副液室よりも内側に配設され、前記プランジャ部材が前記付勢部材の付勢力により前記開放位置側へ移動する際に、内部を流通する液体の流通量を制限しつつ、前記液圧空間内の液体を流出させる液圧解放路と、を有し、前記プランジャ部材が、前記付勢部材の付勢力により前記開放位置へ移動すると、前記オリフィス開口を開放し、前記液圧空間内の液圧により前記付勢部材の付勢力に抗して前記前記閉塞位置に移動すると、前記オリフィス開口を閉塞させることを特徴とする。 In order to achieve the above object, the vibration isolator according to the first aspect of the present invention includes a first attachment member coupled to one of the vibration generating portion and the vibration receiving portion, and the other of the vibration generating portion and the vibration receiving portion. A second mounting member coupled to the first mounting member, an elastic body disposed between the first mounting member and the second mounting member, and a liquid sealed with the elastic body as a part of a partition, A main liquid chamber whose internal volume changes with elastic deformation of the elastic body, a secondary liquid chamber in which liquid is enclosed and whose internal volume can be expanded and contracted, and a main liquid chamber and a secondary liquid chamber that communicate with each other. The first restriction passage, the main liquid chamber and the sub liquid chamber communicate with each other, the second restriction passage having a smaller flow resistance of the liquid than the first restriction passage, the main liquid chamber and the sub liquid. A part of the second restriction passage between the cylinder chamber provided between the chamber and the liquid chamber and the cylinder chamber The orifice space is configured to be divided into an orifice space that communicates with the sub liquid chamber and a hydraulic pressure space that is isolated from the second restriction passage, and a predetermined opening position is provided along the expansion and contraction directions of the orifice space and the hydraulic pressure space. A plunger member movable between a closed position, an orifice opening provided to face the orifice space, and communicating the orifice space with another portion in the second restriction passage; A plunger member is disposed between the main fluid chamber and the fluid pressure space, and a biasing member that biases the plunger member toward the open position for reducing the fluid pressure space, and changes in fluid pressure in the main fluid chamber. A check valve capable of allowing liquid to flow out only in one direction between the main liquid chamber and the hydraulic pressure space, communicating the hydraulic pressure space with the sub liquid chamber, and extending the main liquid chamber along the expansion / contraction direction. And inside the secondary liquid chamber A liquid that is disposed and that causes the liquid in the hydraulic space to flow out while restricting the amount of liquid flowing through the plunger member when the plunger member moves toward the open position by the biasing force of the biasing member. And when the plunger member moves to the open position by the biasing force of the biasing member, the orifice opening is opened, and the biasing member of the biasing member is opened by the hydraulic pressure in the hydraulic pressure space. The orifice opening is closed when it moves to the closing position against an urging force.

本発明の第1態様に係る防振装置の作用を以下に説明する。 The operation of the vibration isolator according to the first aspect of the present invention will be described below.

第1態様の防振装置では、基本的に、第1及び第2の取付部材の何れか一方に振動が伝達されると、第1及び第2の取付部材間に配置された弾性体が弾性変形し、この弾性体の内部摩擦等に基づく吸振作用によって振動が吸収され、振動受け部側へ伝達される振動が低減される。 In the vibration isolator of the first aspect , basically, when vibration is transmitted to one of the first and second mounting members, the elastic body disposed between the first and second mounting members is elastic. The vibration is absorbed by the vibration absorbing action based on the internal friction or the like of the elastic body, and the vibration transmitted to the vibration receiving portion side is reduced.

また第1態様に係る防振装置では、主液室と副液室とが第1の制限通路により互いに連通すると共に、オリフィス開口が開口している状態では、主液室と副液室が第1の制限通路よりも液体の流通抵抗が小さい第2の制限通路によっても互いに連通する。更に、第1態様に係る防振装置では、開放位置にあったプランジャ部材が、逆止弁を通して主液室から液圧空間内へ供給される液圧により閉塞位置へ移動すると、弾性体の弾性変形に伴って、第1の制限通路のみを通って主液室と副液室との間を液体が行き来し、また閉塞位置にあったプランジャ部材が、付勢部材の付勢力により開放位置へ復帰すると、第1の制限通路及び第2の制限通路の双方が開放された状態となるが、弾性体の弾性変形に伴って、液体の流通抵抗が相対的に小さい第2の制限通路を優先的に通って主液室と副液室との間を液体が行き来する。 In the vibration isolator according to the first aspect , the main liquid chamber and the sub liquid chamber communicate with each other through the first restricting passage, and the main liquid chamber and the sub liquid chamber are in the first state when the orifice opening is open. The two restriction passages having a liquid flow resistance smaller than that of the first restriction passage communicate with each other. Furthermore, in the vibration isolator according to the first aspect, when the plunger member located at the open position moves to the closed position by the hydraulic pressure supplied from the main liquid chamber into the hydraulic pressure space through the check valve, the elasticity of the elastic body is increased. With the deformation, the liquid moves back and forth between the main liquid chamber and the sub liquid chamber only through the first restriction passage, and the plunger member in the closed position is moved to the open position by the biasing force of the biasing member. Upon return, both the first restriction passage and the second restriction passage are opened, but the second restriction passage having a relatively small liquid flow resistance is given priority with the elastic deformation of the elastic body. The liquid flows back and forth between the main liquid chamber and the sub liquid chamber.

すなわち、第1態様に係る防振装置では、相対的に周波数が低く振幅が大きい振動(以下、「低周波域振動」という。)が入力した場合には、この低周波域振動によって弾性体が弾性変形し、主液室内に相対的に大きな液圧変化が生じると共に、主液室内の周期的な液圧変化時に逆止弁を通して主液室から液圧空間へ液体が流入し、又は液圧空間から主液室へ液体が流出して、液圧空間内の液圧が主液室内の液圧(最高値又は最低値)と略平衡する平衡圧に達する。このとき、付勢部材の付勢力を液圧空間内の平衡圧に対応する値よりも小さく設定しておけば、プランジャ部材が付勢部材の付勢力に抗して開放位置から閉塞位置側へ間欠的に移動し、液圧空間内の液圧により閉塞位置へ保持される。 That is, in the vibration isolator according to the first aspect, when vibration with relatively low frequency and large amplitude (hereinafter referred to as “low frequency range vibration”) is input, the elastic body is caused by the low frequency range vibration. Due to elastic deformation, a relatively large fluid pressure change occurs in the main fluid chamber, and when the fluid pressure periodically changes in the main fluid chamber, the liquid flows from the main fluid chamber into the fluid pressure space through the check valve, or the fluid pressure The liquid flows out from the space into the main liquid chamber, and reaches an equilibrium pressure at which the liquid pressure in the hydraulic pressure space substantially equilibrates with the liquid pressure (maximum value or minimum value) in the main liquid chamber. At this time, if the urging force of the urging member is set smaller than the value corresponding to the equilibrium pressure in the hydraulic pressure space, the plunger member moves from the open position to the closed position side against the urging force of the urging member. It moves intermittently and is held at the closed position by the hydraulic pressure in the hydraulic pressure space.

従って、第1の制限通路における液体の流通抵抗を低周波域振動の周波数及び振幅に対応するように設定(チューニング)しておけば、第1の制限通路を通って主液室と副液室との間を行き来する液体に共振現象(液柱共振)が生じるので、この液柱共振の作用によって低周波域振動を特に効果的に吸収できる。   Therefore, if the flow resistance of the liquid in the first restricting passage is set (tuned) so as to correspond to the frequency and amplitude of the low-frequency vibration, the main liquid chamber and the sub liquid chamber pass through the first restricting passage. Since a resonance phenomenon (liquid column resonance) occurs in the liquid flowing back and forth, the low frequency range vibration can be absorbed particularly effectively by the action of the liquid column resonance.

また第1態様に係る防振装置では、相対的に周波数が高く振幅が小さい振動(以下、「高周波域振動」という。)が入力した場合には、この高周波域振動によって弾性体が弾性変形すると共に、主液室内に相対的に小さな液圧変化が生じることから、この場合にも、主液室内の周期的な液圧上昇時に逆止弁を通して主液室から液圧空間へ液体が流入し、又は液圧空間から主液室へ液体が流出して、液圧空間内の液圧が主液室内の液圧(最高値又は最低値)と略平衡する平衡圧に達する。このとき、付勢部材の付勢力を液圧空間内の平衡圧に対応する値よりも大きく設定しておけば、プランジャ部材が開放位置にあるときには、付勢部材の付勢力により開放位置に保持され、また閉塞位置にある場合には、付勢部材の付勢力により閉塞位置から開放位置へ移動(復帰)する。 In the vibration isolator according to the first aspect, when a vibration having a relatively high frequency and a small amplitude (hereinafter referred to as “high-frequency vibration”) is input, the elastic body is elastically deformed by the high-frequency vibration. At the same time, since a relatively small change in hydraulic pressure occurs in the main liquid chamber, in this case as well, liquid flows from the main liquid chamber into the hydraulic pressure space through the check valve when the liquid pressure periodically increases in the main liquid chamber. Alternatively, the liquid flows out from the hydraulic pressure space to the main liquid chamber, and reaches an equilibrium pressure at which the hydraulic pressure in the hydraulic pressure space substantially equilibrates with the hydraulic pressure (maximum value or minimum value) in the main liquid chamber. At this time, if the urging force of the urging member is set larger than the value corresponding to the equilibrium pressure in the hydraulic pressure space, the urging force of the urging member holds the plunger member in the open position when the plunger member is in the open position. In the closed position, the urging force of the urging member moves (returns) from the closed position to the open position.

従って、第1態様に係る防振装置では、高周波域振動の入力時には、弾性体の弾性変形に伴って、第1の制限通路に対して液体の流通抵抗が小さい第2の制限通路を優先的に通って主液室と副液室との間を液体が行き来することから、この第2の制限通路を流通する液体の粘性抵抗や圧力損失により入力振動(高周波域振動)を吸収できるので、振動発生部から振動受け部へ伝達される高周波域振動を効果的に低減できる。 Therefore, in the vibration isolator according to the first aspect , when the high-frequency vibration is input, the second restriction passage having a smaller liquid flow resistance than the first restriction passage is given priority with the elastic deformation of the elastic body. Since the liquid goes back and forth between the main liquid chamber and the sub liquid chamber through the, the input vibration (high frequency vibration) can be absorbed by the viscous resistance and pressure loss of the liquid flowing through the second restriction passage. High frequency vibrations transmitted from the vibration generating unit to the vibration receiving unit can be effectively reduced.

このとき、第2の制限通路における液体の流通抵抗を高周波域振動の周波数及び振幅に対応するように設定(チューニング)しておけば、第2の制限通路を通って主液室と副液室との間を行き来する液体に共振現象(液柱共振)が生じるので、この液柱共振の作用によって高周波域振動を特に効果的に吸収できる。   At this time, if the flow resistance of the liquid in the second restriction passage is set (tuned) so as to correspond to the frequency and amplitude of the high-frequency vibration, the main liquid chamber and the sub liquid chamber pass through the second restriction passage. Since a resonance phenomenon (liquid column resonance) occurs in the liquid flowing back and forth, the high frequency region vibration can be particularly effectively absorbed by the action of the liquid column resonance.

この結果、第1態様に係る防振装置によれば、電磁ソレノイドや空圧ソレノイド等の外部からの制御及び動力供給を受けて作動するバルブ機構を用いることなく、入力振動の周波数変化に応じて、主液室と副液室とを連通する制限通路を第1の制限通路及び第2の制限通路の何れか一方に、主液室内の液圧変化を駆動力として用いて切り換えることができる。 As a result, according to the vibration isolator according to the first aspect , according to a change in frequency of the input vibration without using a valve mechanism that operates by receiving external control and power supply such as an electromagnetic solenoid or a pneumatic solenoid. The restriction passage communicating the main liquid chamber and the sub liquid chamber can be switched to one of the first restriction passage and the second restriction passage using the change in the liquid pressure in the main liquid chamber as a driving force.

また第1態様に係る防振装置では、液圧空間を副液室へ連通させた液圧解放路が、プランジャ部材が開放位置側へ移動する際には、内部を流通する液体の流通量を制限しつつ、前記液圧空間内の液体を副液室内へ流出させることにより、高周波域振動の入力時に、プランジャ部材が付勢部材の付勢力により閉塞位置から開放位置へ移動(復帰)する際に、プランジャ部材からの圧縮力を受けた液圧空間内の液体が液圧解放路を通して副液室内へ流出し、液圧空間内の液圧の上昇が抑制されることから、プランジャ部材に移動抵抗として作用する液圧空間内の液圧を低い状態に維持できるので、プランジャ部材を付勢部材の付勢力により円滑に閉塞位置から開放位置側まで移動させることができる。 Further, in the vibration isolator according to the first aspect, when the hydraulic pressure release path that connects the hydraulic pressure space to the auxiliary liquid chamber moves the plunger member to the open position side, the flow amount of the liquid flowing inside is reduced. When the plunger member moves (returns) from the closed position to the open position due to the urging force of the urging member when the high-frequency vibration is input, by allowing the liquid in the hydraulic pressure space to flow into the sub liquid chamber while limiting. In addition, the liquid in the hydraulic pressure space that has received the compressive force from the plunger member flows out into the auxiliary liquid chamber through the hydraulic pressure release passage, and the increase in the hydraulic pressure in the hydraulic pressure space is suppressed, so that the liquid moves to the plunger member. Since the hydraulic pressure in the hydraulic pressure space acting as a resistance can be maintained at a low level, the plunger member can be smoothly moved from the closed position to the open position by the biasing force of the biasing member.

