JPH0634687A - Surface potential measuring device - Google Patents
Surface potential measuring deviceInfo
- Publication number
- JPH0634687A JPH0634687A JP19506292A JP19506292A JPH0634687A JP H0634687 A JPH0634687 A JP H0634687A JP 19506292 A JP19506292 A JP 19506292A JP 19506292 A JP19506292 A JP 19506292A JP H0634687 A JPH0634687 A JP H0634687A
- Authority
- JP
- Japan
- Prior art keywords
- surface potential
- electrode
- measuring device
- reference electrode
- potential measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は表面電位測定装置に係
り、特に、加熱処理や腐食性雰囲気への露出等の試料処
理や、試料交換を要する表面電位測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface potential measuring device, and more particularly to a surface potential measuring device which requires sample treatment such as heat treatment and exposure to a corrosive atmosphere, and sample exchange.
【0002】[0002]
【従来の技術】基準電極を機械的に振動させることによ
り、基準電極と試料電極により構成されるコンデンサの
静電容量を変化させる方法(ケルビン法)が、レビュー
オブサイエンティフィック インスツルメント 第4
7巻(1976年)の840頁から842頁に記載され
ている。2. Description of the Related Art A method of changing the capacitance of a capacitor composed of a reference electrode and a sample electrode by mechanically oscillating a reference electrode (Kelvin method) is reviewed by Scientific Instrument No. 4
7 (1976), pages 840-842.
【0003】[0003]
【発明が解決しようとする課題】上記従来技術では両電
極間距離を周期的に変化させることにより、基準電極と
試料電極により形成されるコンデンサの容量を変化させ
ている。この容量変化により基準電極と試料電極の表面
電位の差に比例した交流起電圧が発生し、この起電圧の
大きさから基準電極と試料電極の表面電位の差を求めて
いる。この技術では両試料間の距離を変化させるため
に、基準電極または試料電極の少なくともいずれか一方
を動かす必要がある。このため、電極加熱や試料交換を
行なうための機構には重量や大きさ等において制限が生
じるという問題があった。In the above prior art, the capacitance of the capacitor formed by the reference electrode and the sample electrode is changed by periodically changing the distance between both electrodes. Due to this capacitance change, an AC electromotive voltage proportional to the difference in surface potential between the reference electrode and the sample electrode is generated, and the difference in surface potential between the reference electrode and the sample electrode is obtained from the magnitude of this electromotive voltage. In this technique, it is necessary to move at least one of the reference electrode and the sample electrode in order to change the distance between the two samples. Therefore, there is a problem in that the mechanism for heating the electrodes and exchanging the sample is limited in weight, size, and the like.
【0004】本発明の目的は、基準電極や試料電極の支
持方法に関する制限を軽減し、加熱処理や試料交換を容
易に行なうことができる表面電位測定装置を提供するこ
とにある。An object of the present invention is to provide a surface potential measuring device which can alleviate restrictions on the method of supporting the reference electrode and the sample electrode and can easily carry out heat treatment and sample exchange.
【0005】[0005]
【課題を解決するための手段】上記目的は、コンデンサ
を形成する基準電極と試料電極のいずれも動かすことな
く、両電極に挟まれた空間の誘電率を変化させることに
より達成される。The above object is achieved by changing the dielectric constant of the space sandwiched between both electrodes without moving either the reference electrode or the sample electrode forming the capacitor.
【0006】誘電率を変化させる一方法は、空間に遮蔽
板を繰り返し出し入れすればよい。前記遮蔽板の材質
は、絶縁性材料ならばいずれでもよいが、高感度で測定
を行なうためには空気(または真空)に対する誘電率す
なわち比誘電率が大きい材料でできた遮蔽板を用いる方
がよい。遮蔽板を出し入れする方法は、遮蔽板を切り込
みの入った円盤状(チョッパ)にして前記基準電極と試
料電極の間で回転させたり、棒の先端に遮蔽板を取り付
けて振り子状として前記基準電極と試料電極の間で振ら
せればよい。One method of changing the dielectric constant is to repeatedly insert and remove the shielding plate in the space. The shielding plate may be made of any insulating material, but in order to perform measurement with high sensitivity, it is preferable to use a shielding plate made of a material having a large dielectric constant, that is, a relative dielectric constant with respect to air (or vacuum). Good. The shield plate can be put in and out by rotating the shield plate between the reference electrode and the sample electrode by making the shield plate into a notched disk shape (chopper