また低周波域振動の入力時にも、液圧解放路を通して液圧空間内の液体が副液室内へ流出することになるが、入力振動に同期して開放位置から閉塞位置まで間欠的に移動するプランジャ部材の単位時間当りの移動量(移動速度)に対する、液圧空間内から副液室内への単位時間当りの液体の流出量(流出速度)が十分に小さくなるように、液圧解放路内を流通する液体に対する流通抵抗を設定しておけば、入力振動(低周波域振動)に同期させてプランジャ部材を確実に開放位置から閉塞位置へ移動させることができる。   In addition, even when low frequency vibration is input, the liquid in the hydraulic space flows out into the sub liquid chamber through the hydraulic pressure release path, but moves intermittently from the open position to the closed position in synchronization with the input vibration. In the hydraulic pressure release path so that the amount of liquid outflow (outflow speed) per unit time from the hydraulic pressure space to the sub liquid chamber relative to the amount of movement (movement speed) of the plunger member per unit time is sufficiently small. If the flow resistance for the liquid flowing through is set, the plunger member can be reliably moved from the open position to the closed position in synchronization with the input vibration (low frequency vibration).

また第1態様に係る防振装置では、液圧解放路が拡縮方向に沿って主液室及び副液室よりも内側に配設されていることから、液圧解放路が拡縮方向に沿って主液室及び副液室内へ突出することを防止できるので、液圧解放路との干渉を避けるために主液室又は副液室に拡縮方向に沿って余分なスペースを確保する必要がなくなり、液圧解放路を設置したことによる装置サイズの大型化を防止できる。 Moreover, in the vibration isolator which concerns on a 1st aspect , since a hydraulic pressure release path is arrange | positioned inside a main liquid chamber and a sub liquid chamber along the expansion / contraction direction, a hydraulic pressure release path follows an expansion / contraction direction. Since it can be prevented from protruding into the main liquid chamber and the sub liquid chamber, it is not necessary to secure an extra space along the expansion / contraction direction in the main liquid chamber or the sub liquid chamber in order to avoid interference with the hydraulic pressure release path. An increase in the size of the apparatus due to the installation of the hydraulic pressure release path can be prevented.

また本発明の第2態様に係る防振装置は、第1態様記載の防振装置において、 前記液圧解放路を、前記プランジャ部材における前記液圧空間内に面した一方の端面と前記オリフィス空間内に面した他方の端面との間を貫通するように形成したことを特徴とする。 The vibration isolator according to the second aspect of the present invention is the vibration isolator according to the first aspect , wherein one end face of the plunger member facing the hydraulic pressure space in the plunger member and the orifice space are provided. It is formed so as to penetrate between the other end face facing inward.

また本発明の第3態様に係る防振装置は、第1態様記載の防振装置において、前記液圧解放路を、前記シリンダ室の内周面に対向しつつ、該内周面に沿って前記拡縮方向へ摺動可能とされた前記プランジャ部材の外周面に形成したことを特徴とする。 A vibration isolator according to a third aspect of the present invention is the vibration isolator according to the first aspect , wherein the hydraulic pressure release path is opposed to the inner peripheral surface of the cylinder chamber and along the inner peripheral surface. It is formed on the outer peripheral surface of the plunger member which is slidable in the expansion / contraction direction.

また本発明の第4態様に係る防振装置は、第1態様記載の防振装置において、前記液圧解放路を、前記プランジャ部材の外周面に対向しつつ、該外周面に沿って前記拡縮方向へ相対的に摺動可能とされた前記シリンダ室の内周面に沿って形成したことを特徴とする。 The vibration isolator according to a fourth aspect of the present invention is the vibration isolator according to the first aspect , wherein the expansion / contraction is performed along the outer peripheral surface of the hydraulic pressure release path while facing the outer peripheral surface of the plunger member. It is formed along the inner peripheral surface of the cylinder chamber which is slidable in the direction.

また本発明の第5態様に係る防振装置は、第1態様記載の防振装置において、前記シリンダ室内に前記拡縮方向に沿って延在すると共に、前記プランジャ部材に前記拡縮方向に沿って貫通するように設けられた軸受穴に相対的に摺動可能に挿入されるガイド軸を設け、前記液圧解放路を前記ガイド軸に前記拡縮方向に沿って貫通するように形成したことを特徴とする。 A vibration isolator according to a fifth aspect of the present invention is the vibration isolator according to the first aspect , wherein the vibration isolator extends in the cylinder chamber along the expansion / contraction direction and penetrates the plunger member along the expansion / contraction direction. A guide shaft that is slidably inserted into a bearing hole provided so as to be provided is provided, and the hydraulic pressure release path is formed to penetrate the guide shaft along the expansion / contraction direction. To do.

また本発明の第6態様に係る防振装置は、第5態様記載の防振装置において、前記第1の取付部材を略筒状に形成し、該第1の取付部材の内周側に前記弾性体及びダイヤフラムを隔壁の一部として外部から区画された液室空間を設けると共に、前記液室空間内に、該液室空間を前記弾性体が隔壁の一部とされた前記主液室と前記ダイヤフラムが隔壁の一部とされた前記副液室とに区画する仕切部材を設け、前記ガイド軸を前記仕切部材と一体的に設けたことを特徴とする。 A vibration isolator according to a sixth aspect of the present invention is the vibration isolator according to the fifth aspect , wherein the first mounting member is formed in a substantially cylindrical shape, and the first mounting member is formed on the inner peripheral side of the first mounting member. A liquid chamber space partitioned from the outside with an elastic body and a diaphragm as a part of the partition wall is provided, and the liquid chamber space is provided in the liquid chamber space with the main liquid chamber in which the elastic body is a part of the partition wall. A partition member is provided for partitioning the diaphragm into the secondary liquid chamber formed as a part of a partition wall, and the guide shaft is provided integrally with the partition member.

以上説明したように、本発明に係る防振装置によれば、入力振動が低周波域振動から高周波域振動に変化した際に、液圧解放路を通して液圧空間内の液体を副液室内へ流出させることにより、プランジャ部材を開放位置側へ円滑に移動でき、かつ液圧解放路の設置による装置サイズの大型化を防止できる。   As described above, according to the vibration isolator of the present invention, when the input vibration changes from the low-frequency vibration to the high-frequency vibration, the liquid in the hydraulic pressure space passes through the hydraulic pressure release path to the sub-liquid chamber. By letting it flow out, the plunger member can be smoothly moved to the open position side, and an increase in the apparatus size due to the installation of the hydraulic pressure release path can be prevented.

以下、本発明の実施形態に係る防振装置について図面を参照して説明する。なお、図中、符号Sは装置の軸心を表しており、この軸心Sに沿った方向を装置の軸方向として以下の説明を行う。   Hereinafter, a vibration isolator according to an embodiment of the present invention will be described with reference to the drawings. In the figure, symbol S represents the axial center of the apparatus, and the following description will be made with the direction along the axial center S as the axial direction of the apparatus.

(第1の実施形態)
図1及び図2には本発明の第1の実施形態に係る防振装置が示されている。図1に示されるように、防振装置10には、その外周側に薄肉円筒に形成された外筒部材12が設けられると共に、この外筒部材12の内周側に取付金具20が略同軸的に配置されている。外筒部材12には、その上端部に外周側へ延出する環状のフランジ部14が屈曲形成されると共に、下端部に装置の組立時に内周側へテーパ状に折り曲げられるかしめ部16が形成されている。外筒部材12には、フランジ部14の下側に内周側へ向かって断面コ字状に屈曲された絞り部18が全周に亘って形成されており、この絞り部18には、その上端部及び下端部にそれぞれ環状の上側段差部18A及び下側段差部18Bが設けられている。また外筒部材12には、下側段差部18Bの下側に径方向へ貫通する円形の開口部18Cが形成されている。防振装置10は、外筒部材12がカップ状のホルダ金具(図示省略)内へ嵌挿されることにより、このホルダ金具を介してして車両における車体側へ連結される。
(First embodiment)
1 and 2 show a vibration isolator according to a first embodiment of the present invention. As shown in FIG. 1, the vibration isolator 10 is provided with an outer cylinder member 12 formed in a thin cylinder on the outer peripheral side thereof, and a mounting bracket 20 is substantially coaxial on the inner peripheral side of the outer cylinder member 12. Are arranged. The outer cylindrical member 12 is formed with an annular flange portion 14 that is bent at the upper end portion thereof toward the outer peripheral side, and a caulking portion 16 that is bent at the lower end portion so as to be tapered toward the inner peripheral side when the apparatus is assembled. Has been. The outer cylindrical member 12 is formed with a narrowed portion 18 that is bent in a U-shaped cross section toward the inner peripheral side on the lower side of the flange portion 14 over the entire circumference. An annular upper step 18A and lower step 18B are provided at the upper end and the lower end, respectively. The outer cylinder member 12 is formed with a circular opening 18C penetrating in the radial direction below the lower stepped portion 18B. The vibration isolator 10 is connected to the vehicle body side of the vehicle via the holder fitting when the outer cylinder member 12 is inserted into a cup-shaped holder fitting (not shown).

取付金具20には、その上端側に略一定の外径を有する円柱部21及び、この円柱部21の下端部から外周側へ延出するフランジ状の延出部22が形成されると共に、延出部22の下側に下方へ向かってテーパ状に外径が縮径する縮径部23が形成されている。取付金具20には、その上端面から下端側へ向かって軸心Sに沿ってねじ穴20Aが穿設されている。防振装置10は、取付金具20のねじ穴20Aに捻じ込まれたボルト等の締結部材及びブラケットステーを介して車両におけるエンジン側に連結固定される。   The mounting bracket 20 is formed with a cylindrical portion 21 having a substantially constant outer diameter on the upper end side thereof, and a flange-like extending portion 22 extending from the lower end portion of the cylindrical portion 21 to the outer peripheral side. A reduced diameter portion 23 whose outer diameter is reduced in a tapered manner downward is formed below the protruding portion 22. The mounting bracket 20 has a screw hole 20A along the axis S from the upper end surface toward the lower end side. The vibration isolator 10 is connected and fixed to the engine side of the vehicle via a fastening member such as a bolt screwed into the screw hole 20A of the mounting bracket 20 and a bracket stay.

防振装置10には、外筒部材12と取付金具20との間に略肉厚リング状に形成されたゴム弾性体24が配置されている。ゴム弾性体24は、その外周面が外筒部材12の内周面における上側段差部18Aの上側に加硫接着されると共に、内周面が取付金具20の縮径部23の外周面に加硫接着されている。これにより、ゴム弾性体24は外筒部材12と取付金具20とを弾性的に連結する。   In the vibration isolator 10, a rubber elastic body 24 formed in a substantially thick ring shape is disposed between the outer cylinder member 12 and the mounting bracket 20. The rubber elastic body 24 is vulcanized and bonded to the upper surface of the upper stepped portion 18 </ b> A on the inner peripheral surface of the outer cylinder member 12, and the inner peripheral surface is added to the outer peripheral surface of the reduced diameter portion 23 of the mounting bracket 20. Sulfur bonded. Thereby, the rubber elastic body 24 elastically connects the outer cylinder member 12 and the mounting bracket 20.

ゴム弾性体24は、その断面が取付金具20から外筒部材12へ向かって下方へ傾斜する略ハ字状に形成されている。これにより、ゴム弾性体24の下面中央部には、下方から上方へ向かって内径が狭くなる略円錐台状の凹部26が形成される。ゴム弾性体24には、その上端外周部から上側へ延出する断面矩形状のストッパ部28が一体的に形成されており、このストッパ部28は、取付金具20における延出部22の上面側に加硫接着されている。ストッパ部28は、防振装置10が車両に取り付けられた状態で、軸方向に沿ってエンジン側に大きな相対変位が生じた場合に、ブラケットステー等へ当接してエンジン側の変位を制限すると共に衝突音の発生を防止する。   The rubber elastic body 24 is formed in a substantially C shape whose cross section is inclined downward from the mounting bracket 20 toward the outer cylinder member 12. As a result, a substantially frustoconical concave portion 26 whose inner diameter becomes narrower from the lower side to the upper side is formed in the central portion of the lower surface of the rubber elastic body 24. The rubber elastic body 24 is integrally formed with a stopper section 28 having a rectangular cross section extending upward from the outer periphery of the upper end thereof. The stopper section 28 is formed on the upper surface side of the extending section 22 of the mounting bracket 20. Is vulcanized and bonded. The stopper portion 28 abuts against a bracket stay or the like to limit the displacement on the engine side when a large relative displacement occurs on the engine side along the axial direction with the vibration isolator 10 attached to the vehicle. Prevents collision noise.

ゴム弾性体24には、その下端内周部に取付金具20の下端部を覆うクッション部30が一体的に形成されると共に、その下端外周部から下方へ延出する薄肉円筒状の被覆部34が一体的に形成されている。この被覆部34は、外筒部材12における上側段差部18Aの下側を覆うように外筒部材12に加硫接着されている。また被覆部34には、外筒部材12の開口部18Cに面した部位に肉厚円板状のメンブラン32が一体的に形成されており、このメンブラン32は、内周側から開口部18C内へ嵌挿されると共に、その周縁部が外筒部材12へ加硫接着されている。これにより、開口部18Cが弾性を有する膜状部材であるメンブラン32により閉塞される。   The rubber elastic body 24 is integrally formed with a cushion portion 30 that covers the lower end portion of the mounting bracket 20 at the inner peripheral portion of the lower end, and a thin cylindrical covering portion 34 that extends downward from the outer peripheral portion of the lower end. Are integrally formed. The covering portion 34 is vulcanized and bonded to the outer cylinder member 12 so as to cover the lower side of the upper step portion 18A of the outer cylinder member 12. Further, a thick disk-like membrane 32 is integrally formed on the covering portion 34 at a portion facing the opening 18C of the outer cylinder member 12, and the membrane 32 is formed in the opening 18C from the inner peripheral side. The peripheral edge portion is vulcanized and bonded to the outer cylinder member 12. Thereby, the opening 18C is closed by the membrane 32 which is a film-like member having elasticity.

防振装置10には、外筒部材12の内周側に全体として略肉厚円板状に形成された仕切金具36(図3参照)が嵌挿されている。仕切金具36は、その上面外周部を下側段差部18Bの下面側へ当接させると共に、外周面を被覆部34を介して外筒部材12の内周面へ圧接させている。また防振装置10には、外筒部材12の内周側における仕切金具36の下側に円環状の支持筒38が嵌挿されている。支持筒38は、その上端側を仕切金具36の下面外周部へ当接させると共に、被覆部34を介して外周面を外筒部材12の内周面へ圧接させている。防振装置10では、外筒部材12内に仕切金具36及び支持筒38が嵌挿された状態で、外筒部材12のかしめ部16が上端側から下端側へ向かって内外径が縮径するように折り曲げられる。これにより、外筒部材12内で仕切金具36及び支持筒38が段差部32(絞り部18)とかしめ部16との間に固定される。   A partition fitting 36 (see FIG. 3) formed in a substantially thick disk shape as a whole is fitted into the vibration isolator 10 on the inner peripheral side of the outer cylinder member 12. The partition metal fitting 36 abuts its upper surface outer peripheral portion against the lower surface side of the lower stepped portion 18B and presses the outer peripheral surface against the inner peripheral surface of the outer cylinder member 12 via the covering portion 34. Further, in the vibration isolator 10, an annular support cylinder 38 is fitted and inserted below the partition metal fitting 36 on the inner peripheral side of the outer cylinder member 12. The upper end side of the support cylinder 38 is brought into contact with the outer peripheral portion of the lower surface of the partition metal 36, and the outer peripheral surface is pressed against the inner peripheral surface of the outer cylinder member 12 through the covering portion 34. In the vibration isolator 10, the inner and outer diameters of the caulking portion 16 of the outer cylinder member 12 decrease from the upper end side toward the lower end side in a state where the partition fitting 36 and the support cylinder 38 are fitted and inserted into the outer cylinder member 12. It is bent as follows. Thereby, the partition metal fitting 36 and the support cylinder 38 are fixed between the step portion 32 (the throttle portion 18) and the caulking portion 16 in the outer cylinder member 12.

支持筒38には、その内周側にゴム材料により薄肉円板状に成形されたダイヤフラム40が配置されており、このダイヤフラム40は、その外周縁部が全周に亘って支持筒38の内周面に加硫接着されている。これにより、外筒部材12内には、その軸方向に沿った上端側がゴム弾性体24により閉塞されると共に、下端側がダイヤフラム40により閉塞された略円柱状の空間(液室空間)が形成され、この液室空間は仕切金具36によりゴム弾性体24を隔壁の一部とする主液室42及びダイヤフラム40を隔壁とする副液室44に区画される。これらの主液室42及び副液室44内には、それぞれ水、エチレングリコール等の液体が充填される。   The support cylinder 38 is provided with a diaphragm 40 formed into a thin disk shape with a rubber material on the inner peripheral side thereof. The outer peripheral edge of the diaphragm 40 extends over the entire circumference of the support cylinder 38. It is vulcanized and bonded to the peripheral surface. As a result, a substantially cylindrical space (liquid chamber space) in which the upper end side along the axial direction is closed by the rubber elastic body 24 and the lower end side is closed by the diaphragm 40 is formed in the outer cylinder member 12. The liquid chamber space is partitioned by the partition metal 36 into a main liquid chamber 42 having the rubber elastic body 24 as a part of the partition wall and a sub liquid chamber 44 having the diaphragm 40 as the partition wall. The main liquid chamber 42 and the sub liquid chamber 44 are filled with a liquid such as water and ethylene glycol, respectively.

ここで、主液室42は、その内容積がゴム弾性体24の弾性変形に伴って変化(拡縮)し、またダイヤフラム40は、副液室44の内容積を拡縮する方向へ十分に小さい荷重(液圧)で変形可能とされている。   Here, the inner volume of the main liquid chamber 42 changes (expands / contracts) with the elastic deformation of the rubber elastic body 24, and the diaphragm 40 has a sufficiently small load in the direction of expanding / contracting the inner volume of the sub liquid chamber 44. It can be deformed by (hydraulic pressure).

図5に示されるように、仕切金具36には、その外周側に樹脂やアルミニウム等の金属材料により形成されたオリフィス部材46が設けられると共に、このオリフィス部材46上に薄肉円板状の蓋部材48が配置されている。オリフィス部材46は、下面側が底板部50により閉止された肉厚の有底円筒状に形成されており、底板部50には、周方向に沿った寸法が内周側から外周側へ向かって広がる略扇状に形成された複数個(例えば、4個)の流通開口52が穿設されると共に、図3に示されるように、流通開口52の内周側に肉厚円筒状のボス部54が一体的に形成されている。   As shown in FIG. 5, the partition member 36 is provided with an orifice member 46 formed of a metal material such as resin or aluminum on the outer peripheral side thereof, and a thin disk-like lid member on the orifice member 46. 48 is arranged. The orifice member 46 is formed in a thick bottomed cylindrical shape whose bottom surface is closed by the bottom plate portion 50, and the dimension along the circumferential direction of the bottom plate portion 50 extends from the inner peripheral side to the outer peripheral side. A plurality of (for example, four) circulation openings 52 formed in a substantially fan shape are formed, and a thick cylindrical boss portion 54 is formed on the inner peripheral side of the circulation opening 52 as shown in FIG. It is integrally formed.

図3に示されるように、ボス部54は、その軸方向に沿った寸法が底板部50の厚さよりも大きくなっており、その外周面が底板部50の上面側から段差状に突出している。ボス部54には上面中央部に円形凹状の座受穴56が開口しており、この座受穴56には後述するコイルスプリング90の下端部が挿入される。またオリフィス部材46には、座受穴56の底面中央部から軸心Sに沿って突出する丸棒状のガイドロッド57が一体的に形成されると共に、このガイドロッド57の内周側に軸心Sに沿ってガイドロッド57の上端面とオリフィス部材46の底面との間を貫通する液圧解放路126が形成されている。   As shown in FIG. 3, the dimension along the axial direction of the boss portion 54 is larger than the thickness of the bottom plate portion 50, and the outer peripheral surface protrudes in a step shape from the upper surface side of the bottom plate portion 50. . A circular concave seat receiving hole 56 is opened in the center of the upper surface of the boss portion 54, and a lower end portion of a coil spring 90 described later is inserted into the seat receiving hole 56. In addition, the orifice member 46 is integrally formed with a round rod-shaped guide rod 57 projecting along the axis S from the center of the bottom surface of the seat receiving hole 56, and the shaft center on the inner peripheral side of the guide rod 57. A hydraulic pressure release passage 126 that passes between the upper end surface of the guide rod 57 and the bottom surface of the orifice member 46 is formed along S.

図5に示されるように、オリフィス部材46には、その外周面の上端側及び下端側にシェイク溝60及びシェイク溝62がそれぞれ周方向へ延在するように形成されると共に、これらのシェイク溝60,62の間にアイドル溝64が周方向へ延在するように形成されている。ここで、シェイク溝60及びアイドル溝64は、平面視で周方向に沿った一端部が閉塞されると共に他端部が開口した略C字状に形成されており、シェイク溝62は、オリフィス部材46の外周面を略一周に亘って周回する周方向両端部がそれぞれ閉塞されたC字状に形成されている。またシェイク溝60,62は、軸方向に沿った幅が略等しく断面積も互いに略等しくなっているが、アイドル溝64は、軸方向に沿った幅がシェイク溝60,62よりも広くなっており、その断面積がシェイク溝60,62の断面積よりも大きくなっている。   As shown in FIG. 5, the orifice member 46 is formed with a shake groove 60 and a shake groove 62 extending in the circumferential direction on the upper end side and the lower end side of the outer peripheral surface thereof. An idle groove 64 is formed between 60 and 62 so as to extend in the circumferential direction. Here, the shake groove 60 and the idle groove 64 are formed in a substantially C shape in which one end portion along the circumferential direction is closed and the other end portion is opened in a plan view. 46 both ends of the circumferential direction which circulates the outer peripheral surface of 46 substantially over one round are formed in the C shape where each was obstruct | occluded. The shake grooves 60 and 62 have substantially the same width along the axial direction and the cross-sectional areas are substantially equal to each other, but the idle groove 64 has a width along the axial direction wider than that of the shake grooves 60 and 62. The cross-sectional area is larger than the cross-sectional area of the shake grooves 60 and 62.

オリフィス部材46には、その外周面に軸方向に延在するように凹状の連通溝66が形成されており、この連通溝66は、その上端部がオリフィス部材46の上面外周部へ開口すると共に、下端側がシェイク溝62とアイドル溝64とを軸方向に沿って仕切った仕切板72により閉塞されている。また連通溝66の周方向に沿った片側の側端部には、シェイク溝60及びアイドル溝64の開口側の端部がそれぞれ接続されている。図1に示されるように、オリフィス部材46には、その外周面に軸方向へ延在する凹状の中間溝68が形成されており、この中間溝68は、その上端部がシェイク溝60の閉塞側の端部付近に接続されると共に、下端部がシェイク溝62の一端部付近に接続され、シェイク溝60及びシェイク溝62を互いに連通させている。またオリフィス部材46には、その下端部外周側にシェイク溝62の他端部付近とオリフィス部材46の下面との間を貫通する連通穴66が形成されている。   A concave communication groove 66 is formed in the orifice member 46 so as to extend in the axial direction on the outer peripheral surface thereof, and the upper end portion of the communication groove 66 opens to the outer peripheral portion of the upper surface of the orifice member 46. The lower end side is closed by a partition plate 72 that partitions the shake groove 62 and the idle groove 64 along the axial direction. Further, the end portions on the opening side of the shake groove 60 and the idle groove 64 are respectively connected to the side end portions on one side along the circumferential direction of the communication groove 66. As shown in FIG. 1, a concave intermediate groove 68 extending in the axial direction is formed on the outer peripheral surface of the orifice member 46, and the intermediate groove 68 is closed at the upper end portion of the shake groove 60. The lower end portion is connected to the vicinity of one end portion of the shake groove 62, and the shake groove 60 and the shake groove 62 are communicated with each other. The orifice member 46 is formed with a communication hole 66 penetrating between the vicinity of the other end of the shake groove 62 and the lower surface of the orifice member 46 on the outer peripheral side of the lower end portion.

オリフィス部材46には、図3に示されるように、アイドル溝64における内周側の底面部とオリフィス部材46の内周面との間を貫通するオリフィス開口74が穿設されている。オリフィス開口74は、アイドル溝64の閉塞側の端部に近い部位に配置されており、図5に示されるように、周方向へ細長いスロット状に形成されている。ここで、オリフィス開口74の開口面積は、アイドル溝64の断面積以上になっている。またまたオリフィス開口74は、その内周端に沿った両端部の形状が略半円形とされており、この両端部付近での液体の流通抵抗の増加が抑制されている。またオリフィス開口74の内周縁部(エッジ部)における液体の流通方向に沿った断面形状を凸の半円状や楔状として、エッジ部での液体の流通抵抗の増加を抑制するようにして良い。   As shown in FIG. 3, the orifice member 46 has an orifice opening 74 penetrating between the inner peripheral surface of the idle groove 64 and the inner peripheral surface of the orifice member 46. The orifice opening 74 is disposed at a portion near the closed end of the idle groove 64 and is formed in a slot shape elongated in the circumferential direction as shown in FIG. Here, the opening area of the orifice opening 74 is larger than the cross-sectional area of the idle groove 64. In addition, the orifice opening 74 has a substantially semicircular shape at both ends along the inner peripheral end thereof, and an increase in the flow resistance of the liquid in the vicinity of both ends is suppressed. Further, the cross-sectional shape along the liquid flow direction at the inner peripheral edge portion (edge portion) of the orifice opening 74 may be a convex semicircular shape or wedge shape so as to suppress an increase in liquid flow resistance at the edge portion.

図5に示されるように、オリフィス部材46の内周側には円柱状の空間が形成され、この円柱状の空間は、後述するプランジャ部材78が収納されるシリンダ室76とされる。プランジャ部材78は肉厚円板状に形成されており、シリンダ室76を軸方向に沿って主液室42側の小空間である液圧空間130(図4参照)と副液室44側の小空間であるオリフィス空間132(図3参照)とに区画している。またプランジャ部材78は、その外周面下端側のエッジ部79がオリフィス開口74の長手方向と平行に延在している。   As shown in FIG. 5, a cylindrical space is formed on the inner peripheral side of the orifice member 46, and this cylindrical space serves as a cylinder chamber 76 in which a plunger member 78 described later is accommodated. The plunger member 78 is formed in a thick disk shape, and the hydraulic chamber 130 (see FIG. 4), which is a small space on the main liquid chamber 42 side along the axial direction of the cylinder chamber 76, and the sub liquid chamber 44 side. It is divided into an orifice space 132 (see FIG. 3) which is a small space. The plunger member 78 has an edge portion 79 on the lower end side of the outer peripheral surface thereof extending in parallel with the longitudinal direction of the orifice opening 74.

図3に示されるように、プランジャ部材78には、その下端面における内周側に周方向へ延在する環状溝部80が形成されると共に、この環状溝部80の内周側に肉厚円筒状の座受部86が一体的に形成されている。またプランジャ部材78には、その上端面から座受部86の下端面との間を軸心Sに沿って貫通する軸受穴84が穿設されている。プランジャ部材78には、その上端面における軸受穴84の外周側に環状凹部82が形成されており、この環状凹部82は、プランジャ部材78が後述する開放位置にある場合でも、ホルダ部材100の下面との間に一定容積の空間(液圧空間130)を形成している。   As shown in FIG. 3, the plunger member 78 is formed with an annular groove portion 80 extending in the circumferential direction on the inner peripheral side of the lower end surface thereof, and a thick cylindrical shape is formed on the inner peripheral side of the annular groove portion 80. The seat receiving portion 86 is integrally formed. The plunger member 78 is provided with a bearing hole 84 penetrating along the axis S from the upper end surface to the lower end surface of the seat receiving portion 86. The plunger member 78 has an annular recess 82 formed on the outer peripheral side of the bearing hole 84 on the upper end surface thereof, and this annular recess 82 is provided on the lower surface of the holder member 100 even when the plunger member 78 is in an open position described later. A space of a constant volume (hydraulic pressure space 130) is formed between the two.

プランジャ部材78は、図3に示されるように、オリフィス部材46のシリンダ室76内へ挿入されると共に、軸受穴84内にオリフィス部材46のガイドロッド57が軸方向に沿って相対的に摺動可能になるように挿入される。これにより、プランジャ部材78は、シリンダ室76の内周面及びガイドロッド57の外周面に沿って軸方向に移動可能(スライド可能)となる。   As shown in FIG. 3, the plunger member 78 is inserted into the cylinder chamber 76 of the orifice member 46, and the guide rod 57 of the orifice member 46 slides relatively along the axial direction in the bearing hole 84. Inserted as possible. Accordingly, the plunger member 78 is movable (slidable) in the axial direction along the inner peripheral surface of the cylinder chamber 76 and the outer peripheral surface of the guide rod 57.

ここで、軸受穴84が穿設されたプランジャ部材78及びガイドロッド57の一方が金属により形成されている場合には、他方を樹脂等のヤング率が所定値以上異なり、摩擦抵抗が小さい素材により形成することが好ましい。また軸受穴84の内周面及びガイドロッド57の外周面の一方又は双方に潤滑性を有し、かつ耐摩耗性が高い物質をコーティングしてスライド時の摩擦抵抗を抑制するようにしても良い。   Here, when one of the plunger member 78 and the guide rod 57 in which the bearing hole 84 is formed is made of metal, the other is made of a material whose Young's modulus such as resin is different by a predetermined value or more and whose frictional resistance is small. It is preferable to form. In addition, one or both of the inner peripheral surface of the bearing hole 84 and the outer peripheral surface of the guide rod 57 may be coated with a material having lubricity and high wear resistance to suppress frictional resistance during sliding. .

仕切金具36には、オリフィス部材46の底板部50とプランジャ部材78の下端部との間に付勢部材としてのコイルスプリング90が配置されている。コイルスプリング90は、その上端部をプランジャ部材78の座受部86の外周側に外嵌すると共に、その下端部をオリフィス部材46の座受穴56内へ挿入している。この状態で、コイルスプリング90は、その上端面(上側座面)をプランジャ部材78における座受部86の周縁部へ圧接させると共に、下端面(下側座面)を座受穴56の底面部へ圧接させ、プランジャ部材78及び底板部50により常に圧縮状態に保持されている。これにより、コイルスプリング90はプランジャ部材78を常に上方(主液室42側)へ付勢する。   A coil spring 90 as an urging member is disposed on the partition metal 36 between the bottom plate portion 50 of the orifice member 46 and the lower end portion of the plunger member 78. The upper end of the coil spring 90 is fitted on the outer peripheral side of the seat receiving portion 86 of the plunger member 78, and the lower end is inserted into the seat receiving hole 56 of the orifice member 46. In this state, the coil spring 90 has its upper end surface (upper seat surface) pressed against the peripheral edge portion of the seat receiving portion 86 of the plunger member 78 and its lower end surface (lower seat surface) is the bottom surface portion of the seat receiving hole 56. The plunger member 78 and the bottom plate portion 50 are always held in a compressed state. Thereby, the coil spring 90 always biases the plunger member 78 upward (to the main liquid chamber 42 side).

図3に示されるように、仕切金具36では、蓋部材48がオリフィス部材46の上端面に当接しており、この状態で、例えば、オリフィス部材46の上端面から突出するかしめ突起(図示省略)が蓋部材48に穿設されたかしめ穴に嵌挿され、かしめ突起の先端側が潰されることにより、蓋部材48がオリフィス部材46上にかしめ固定される。蓋部材48がオリフィス部材46に固定されることにより、オリフィス部材46のシリンダ室76の上端側が蓋部材48により閉止される。蓋部材48には、図5に示されるように、中央部に円形の嵌挿穴94が穿設されると共に、この嵌挿穴94の外周側に扇状に形成された複数個(本実施形態では、4個)の弁座開口96が形成されている。これら弁座開口96は、軸心Sを中心として対称的な位置関係(点対称)となるように配置されている。また蓋部材48には、図5に示されるように、その外周部にオリフィス部材46の連通溝66の上端側に面するように切欠部98が形成されている。これにより、シェイク溝60及びアイドル溝64は、連通溝66及び切欠部98を介してそれぞれ副液室44内へ連通する。   As shown in FIG. 3, in the partition member 36, the lid member 48 is in contact with the upper end surface of the orifice member 46, and in this state, for example, a caulking protrusion (not shown) protruding from the upper end surface of the orifice member 46. Is inserted into a caulking hole formed in the lid member 48 and the front end side of the caulking projection is crushed, whereby the lid member 48 is caulked and fixed on the orifice member 46. By fixing the lid member 48 to the orifice member 46, the upper end side of the cylinder chamber 76 of the orifice member 46 is closed by the lid member 48. As shown in FIG. 5, the lid member 48 has a circular insertion hole 94 formed in the center thereof, and a plurality of fan-shaped holes (in the present embodiment) formed on the outer peripheral side of the insertion insertion hole 94. Then, four valve seat openings 96 are formed. These valve seat openings 96 are arranged so as to have a symmetrical positional relationship (point symmetry) about the axis S. Further, as shown in FIG. 5, the lid member 48 has a notch 98 formed on the outer periphery thereof so as to face the upper end side of the communication groove 66 of the orifice member 46. Thus, the shake groove 60 and the idle groove 64 communicate with the sub liquid chamber 44 via the communication groove 66 and the notch 98, respectively.

図5に示されるように。仕切金具36には、蓋部材48とプランジャ部材78との間に略円板状のホルダ部材100が配置されると共に、このホルダ部材100と蓋部材48との間に略円板状の弁体102が介装されている。ホルダ部材100には、図3に示されるように、その中央側に底の浅い有底円筒状とされた弁体ホルダ104が形成されると共に、この弁体ホルダ104の上端部から外周側へ延出する環状のフランジ部106が屈曲形成されている。このフランジ部106には、蓋部材48の切欠部98に面するように切欠部107が形成されている。またホルダ部材100には、弁体ホルダ104の底板部105の外周部にそれぞれ扇状に形成された複数個の連通開口108が穿設されている。底板部105の中央部には、円形の嵌挿穴112が形成されている。ここで、蓋部材48とホルダ部材100の底板部105との間には軸方向に沿った厚さが略一定とされた円板状の空間である弁体収納室114が形成され、この弁体収納室114内には弁体102が収納される。   As shown in FIG. The partition member 36 is provided with a substantially disc-shaped holder member 100 between the lid member 48 and the plunger member 78, and a substantially disc-shaped valve body between the holder member 100 and the lid member 48. 102 is interposed. As shown in FIG. 3, the holder member 100 is formed with a valve body holder 104 having a bottomed cylindrical shape having a shallow bottom at the center thereof, and from the upper end portion of the valve body holder 104 to the outer peripheral side. An extending annular flange portion 106 is bent. A notch 107 is formed in the flange 106 so as to face the notch 98 of the lid member 48. The holder member 100 is formed with a plurality of communication openings 108 each formed in a fan shape on the outer periphery of the bottom plate portion 105 of the valve body holder 104. A circular insertion hole 112 is formed at the center of the bottom plate portion 105. Here, a valve body storage chamber 114 is formed between the lid member 48 and the bottom plate portion 105 of the holder member 100, which is a disc-shaped space whose thickness along the axial direction is substantially constant. The valve body 102 is stored in the body storage chamber 114.

弁体102は、NR、NBR等のゴム組成物により成形されており、その上面側が平面状とされると共に、下面側が内周側から外周側へ向って上方へ僅かに傾斜するスロープ状に形成されており、軸方向に沿った肉厚が内周側から外周側へ向って徐々に薄くなっている。また弁体102には、上面中央部に円形凸状の突起部116が形成されると共に、下面中央部にも円形凸状の突起部118が形成されている。弁体102は、その上面側の突起部116を蓋部材48の嵌挿穴94内へ嵌挿すると共に、下面側の突起部118をホルダ部材100の嵌挿穴112内へ嵌挿している。これにより、弁体102は、ホルダ部材100及び蓋部材48と同軸的に位置決めされると共に、径方向への移動が拘束される。   The valve body 102 is molded from a rubber composition such as NR, NBR, etc., and the upper surface side is formed into a flat shape, and the lower surface side is formed in a slope shape slightly inclined upward from the inner peripheral side to the outer peripheral side. The thickness along the axial direction gradually decreases from the inner peripheral side toward the outer peripheral side. The valve body 102 has a circular convex protrusion 116 formed at the center of the upper surface and a circular convex protrusion 118 formed at the center of the lower surface. The valve body 102 has a projection 116 on the upper surface side inserted into the insertion insertion hole 94 of the lid member 48, and a projection 118 on the lower surface side inserted into the insertion insertion hole 112 of the holder member 100. Thereby, the valve body 102 is positioned coaxially with the holder member 100 and the lid member 48, and the movement in the radial direction is restricted.

弁体102は、突起部116,118の周縁部付近が蓋部材48とホルダ部材100の底板部105との間で軸方向に沿って圧縮されている。これにより、弁体102は、その上面部を所定の加圧力(予圧力)で蓋部材48の下面側へ圧接させると共に、蓋部材48とホルダ部材100との間で軸方向への移動が拘束される。弁体102は、圧縮状態となった部分の外周側の部分が下方へ向って撓み変形可能となっている。   The valve body 102 is compressed in the axial direction between the lid member 48 and the bottom plate portion 105 of the holder member 100 in the vicinity of the peripheral portions of the protrusions 116 and 118. As a result, the upper surface of the valve body 102 is brought into pressure contact with the lower surface side of the lid member 48 with a predetermined pressure (pre-pressure), and movement in the axial direction between the lid member 48 and the holder member 100 is restricted. Is done. In the valve body 102, a portion on the outer peripheral side of the compressed portion can be bent and deformed downward.

図3に示されるように、弁体102は、その外周端を径方向に沿って蓋部材48における弁座開口96の外周端よりも外周側に位置させ、かつホルダ部材100の連通開口108の外周端よりも内周側に位置させている。これにより、弁体102は、その上面部を蓋部材48に圧接させた弁座開口96を閉塞し、また、図3の2点鎖線で示されるように、外周側が下方へ撓み変形して蓋部材48から離間した状態(開状態)になると、弁座開口96が弁体収納室114を介して連通開口108に連通した状態となり、主液室42が弁体収納室114を通して仕切金具36内のシリンダ室76へ連通する。すなわち、弁体収納室114内に収納された弁体102、蓋部材48及びホルダ部材100は、主液室42とシリンダ室76との間で逆止弁128を構成しており、この逆止弁128は、主液室42からシリンダ室76(液圧空間130)内へのみ液体の流入を許容するが、液圧空間130から主液室42内への液体の流出を阻止する。   As shown in FIG. 3, the valve body 102 has its outer peripheral end positioned radially outside the outer peripheral end of the valve seat opening 96 in the lid member 48 along the radial direction, and of the communication opening 108 of the holder member 100. It is located on the inner peripheral side with respect to the outer peripheral end. As a result, the valve body 102 closes the valve seat opening 96 whose upper surface portion is pressed against the lid member 48, and the outer peripheral side is bent and deformed downward as shown by a two-dot chain line in FIG. When separated from the member 48 (open state), the valve seat opening 96 communicates with the communication opening 108 via the valve body storage chamber 114, and the main liquid chamber 42 passes through the valve body storage chamber 114 and enters the partition metal 36. The cylinder chamber 76 communicates with each other. That is, the valve body 102, the lid member 48, and the holder member 100 housed in the valve body housing chamber 114 constitute a check valve 128 between the main liquid chamber 42 and the cylinder chamber 76. The valve 128 allows inflow of liquid only from the main liquid chamber 42 into the cylinder chamber 76 (hydraulic pressure space 130), but prevents outflow of liquid from the hydraulic pressure space 130 into the main liquid chamber 42.

シリンダ室76のオリフィス空間132は、オリフィス部材46の複数の流通開口52を通して常に副液室44と連通している。またシリンダ室76の液圧空間130は、オリフィス部材46の中心部を貫通する液圧解放路126を通して副液室44と連通している。   The orifice space 132 of the cylinder chamber 76 is always in communication with the sub liquid chamber 44 through the plurality of flow openings 52 of the orifice member 46. The hydraulic space 130 of the cylinder chamber 76 communicates with the auxiliary fluid chamber 44 through a hydraulic pressure release passage 126 that penetrates the central portion of the orifice member 46.

図1に示されるように、防振装置10では、オリフィス部材46における連通溝66、シェイク溝60,62及びアイドル溝64の外周側がそれぞれ被覆部34を介して外筒部材12の内周面により閉塞される。これにより、シェイク溝60,62及びアイドル溝64内には、それぞれ周方向に沿って細長い空間が形成され、連通溝66、シェイク溝60,62及び連通穴66は、主液室42と副液室44とを互いに連通する第1の制限通路であるシェイクオリフィス122を形成する。また連通溝66、アイドル溝64と、オリフィス開口74を通してアイドル溝64に連通したオリフィス空間132は、主液室42と副液室44とを互いに連通する第2の制限通路であるアイドルオリフィス124を形成する。   As shown in FIG. 1, in the vibration isolator 10, the outer peripheral sides of the communication groove 66, the shake grooves 60 and 62, and the idle groove 64 in the orifice member 46 are respectively formed by the inner peripheral surface of the outer cylinder member 12 through the covering portion 34. Blocked. As a result, elongated spaces are formed along the circumferential direction in the shake grooves 60 and 62 and the idle groove 64, respectively. The communication groove 66, the shake grooves 60 and 62, and the communication hole 66 are formed in the main liquid chamber 42 and the auxiliary liquid. A shake orifice 122 which is a first restriction passage communicating with the chamber 44 is formed. The orifice space 132 communicated with the idle groove 64 through the communication groove 66, the idle groove 64, and the orifice opening 74 has an idle orifice 124 as a second restriction passage for communicating the main liquid chamber 42 and the sub liquid chamber 44 with each other. Form.

ここで、このシェイクオリフィス122は、入力振動のうち相対的に低周波域の振動であるシェイク振動(例えば、9〜15Hz)に対応するように、その路長及び断面積、すなわち液体の流通抵抗が設定(チューニング)されている。またアイドルオリフィス124は、その液体の流通抵抗がシェイクオリフィス122における液体の流通抵抗よりも小さくなっており、この流通抵抗(断面積及び路長)が入力振動のうち相対的に低周波域の振動であるアイドル振動(例えば、18〜30Hz)に対応するように設定(チューニング)されている。   Here, the shake orifice 122 has a path length and a cross-sectional area, that is, a liquid flow resistance so as to correspond to a shake vibration (for example, 9 to 15 Hz) which is a vibration in a relatively low frequency region of the input vibration. Is set (tuned). In addition, the flow resistance of the liquid in the idle orifice 124 is smaller than the flow resistance of the liquid in the shake orifice 122, and this flow resistance (cross-sectional area and path length) is a relatively low frequency vibration of the input vibration. Is set (tuned) so as to correspond to idle vibration (for example, 18 to 30 Hz).

防振装置10では、図4に示されるように、プランジャ部材78が閉塞位置へ移動(下降)すると、オリフィス部材46のオリフィス開口74がプランジャ部材78の外周面により閉塞され、アイドル溝64がオリフィス空間132と非連通状態となる。これにより、主液室42と副液室44とは、シェイクオリフィス122のみを通して互いに連通する。   In the vibration isolator 10, as shown in FIG. 4, when the plunger member 78 moves (lowers) to the closed position, the orifice opening 74 of the orifice member 46 is closed by the outer peripheral surface of the plunger member 78, and the idle groove 64 is formed in the orifice. The communication with the space 132 is not established. As a result, the main liquid chamber 42 and the sub liquid chamber 44 communicate with each other only through the shake orifice 122.

このとき、プランジャ部材78の外周面における下端側の領域を、軸方向に沿ってシリンダ室76の内周面におけるオリフィス開口74の下側の領域の内周側に位置(オーバラップ)させる。このとき、プランジャ部材78及びシリンダ室76の内周面とのオーバラップ量OL(図4参照)は、例えば、2.5〜3.0mm程度に設定される。このようにプランジャ部材78が閉塞位置にある状態で、プランジャ部材78とシリンダ室76の内周面とをオーバラップさせることにより、後述するように、振動入力時における液圧空間130内の液圧変化によりプランジャ部材78が軸方向に沿って微小振幅で振動しても、プランジャ部材78によりオリフィス開口74を確実に閉塞状態に維持できる。   At this time, the lower end side region on the outer peripheral surface of the plunger member 78 is positioned (overlapped) along the axial direction on the inner peripheral side of the region below the orifice opening 74 on the inner peripheral surface of the cylinder chamber 76. At this time, the overlap amount OL (see FIG. 4) with the plunger member 78 and the inner peripheral surface of the cylinder chamber 76 is set to about 2.5 to 3.0 mm, for example. In this state, the plunger member 78 and the inner peripheral surface of the cylinder chamber 76 are overlapped in the state where the plunger member 78 is in the closed position. Even if the plunger member 78 vibrates with a small amplitude along the axial direction due to the change, the orifice opening 74 can be reliably maintained in the closed state by the plunger member 78.

また防振装置10では、図3に示されるように、プランジャ部材78が開放位置へ移動(上昇)すると、プランジャ部材78がオリフィス開口74から離れてオリフィス開口74が開放され、アイドル溝64がオリフィス空間132と連通状態となる。これにより、主液室42と副液室44とは、シェイクオリフィス122及びアイドルオリフィス124の双方を通して連通するが、主液室42内の液圧が変化した際には、主液室42内から連通溝66内へ流入した液体は、シェイク溝60よりも液体の流通抵抗が小さいアイドル溝64内を通ってオリフィス空間132内へ優先的に流入し、またオリフィス開口74を通ってアイドル溝64内へ流入した液体も、アイドル溝64よりも液体の流通抵抗が小さい連通溝66内を優先的に通って主液室42内へ抜ける。これにより、防振装置10では、プランジャ部材78が開放位置にある場合、実質的にアイドルオリフィス124のみを通って主液室42と副液室44との間で液体が流通する。   In the vibration isolator 10, as shown in FIG. 3, when the plunger member 78 moves (rises) to the open position, the plunger member 78 is separated from the orifice opening 74, the orifice opening 74 is opened, and the idle groove 64 is formed in the orifice. The communication with the space 132 is established. As a result, the main liquid chamber 42 and the sub liquid chamber 44 communicate with each other through both the shake orifice 122 and the idle orifice 124. However, when the liquid pressure in the main liquid chamber 42 changes, the main liquid chamber 42 and the sub liquid chamber 44 start from the main liquid chamber 42. The liquid that has flowed into the communication groove 66 preferentially flows into the orifice space 132 through the idle groove 64 where the flow resistance of the liquid is smaller than that of the shake groove 60, and into the idle groove 64 through the orifice opening 74. The liquid that has flown into the main liquid chamber preferentially passes through the communication groove 66 having a liquid flow resistance smaller than that of the idle groove 64 and then flows into the main liquid chamber 42. Thereby, in the vibration isolator 10, when the plunger member 78 is in the open position, the liquid flows between the main liquid chamber 42 and the sub liquid chamber 44 substantially only through the idle orifice 124.

防振装置10では、コイルスプリング90の付勢力により閉塞位置にあるプランジャ部材78が開放位置側へ移動する際に、液圧解放路126を通して外部から閉じられた液圧空間130内の液体を副液室132内へ流出させつつ、プランジャ部材78を開放位置側へ移動させる。   In the vibration isolator 10, when the plunger member 78 in the closed position moves to the open position side by the urging force of the coil spring 90, the liquid in the hydraulic pressure space 130 closed from the outside through the hydraulic pressure release path 126 is subsidized. The plunger member 78 is moved to the open position side while flowing into the liquid chamber 132.

次に、本発明の実施形態に係る防振装置10の作用を説明する。   Next, the operation of the vibration isolator 10 according to the embodiment of the present invention will be described.

防振装置10では、例えば、車両におけるエンジンが作動すると、エンジンが発生した振動が取付金具20を介してゴム弾性体24に伝達され、ゴム弾性体24が弾性変形する。このとき、ゴム弾性体24は吸振主体として作用し、ゴム弾性体24の内部摩擦等に基づく吸振作用によって振動が吸収され、外筒部材12を介して車体側へ伝達される振動が低減される。また自動車等の車両では、アイドリング運転時にエンジンが相対的に高周波域の振動であるアイドル振動を発生し、また所定速度以上での走行時にはエンジンが相対的に低周波域の振動であるシェイク振動を発生する。   In the vibration isolator 10, for example, when an engine in a vehicle is operated, vibration generated by the engine is transmitted to the rubber elastic body 24 via the mounting bracket 20, and the rubber elastic body 24 is elastically deformed. At this time, the rubber elastic body 24 acts as a vibration-absorbing main body, and the vibration is absorbed by the vibration-absorbing action based on the internal friction or the like of the rubber elastic body 24, and the vibration transmitted to the vehicle body side through the outer cylinder member 12 is reduced. . In vehicles such as automobiles, the engine generates idle vibrations that are relatively high-frequency vibrations during idling, and the engine generates shake vibrations that are relatively low-frequency vibrations when traveling at a predetermined speed or higher. appear.

また防振装置10では、プランジャ部材78が、シリンダ室76の液圧空間130内の液圧によりコイルスプリング90の付勢力に抗して開放位置から閉塞位置に移動するとオリフィス開口74を閉塞させ、コイルスプリング90の付勢力により閉塞位置から開放位置へ復帰するとオリフィス開口74を開放することから、開放位置にあったプランジャ部材78が、逆止弁128を通して主液室42から液圧空間130内へ供給される液圧により閉塞位置へ移動すると、ゴム弾性体24の弾性変形に伴って、シェイクオリフィス122のみを通って主液室42と副液室44との間を液体が行き来し、また閉塞位置にあったプランジャ部材78が、コイルスプリング90の付勢力により開放位置へ復帰すると、シェイクオリフィス122及びアイドルオリフィス124の双方が開放された状態となるが、ゴム弾性体の弾性変形に伴って、液体の流通抵抗が相対的に小さいアイドルオリフィス124を優先的に通って主液室42と副液室44との間を液体が行き来する。   In the vibration isolator 10, when the plunger member 78 moves from the open position to the closed position against the urging force of the coil spring 90 by the hydraulic pressure in the hydraulic space 130 of the cylinder chamber 76, the orifice opening 74 is closed, When returning from the closed position to the open position by the biasing force of the coil spring 90, the orifice opening 74 is opened, so that the plunger member 78 in the open position passes from the main liquid chamber 42 into the hydraulic pressure space 130 through the check valve 128. When moved to the closing position by the supplied hydraulic pressure, the liquid moves back and forth between the main liquid chamber 42 and the sub liquid chamber 44 through only the shake orifice 122 with the elastic deformation of the rubber elastic body 24, and is also blocked. When the plunger member 78 at the position returns to the open position by the biasing force of the coil spring 90, the shake orifice 122 and the arm Both of the dollar orifices 124 are opened, but with the elastic deformation of the rubber elastic body, the main liquid chamber 42 and the sub liquid chamber preferentially pass through the idle orifice 124 having a relatively small flow resistance of the liquid. Liquid goes back and forth between 44 and 44.

すなわち、防振装置10では、相対的に周波数が低く振幅が大きいシェイク振動が入力した場合には、このシェイク振動によってゴム弾性体24が弾性変形し、主液室42内に相対的に大きな液圧変化が生じると共に、主液室42内の周期的な液圧上昇時に逆止弁128を通して主液室42から液圧空間130へ液体が流入して、液圧空間130内の液圧も主液室42内の上昇時の液圧と略平衡する平衡圧まで上昇する。   That is, in the vibration isolator 10, when a shake vibration having a relatively low frequency and a large amplitude is input, the rubber elastic body 24 is elastically deformed by the shake vibration, and a relatively large liquid is contained in the main liquid chamber 42. As the pressure changes, the liquid flows from the main fluid chamber 42 into the hydraulic pressure space 130 through the check valve 128 when the hydraulic pressure in the main fluid chamber 42 periodically increases, and the hydraulic pressure in the hydraulic pressure space 130 is also main. The pressure in the liquid chamber 42 rises to an equilibrium pressure that is substantially in equilibrium with the rising liquid pressure.

ここで、防振装置10では、コイルスプリング90の付勢力がシェイク振動の入力時の液圧空間130内の液圧(平衡圧)に対応する値よりも小さく設定されており、これにより、シェイク振動の入力時には、プランジャ部材78がコイルスプリングの付勢力に抗して開放位置から閉塞位置側へ間欠的に移動し、液圧空間130内の液圧により閉塞位置へ保持される。   Here, in the vibration isolator 10, the urging force of the coil spring 90 is set to be smaller than the value corresponding to the hydraulic pressure (equilibrium pressure) in the hydraulic pressure space 130 when the shake vibration is input. When vibration is input, the plunger member 78 moves intermittently from the open position to the closed position against the biasing force of the coil spring, and is held at the closed position by the hydraulic pressure in the hydraulic pressure space 130.

従って、防振装置10では、シェイク振動の入力時には、ゴム弾性体24の弾性変形に伴って、シェイクオリフィス122のみを通して主液室42と副液室44の間を液体が行き来することから、このシェイクオリフィスを通過する液体の粘性抵抗や圧力損失により入力振動(低周波域振動)を吸収できるので、エンジン側から車体側へ伝達されるシェイク振動を低減できる。   Therefore, in the vibration isolator 10, when the shake vibration is input, the liquid moves back and forth between the main liquid chamber 42 and the sub liquid chamber 44 only through the shake orifice 122 in accordance with the elastic deformation of the rubber elastic body 24. Since the input vibration (low frequency range vibration) can be absorbed by the viscous resistance and pressure loss of the liquid passing through the shake orifice, the shake vibration transmitted from the engine side to the vehicle body side can be reduced.

このとき、シェイクオリフィス122における液体の流通抵抗がシェイク振動の周波数及び振幅に対応するように設定(チューニング)されていることから、シェイクオリフィス122を通って主液室42と副液室44との間を行き来する液体に共振現象(液柱共振)が生じ、この液柱共振の作用によってシェイク振動を特に効果的に吸収できる。   At this time, the flow resistance of the liquid in the shake orifice 122 is set (tuned) so as to correspond to the frequency and amplitude of the shake vibration, so that the main liquid chamber 42 and the sub liquid chamber 44 pass through the shake orifice 122. A resonance phenomenon (liquid column resonance) occurs in the liquid flowing back and forth, and shake vibration can be absorbed particularly effectively by the action of the liquid column resonance.

また防振装置10では、相対的に周波数が高く振幅が小さいアイドル振動が入力した場合には、このアイドル振動によってゴム弾性体24が弾性変形すると共に、主液室42内に相対的に小さな液圧変化が生じることから、この場合にも、主液室42内の周期的な液圧上昇時に逆止弁128を通して主液室42から液圧空間へ液体が流入して、液圧空間130内の液圧が上昇して主液室42内の上昇時の液圧(最高値)と略平衡する平衡圧まで達する。   In the vibration isolator 10, when idle vibration having a relatively high frequency and a small amplitude is input, the rubber elastic body 24 is elastically deformed by the idle vibration and a relatively small liquid is contained in the main liquid chamber 42. In this case as well, since the pressure changes, the liquid flows from the main fluid chamber 42 into the hydraulic pressure space through the check valve 128 when the hydraulic pressure in the main fluid chamber 42 periodically rises. Of the main liquid chamber 42 reaches an equilibrium pressure that is substantially in equilibrium with the hydraulic pressure (maximum value) at the time of ascent in the main liquid chamber 42.

ただし、防振装置10では、コイルスプリング90の付勢力がアイドル振動の入力時における液圧空間130内の平衡圧に対応する値よりも大きく設定されており、これにより、プランジャ部材78が開放位置にあるときには、コイルスプリング90の付勢力により開放位置に保持され、また閉塞位置にある場合には、コイルスプリング90の付勢力により閉塞位置から開放位置へ移動(復帰)する。   However, in the vibration isolator 10, the urging force of the coil spring 90 is set to be larger than the value corresponding to the equilibrium pressure in the hydraulic pressure space 130 at the time of input of idle vibration, whereby the plunger member 78 is opened. When the coil spring 90 is in the closed position, the coil spring 90 is held at the open position. When the coil spring 90 is in the closed position, the coil spring 90 is moved (returned) from the closed position to the open position.

従って、防振装置10では、アイドル振動の入力時には、ゴム弾性体24の弾性変形に伴って、シェイクオリフィス122に対して液体の流通抵抗が小さいアイドルオリフィス124を優先的に通って主液室42と副液室44との間を液体が行き来することから、このアイドルオリフィス124を流通する液体の粘性抵抗や圧力損失等により入力振動(アイドル振動)を吸収できるので、エンジン側から車体側へ伝達されるアイドル振動を低減できる。   Therefore, in the vibration isolator 10, when the idle vibration is input, the main liquid chamber 42 preferentially passes through the idle orifice 124 having a small liquid flow resistance with respect to the shake orifice 122 in accordance with the elastic deformation of the rubber elastic body 24. Since the liquid flows back and forth between the gas and the auxiliary liquid chamber 44, the input vibration (idle vibration) can be absorbed by the viscous resistance and pressure loss of the liquid flowing through the idle orifice 124, so that the vibration is transmitted from the engine side to the vehicle body side. Can reduce idle vibration.

このとき、アイドルオリフィス124における液体の流通抵抗がアイドル振動の周波数及び振幅に対応するように設定(チューニング)されていることから、アイドルオリフィス124を通って主液室42と副液室44との間を行き来する液体に共振現象(液柱共振)が生じ、この液柱共振の作用によってアイドル振動を特に効果的に吸収できる。   At this time, since the flow resistance of the liquid in the idle orifice 124 is set (tuned) so as to correspond to the frequency and amplitude of the idle vibration, the main liquid chamber 42 and the sub liquid chamber 44 pass through the idle orifice 124. A resonance phenomenon (liquid column resonance) occurs in the liquid flowing back and forth, and idle vibration can be absorbed particularly effectively by the action of the liquid column resonance.

この結果、防振装置10によれば、電磁ソレノイドや空圧ソレノイド等の外部からの制御及び動力供給を受けて作動するバルブ機構を用いることなく、主液室42と副液室44とを連通するオリフィスを、入力振動の周波数に応じて、シェイクオリフィス122及びアイドルオリフィス124の何れか一方に、主液室42内の液圧変化を駆動力として用い切り換えることができる。   As a result, according to the vibration isolator 10, the main liquid chamber 42 and the sub liquid chamber 44 are communicated with each other without using a valve mechanism that operates in response to external control and power supply such as an electromagnetic solenoid or a pneumatic solenoid. The orifice to be switched can be switched to either the shake orifice 122 or the idle orifice 124 according to the frequency of the input vibration, using the change in the hydraulic pressure in the main liquid chamber 42 as the driving force.

また防振装置10では、液圧空間130を副液室44へ連通させた液圧解放路126が、プランジャ部材78が開放位置側へ移動する際には、内部を流通する液体の流通量を制限しつつ、液圧空間130内の液体を副液室44内へ流出させることにより、アイドル振動の入力時に、プランジャ部材78がコイルスプリング90の付勢力により閉塞位置から開放位置へ移動(復帰)する際に、プランジャ部材78からの圧縮力を受けた液圧空間内の液体が液圧解放路126を通して副液室44内へ流出し、液圧空間130内の液圧の上昇が抑制されることから、プランジャ部材78に移動抵抗として作用する液圧空間130内の液圧を低い状態に維持できるので、プランジャ部材78をコイルスプリング90の付勢力により円滑に閉塞位置から開放位置側まで移動させることができる。   Further, in the vibration isolator 10, when the plunger member 78 moves to the open position side, the fluid pressure release path 126 that connects the fluid pressure space 130 to the sub fluid chamber 44 reduces the amount of fluid flowing therethrough. By restricting the liquid in the hydraulic space 130 into the sub liquid chamber 44 while restricting, the plunger member 78 is moved (returned) from the closed position to the open position by the biasing force of the coil spring 90 when the idle vibration is input. In doing so, the liquid in the hydraulic pressure space that has received the compressive force from the plunger member 78 flows out into the auxiliary fluid chamber 44 through the hydraulic pressure release passage 126, and the increase in the hydraulic pressure in the hydraulic pressure space 130 is suppressed. As a result, the hydraulic pressure in the hydraulic pressure space 130 acting as a movement resistance on the plunger member 78 can be maintained at a low level. It can be moved to the release position side.

またシェイク振動の入力時にも、液圧解放路126を通して液圧空間130内の液体が副液室44内へ流出することになるが、入力振動に同期して開放位置から閉塞位置まで間欠的に移動するプランジャ部材78の単位時間当りの移動量(移動速度)に対する、液圧空間130内から副液室44内への単位時間当りの液体の流出量(流出速度)が十分に小さくなるように、液圧解放路126内を流通する液体に対する流通抵抗を設定しておけば、入力振動(低周波域振動)に同期させてプランジャ部材78を確実に開放位置から閉塞位置へ移動させることができる。   Further, even when shake vibration is input, the liquid in the hydraulic pressure space 130 flows out into the sub liquid chamber 44 through the hydraulic pressure release passage 126, but intermittently from the open position to the closed position in synchronization with the input vibration. The outflow amount (outflow speed) of liquid per unit time from the hydraulic pressure space 130 into the sub liquid chamber 44 with respect to the movement amount (movement speed) of the plunger member 78 that moves is sufficiently small. If the flow resistance for the liquid flowing through the fluid pressure release path 126 is set, the plunger member 78 can be reliably moved from the open position to the closed position in synchronization with the input vibration (low frequency vibration). .

また防振装置10では、図3に示されるように、液圧解放路126が軸方向に沿って主液室42及び副液室よりも内側に配設されている。これにより、液圧解放路126が形成されたガイドロッド57が軸方向に沿って主液室42及び副液室44内へ突出することを防止できるので、ガイドロッド57との干渉を避けるために主液室42及び副液室44に軸方向に沿って余分なスペースを確保する必要がなくなり、ガイドロッド57に液圧解放路126を形成したことによる装置サイズの大型化を防止できる。   Further, in the vibration isolator 10, as shown in FIG. 3, the hydraulic pressure release path 126 is disposed inside the main liquid chamber 42 and the sub liquid chamber along the axial direction. As a result, the guide rod 57 in which the hydraulic pressure release path 126 is formed can be prevented from protruding into the main liquid chamber 42 and the sub liquid chamber 44 along the axial direction, so that interference with the guide rod 57 can be avoided. It is not necessary to secure an extra space along the axial direction in the main liquid chamber 42 and the sub liquid chamber 44, and an increase in the apparatus size due to the formation of the hydraulic pressure release path 126 in the guide rod 57 can be prevented.

また防振装置10では、液圧解放路126が形成されたガイドロッド57を仕切金具36におけるオリフィス部材46と一体的に形成したことにより、液圧解放路126を設けても装置の構成部品が増加せず、装置構造や組立て作業が複雑になることを防止できる。   Further, in the vibration isolator 10, since the guide rod 57 in which the hydraulic pressure release path 126 is formed is formed integrally with the orifice member 46 in the partition metal fitting 36, the component parts of the apparatus can be provided even if the hydraulic pressure release path 126 is provided. It does not increase, and it is possible to prevent the device structure and assembly work from becoming complicated.

(第2の実施形態)
図6及び図7には本発明の第2の実施形態に係る防振装置が示されている。なお、本実施形態に係る防振装置140において、第1の実施形態に係る防振装置10と同一の部分には同一符号を付して説明を省略する。
(Second Embodiment)
6 and 7 show a vibration isolator according to a second embodiment of the present invention. In the vibration isolator 140 according to this embodiment, the same parts as those of the vibration isolator 10 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

本実施形態に係る防振装置140が第1の実施形態に係る防振装置10と異なる点は、液圧解放路142がオリフィス部材46の内周面に設けられている点である。すなわち、図7に示されるように、オリフィス部材46の内周面には、軸方向に沿って断面半円状の液圧解放路142が形成されており、この液圧解放路142は、その下端側がオリフィス部材46の底板部50により閉塞されると共に、上端側がホルダ部材100のフランジ部106により閉塞されている。   The vibration isolator 140 according to the present embodiment is different from the vibration isolator 10 according to the first embodiment in that a hydraulic pressure release path 142 is provided on the inner peripheral surface of the orifice member 46. That is, as shown in FIG. 7, a fluid pressure release path 142 having a semicircular cross section along the axial direction is formed on the inner peripheral surface of the orifice member 46. The lower end side is closed by the bottom plate portion 50 of the orifice member 46, and the upper end side is closed by the flange portion 106 of the holder member 100.

液圧解放路142は、その内周側がプランジャ部材78の下端側に設けられた大径部83の外周面により閉塞される。この大径部83の外径は、シリンダ室76の内径よりも僅かに小さくなっている。これにより、液圧空間130は、液圧解放路142及びオリフィス空間132を通して常に副液室44に連通する。ここで、液圧解放路142には、その内部を流通する液体の流通抵抗が第1の実施形態に係る液圧解放路126の液体の流通抵抗と略等しくなるように、その断面積及び路長が設定されている。   The hydraulic pressure release path 142 is closed on the inner peripheral side by the outer peripheral surface of the large diameter portion 83 provided on the lower end side of the plunger member 78. The outer diameter of the large diameter portion 83 is slightly smaller than the inner diameter of the cylinder chamber 76. As a result, the hydraulic pressure space 130 always communicates with the auxiliary fluid chamber 44 through the hydraulic pressure release path 142 and the orifice space 132. Here, the hydraulic pressure release path 142 has a cross-sectional area and a path so that the flow resistance of the liquid flowing through the inside thereof is substantially equal to the flow resistance of the liquid in the hydraulic pressure release path 126 according to the first embodiment. The length is set.

次に、本発明の実施形態に係る防振装置140の作用を説明する。   Next, the operation of the vibration isolator 140 according to the embodiment of the present invention will be described.

防振装置140でも、第1の実施形態に係る防振装置10と同様に、電磁ソレノイドや空圧ソレノイド等の外部からの制御及び動力供給を受けて作動するバルブ機構を用いることなく、主液室42と副液室44とを連通するオリフィスを、入力振動の周波数に応じて、シェイクオリフィス122及びアイドルオリフィス124の何れか一方に、主液室42内の液圧変化を駆動力として用い切り換えることができるので、エンジン側から入力するシェイク振動及びアイドル振動の双方をそれぞれ効果的に減衰吸収し、車体側へ伝達される振動を低減できる。   Similarly to the vibration isolator 10 according to the first embodiment, the vibration isolator 140 also uses the main fluid without using a valve mechanism that operates by receiving external control and power supply such as an electromagnetic solenoid or a pneumatic solenoid. The orifice communicating the chamber 42 and the sub liquid chamber 44 is switched to either the shake orifice 122 or the idle orifice 124 using the change in the liquid pressure in the main liquid chamber 42 as a driving force in accordance with the frequency of the input vibration. Therefore, both the shake vibration and the idle vibration input from the engine side can be effectively attenuated and absorbed, and the vibration transmitted to the vehicle body side can be reduced.

また防振装置140では、液圧空間130を副液室44へ連通させた液圧解放路142が、プランジャ部材78が開放位置側へ移動する際には、内部を流通する液体の流通量を制限しつつ、液圧空間130内の液体を副液室44と連通したオリフィス空間132内へ流出させることにより、アイドル振動の入力時に、プランジャ部材78がコイルスプリング90の付勢力により閉塞位置から開放位置へ移動(復帰)する際に、プランジャ部材78からの圧縮力を受けた液圧空間内の液体が液圧解放路142及びオリフィス空間132を通して副液室44内へ流出し、液圧空間130内の液圧の上昇が抑制されることから、プランジャ部材78に移動抵抗として作用する液圧空間130内の液圧を低い状態に維持できるので、プランジャ部材78をコイルスプリング90の付勢力により円滑に閉塞位置から開放位置側まで移動させることができる。   Further, in the vibration isolator 140, when the plunger member 78 moves to the open position side, the hydraulic pressure release path 142 that communicates the hydraulic pressure space 130 to the sub liquid chamber 44 reduces the flow rate of the liquid flowing inside. By restricting the liquid in the hydraulic pressure space 130 into the orifice space 132 communicating with the sub liquid chamber 44, the plunger member 78 is released from the closed position by the biasing force of the coil spring 90 when the idle vibration is input. When moving (returning) to the position, the liquid in the hydraulic pressure space that receives the compressive force from the plunger member 78 flows out into the auxiliary liquid chamber 44 through the hydraulic pressure release path 142 and the orifice space 132, and the hydraulic pressure space 130. Since the increase in the hydraulic pressure inside is suppressed, the hydraulic pressure in the hydraulic pressure space 130 that acts as a movement resistance on the plunger member 78 can be maintained at a low level, so that the plunger member 7 It can be moved from smoothly closed position by the urging force of the coil spring 90 to the open position.

またシェイク振動の入力時にも、液圧解放路142を通して液圧空間130内の液体が副液室44内へ流出することになるが、入力振動に同期して開放位置から閉塞位置まで間欠的に移動するプランジャ部材78の単位時間当りの移動量(移動速度)に対する、液圧空間130内から副液室44内への単位時間当りの液体の流出量(流出速度)が十分に小さくなるように、液圧解放路142内を流通する液体に対する流通抵抗を設定しておけば、入力振動(低周波域振動)に同期させてプランジャ部材78を確実に開放位置から閉塞位置へ移動させることができる。   Even when shake vibration is input, the liquid in the hydraulic pressure space 130 flows out into the auxiliary liquid chamber 44 through the hydraulic pressure release path 142, but intermittently from the open position to the closed position in synchronization with the input vibration. The outflow amount (outflow speed) of liquid per unit time from the hydraulic pressure space 130 into the sub liquid chamber 44 with respect to the movement amount (movement speed) of the plunger member 78 that moves is sufficiently small. If the flow resistance for the liquid flowing through the fluid pressure release path 142 is set, the plunger member 78 can be reliably moved from the open position to the closed position in synchronization with the input vibration (low frequency vibration). .

また防振装置10では、図3に示されるように、液圧解放路142が軸方向に沿って主液室42及び副液室よりも内側に配設されている。これにより、第1の実施形態に係る防振装置10と同様に、液圧解放路142が軸方向に沿って主液室42及び副液室44内へ突出することを防止できるので、ガイドロッド57との干渉を避けるために主液室42及び副液室44に軸方向に沿って余分なスペースを確保する必要がなくなり、液圧解放路126を設けたことによる装置サイズの大型化を防止できる。   Further, in the vibration isolator 10, as shown in FIG. 3, the hydraulic pressure release path 142 is disposed inside the main liquid chamber 42 and the sub liquid chamber along the axial direction. As a result, similar to the vibration isolator 10 according to the first embodiment, the hydraulic pressure release path 142 can be prevented from projecting into the main liquid chamber 42 and the sub liquid chamber 44 along the axial direction. In order to avoid interference with 57, it is not necessary to secure an extra space along the axial direction in the main liquid chamber 42 and the sub liquid chamber 44, and an increase in the apparatus size due to the provision of the hydraulic pressure release passage 126 is prevented. it can.

また、本実施形態についての以上の説明では、図7に示されるように、液圧解放路142をオリフィス部材46の内周面に形成したものとして説明したが、図8(A)に示されるように、このような液圧解放路144は、プランジャ部材78における大径部83の外周面に沿って形成しても良い。この場合には、液圧解放路144の外周側はシリンダ室76の内周面により閉塞され、液圧空間130は、液圧解放路144及びオリフィス空間132を通して副液室44に連通する。また図8(B)に示されるように、このような液圧解放路146は、プランジャ部材78における上端面と下端面との間を貫通するように形成しても良い。この場合にも、液圧空間130は液圧解放路146を通して副液室44に連通する。   In the above description of the present embodiment, as shown in FIG. 7, the hydraulic pressure release path 142 is described as being formed on the inner peripheral surface of the orifice member 46, but FIG. As described above, such a hydraulic pressure release path 144 may be formed along the outer peripheral surface of the large-diameter portion 83 of the plunger member 78. In this case, the outer peripheral side of the hydraulic pressure release path 144 is closed by the inner peripheral surface of the cylinder chamber 76, and the hydraulic pressure space 130 communicates with the auxiliary liquid chamber 44 through the hydraulic pressure release path 144 and the orifice space 132. Further, as shown in FIG. 8B, such a hydraulic pressure release path 146 may be formed so as to penetrate between the upper end surface and the lower end surface of the plunger member 78. Also in this case, the hydraulic space 130 communicates with the auxiliary fluid chamber 44 through the hydraulic pressure release path 146.

以上説明した本実施形態に係る防振装置140によれば、第1の実施形態に係る防振装置10のように細長いガイドロッド57の中心部に液圧解放路126を貫通させる場合と比較し、液圧解放路142,144,146を形成するための加工作業が簡単になり、液圧解放路142,144,146を設けたことによる装置の製造工程の複雑化を回避できる。   According to the vibration isolator 140 according to the present embodiment described above, as compared with the case where the hydraulic pressure release path 126 is penetrated through the center of the elongated guide rod 57 as in the vibration isolator 10 according to the first embodiment. The machining operation for forming the hydraulic pressure release paths 142, 144, and 146 is simplified, and the manufacturing process of the apparatus due to the provision of the hydraulic pressure release paths 142, 144, and 146 can be avoided.

なお、本実施形態に係る防振装置10,140では、2本のオリフィス(第1の制限通路及び第2の制限通路)の一方をシェイク振動に対応するシェイクオリフィス122とし、他方をアイドル振動に対応するアイドルオリフィス124としたが、2本の第1の制限通路及び第2の制限通路を必ずしもシェイク振動及びアイドル振動に対応させる必要はなく、第1の制限通路が相対的に低い周波域の振動に対応するものとなり、第2の制限通路が相対的に高い周波域の振動に対応するものとなれば良い。また防振装置10では、取付金具20をエンジン側に連結すると共に、外筒部材12を車体側に連結するように構成したが、これとは逆に、取付金具20を車体側に連結すると共に、外筒部材12をエンジン側に連結するようにしても良い。   In the vibration isolators 10 and 140 according to the present embodiment, one of the two orifices (the first restriction passage and the second restriction passage) is a shake orifice 122 corresponding to shake vibration, and the other is idle vibration. Although the corresponding idle orifice 124 is used, the two first restriction passages and the second restriction passage need not necessarily correspond to the shake vibration and the idle vibration, and the first restriction passage has a relatively low frequency range. It is only necessary to correspond to vibration, and the second restriction path may correspond to vibration in a relatively high frequency range. Further, in the vibration isolator 10, the mounting bracket 20 is connected to the engine side and the outer cylinder member 12 is connected to the vehicle body side. On the contrary, the mounting bracket 20 is connected to the vehicle body side. The outer cylinder member 12 may be connected to the engine side.

また本実施形態に係る防振装置10では、主液室42内の液圧上昇時に逆止弁128を通して液体を主液室42から液圧空間130内へ供給し、この液圧空間130内の液圧を主液室42の液圧上限値に対応する平衡圧に上昇させ、シェイク振動の入力時に、液圧空間130の液圧(正圧)によりプランジャ部材78を開放位置から閉塞位置へ移動させていたが、これとは逆に、逆止弁を液圧空間130から主液室42へのみ液体が流出させ得るように構成し、主液室42内の液圧低下時に、この逆止弁を通して液体を液圧空間130から主液室42内へ流出させることにより、液圧空間130内の液圧を主液室42の液圧下限値に対応する平衡圧まで低下させ、シェイク振動の入力時に、液圧空間130の液圧(負圧)によりプランジャ部材78を開放位置から閉塞位置へ移動させるようにして良い。   Further, in the vibration isolator 10 according to the present embodiment, liquid is supplied from the main fluid chamber 42 into the hydraulic space 130 through the check valve 128 when the hydraulic pressure in the main fluid chamber 42 increases, The hydraulic pressure is increased to an equilibrium pressure corresponding to the upper limit value of the hydraulic pressure in the main fluid chamber 42, and the plunger member 78 is moved from the open position to the closed position by the hydraulic pressure (positive pressure) in the hydraulic pressure space 130 when a shake vibration is input. However, on the contrary, the check valve is configured so that the liquid can flow only from the hydraulic space 130 to the main liquid chamber 42, and this check valve is used when the hydraulic pressure in the main liquid chamber 42 is reduced. By letting the liquid flow out from the hydraulic pressure space 130 into the main fluid chamber 42 through the valve, the hydraulic pressure in the hydraulic pressure space 130 is lowered to an equilibrium pressure corresponding to the lower limit value of the hydraulic pressure in the main fluid chamber 42, and shake vibration is generated. At the time of input, the plunger is driven by the hydraulic pressure (negative pressure) of the hydraulic pressure space 130. 78 may be so moved from the open position to the closed position.

本発明の第1の実施形態に係る防振装置の構成を示す軸方向に沿った断面図であり、プランジャ部材が開放位置にある状態を示している。It is sectional drawing along the axial direction which shows the structure of the vibration isolator which concerns on the 1st Embodiment of this invention, and has shown the state which has a plunger member in an open position. 図1に示される防振装置の構成を示す軸方向に沿った断面図であり、プランジャ本体が閉塞位置にある状態を示している。It is sectional drawing along the axial direction which shows the structure of the vibration isolator shown by FIG. 1, and has shown the state which has a plunger main body in the obstruction | occlusion position. 図1に示される防振装置における仕切金具及びプランジャ部材の構成を示す断面図であり、プランジャ部材が開放位置にある状態を示している。It is sectional drawing which shows the structure of the partition metal fitting and plunger member in the vibration isolator shown by FIG. 1, and has shown the state which has a plunger member in an open position. 図1に示される防振装置における仕切金具及びプランジャ部材の構成を示す断面図であり、プランジャ部材が閉塞位置にある状態を示している。It is sectional drawing which shows the structure of the partition metal fitting and plunger member in the vibration isolator shown by FIG. 1, and has shown the state which has a plunger member in a obstruction | occlusion position. 図1に示される防振装置における仕切金具及びプランジャ部材の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the partition metal fitting and plunger member in the vibration isolator shown by FIG. 本発明に第2の実施形態に係る防振装置の構成を示す軸方向に沿った断面図であり、プランジャ部材が開放位置にある状態を示している。It is sectional drawing along the axial direction which shows the structure of the vibration isolator which concerns on 2nd Embodiment to this invention, and has shown the state which has a plunger member in an open position. 図6に示される防振装置におけるオリフィス部材の構成を示す斜視図である。It is a perspective view which shows the structure of the orifice member in the vibration isolator shown by FIG. 図6に示される防振装置に適用可能なプランジャ部材の他の例を示す斜視図である。It is a perspective view which shows the other example of the plunger member applicable to the vibration isolator shown by FIG.

符号の説明Explanation of symbols

10 防振装置
12 外筒部材(第1の取付部材)
20 取付金具(第2の取付部材)
24 ゴム弾性体(弾性体)
36 仕切金具(支持部材)
40 ダイヤフラム
42 主液室
44 副液室
70 共用オリフィス部
72 専用オリフィス部
74 オリフィス開口
76 シリンダ室
78 プランジャ部材
79 エッジ部
90 コイルスプリング(付勢部材)
102 弁体
122 シェイクオリフィス(第1の制限通路)
124 アイドルオリフィス(第2の制限通路)
126 液圧解放路
128 逆止弁
130 液圧空間
132 オリフィス空間
140 防振装置
142 液圧解放路
144 液圧解放路
146 液圧解放路
10 Vibration isolator 12 Outer cylinder member (first mounting member)
20 Mounting bracket (second mounting member)
24 Rubber elastic body (elastic body)
36 Partition bracket (support member)
40 Diaphragm 42 Main liquid chamber 44 Sub liquid chamber 70 Common orifice portion 72 Dedicated orifice portion 74 Orifice opening 76 Cylinder chamber 78 Plunger member 79 Edge portion 90 Coil spring (biasing member)
102 Valve body 122 Shake orifice (first restriction passage)
124 Idle orifice (second restricted passage)
126 Hydraulic pressure release path 128 Check valve 130 Hydraulic pressure space 132 Orifice space 140 Vibration isolator 142 Hydraulic pressure release path 144 Hydraulic pressure release path 146 Hydraulic pressure release path

Claims (2)

振動発生部及び振動受け部の一方に連結される第1の取付部材と、
振動発生部及び振動受け部の他方に連結される第2の取付部材と、
前記第1の取付部材と前記第2の取付部材との間に配置された弾性体と、
前記弾性体を隔壁の一部として液体が封入され、該弾性体の弾性変形に伴って内容積が変化する主液室と、
液体が封入され内容積が拡縮可能とされた副液室と、
前記主液室と前記副液室とを互いに連通する第1の制限通路と、
前記主液室と前記副液室とを互いに連通し、前記第1の制限通路よりも液体の流通抵抗が小さい第2の制限通路と、
前記主液室と前記副液室との間に設けられ、液体が封入されたシリンダ室と、
前記シリンダ室内を、前記第2の制限通路の一部を構成すると共に前記副液室に連通したオリフィス空間と前記第2の制限通路から隔離された液圧空間とに区画し、前記オリフィス空間及び前記液圧空間の拡縮方向に沿って所定の開放位置と閉塞位置との間で移動可能とされたプランジャ部材と、
前記オリフィス空間内に面するように設けられ、前記第2の制限通路における該オリフィス空間と他の部分とを連通させるオリフィス開口と、
前記プランジャ部材を、前記液圧空間を縮小する前記開放位置側へ付勢する付勢部材と、
前記主液室と前記液圧空間との間に配置され、前記主液室内の液圧変化に伴って該主液室と前記液圧空間との間で一方向へのみ液体を流通させ得る逆止弁と、
前記液圧空間を前記副液室へ連通させると共に、前記拡縮方向に沿って前記主液室及び前記副液室よりも内側に配設され、前記プランジャ部材が前記付勢部材の付勢力により前記開放位置側へ移動する際に、内部を流通する液体の流通量を制限しつつ、前記液圧空間内の液体を流出させる液圧解放路と、を有し、
前記シリンダ室内に前記拡縮方向に沿って延在すると共に、前記プランジャ部材に前記拡縮方向に沿って貫通するように設けられた軸受穴に相対的に摺動可能に挿入されるガイド軸を設け、
前記液圧解放路を前記ガイド軸に前記拡縮方向に沿って貫通するように形成し、
前記プランジャ部材が、前記付勢部材の付勢力により前記開放位置へ移動すると、前記オリフィス開口を開放し、前記液圧空間内の液圧により前記付勢部材の付勢力に抗して前記前記閉塞位置に移動すると、前記オリフィス開口を閉塞させることを特徴とする防振装置。
A first attachment member coupled to one of the vibration generator and the vibration receiver;
A second attachment member coupled to the other of the vibration generating portion and the vibration receiving portion;
An elastic body disposed between the first mounting member and the second mounting member;
A main liquid chamber in which a liquid is sealed with the elastic body as a part of a partition wall, and the internal volume changes with elastic deformation of the elastic body;
A secondary liquid chamber in which liquid is enclosed and the internal volume can be expanded and contracted;
A first restricting passage communicating the main liquid chamber and the sub liquid chamber with each other;
A second restricting passage that connects the main liquid chamber and the sub liquid chamber to each other, and has a smaller flow resistance of the liquid than the first restricting passage;
A cylinder chamber provided between the main liquid chamber and the sub-liquid chamber and enclosing a liquid;
The cylinder chamber is partitioned into an orifice space that constitutes a part of the second restriction passage and communicates with the sub liquid chamber and a hydraulic space that is isolated from the second restriction passage, and the orifice space and A plunger member capable of moving between a predetermined open position and a closed position along the expansion / contraction direction of the hydraulic pressure space;
An orifice opening provided so as to face the orifice space, and communicating the orifice space with the other part of the second restriction passage;
A biasing member that biases the plunger member toward the open position that reduces the hydraulic pressure space;
The reverse is arranged between the main liquid chamber and the hydraulic pressure space and allows the liquid to flow only in one direction between the main liquid chamber and the hydraulic pressure space as the hydraulic pressure in the main liquid chamber changes. A stop valve,
The hydraulic space communicates with the auxiliary liquid chamber, and is disposed inside the main liquid chamber and the auxiliary liquid chamber along the expansion / contraction direction, and the plunger member is moved by the urging force of the urging member. A fluid pressure release path for allowing the liquid in the fluid pressure space to flow out while restricting the amount of fluid flowing inside when moving to the open position side,
A guide shaft that extends along the expansion / contraction direction in the cylinder chamber and is slidably inserted into a bearing hole provided to penetrate the plunger member along the expansion / contraction direction;
Forming the hydraulic pressure release path through the guide shaft along the expansion / contraction direction,
When the plunger member moves to the open position by the urging force of the urging member, the orifice opening is opened, and the blockage is performed against the urging force of the urging member by the hydraulic pressure in the hydraulic pressure space. A vibration isolator which closes the orifice opening when moved to a position.
前記第1の取付部材を略筒状に形成し、該第1の取付部材の内周側に前記弾性体及びダイヤフラムを隔壁の一部として外部から区画された液室空間を設けると共に、前記液室空間内に、該液室空間を前記弾性体が隔壁の一部とされた前記主液室と前記ダイヤフラムが隔壁の一部とされた前記副液室とに区画する仕切部材を設け、前記ガイド軸を前記仕切部材と一体的に設けたことを特徴とする請求項1記載の防振装置。The first mounting member is formed in a substantially cylindrical shape, and a liquid chamber space partitioned from the outside is provided on the inner peripheral side of the first mounting member with the elastic body and the diaphragm as part of a partition wall, and the liquid In the chamber space, a partition member is provided that partitions the liquid chamber space into the main liquid chamber in which the elastic body is a part of the partition wall and the sub liquid chamber in which the diaphragm is a part of the partition wall, The vibration isolator according to claim 1, wherein a guide shaft is provided integrally with the partition member.
JP2005312734A 2005-10-27 2005-10-27 Vibration isolator Expired - Fee Related JP4699863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312734A JP4699863B2 (en) 2005-10-27 2005-10-27 Vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312734A JP4699863B2 (en) 2005-10-27 2005-10-27 Vibration isolator

Publications (2)

Publication Number Publication Date
JP2007120598A JP2007120598A (en) 2007-05-17
JP4699863B2 true JP4699863B2 (en) 2011-06-15

Family

ID=38144665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312734A Expired - Fee Related JP4699863B2 (en) 2005-10-27 2005-10-27 Vibration isolator

Country Status (1)

Country Link
JP (1) JP4699863B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121593A (en) * 2007-11-15 2009-06-04 Bridgestone Corp Vibration control device
JP5081670B2 (en) * 2008-03-07 2012-11-28 株式会社ブリヂストン Vibration isolator
JP5081688B2 (en) * 2008-03-28 2012-11-28 株式会社ブリヂストン Vibration isolator
JP5380564B2 (en) * 2012-03-05 2014-01-08 株式会社ブリヂストン Vibration isolator
JP6028099B2 (en) 2013-06-03 2016-11-16 株式会社ブリヂストン Vibration isolator
EP3006770B1 (en) 2013-06-03 2017-08-23 Bridgestone Corporation Vibration damping device
CN105393019B (en) 2013-07-25 2017-10-17 株式会社普利司通 Isolation mounting
JP6134629B2 (en) 2013-10-25 2017-05-24 株式会社ブリヂストン Vibration isolator
CN105705825B (en) 2013-11-11 2017-05-03 株式会社普利司通 Vibration damping device
WO2015068449A1 (en) 2013-11-11 2015-05-14 株式会社ブリヂストン Vibration damping device
US10030738B2 (en) 2014-02-17 2018-07-24 Bridgestone Corporation Vibration-damping device
JP6274927B2 (en) 2014-03-17 2018-02-07 株式会社ブリヂストン Vibration isolator
JP6245646B2 (en) 2014-04-08 2017-12-13 株式会社ブリヂストン Vibration isolator
JP6300404B2 (en) 2014-04-09 2018-03-28 株式会社ブリヂストン Vibration isolator
JP6384986B2 (en) 2014-04-24 2018-09-05 株式会社ブリヂストン Vibration isolator
JP6300406B2 (en) 2014-04-24 2018-03-28 株式会社ブリヂストン Vibration isolator
JP6335622B2 (en) 2014-04-30 2018-05-30 株式会社ブリヂストン Vibration isolator
JP6355242B2 (en) 2014-06-05 2018-07-11 株式会社ブリヂストン Vibration isolator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346937A (en) * 1993-06-08 1994-12-20 Ckd Corp Buffer
WO2004081408A1 (en) * 2003-03-11 2004-09-23 Bridgestone Corporation Vibration-isolating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346937A (en) * 1993-06-08 1994-12-20 Ckd Corp Buffer
WO2004081408A1 (en) * 2003-03-11 2004-09-23 Bridgestone Corporation Vibration-isolating apparatus

Also Published As

Publication number Publication date
JP2007120598A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4699863B2 (en) Vibration isolator
JP4921745B2 (en) Vibration isolator
JP2012172832A (en) Liquid-sealed type vibration control device
US7052003B2 (en) Vibration isolating apparatus
JP4723958B2 (en) Vibration isolator
JP4648155B2 (en) Vibration isolator
JP2009121669A (en) Fluid sealed vibration damping device
JP4728774B2 (en) Vibration isolator
JP2007100954A (en) Vibration isolator
JP4263159B2 (en) Vibration isolator
JP5069200B2 (en) Vibration isolator
JP4732842B2 (en) Vibration isolator
JP4732852B2 (en) Vibration isolator
JP2007120566A (en) Vibration isolator
JP2010031988A (en) Fluid-sealed vibration control device
JP2007071316A (en) Vibration isolator
JP2007120599A (en) Vibration isolator
JP2007120564A (en) Vibration isolator and manufacturing method of plunger member
JP2008232340A (en) Liquid filled type vibration absorbing device
JP2006266425A (en) Liquid filled active vibration damper
JP4263143B2 (en) Vibration isolator
JP5424695B2 (en) Vibration isolator
JP4792417B2 (en) Fluid filled vibration isolator
JP2007247660A (en) Vibration isolating apparatus
JP4732851B2 (en) Vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees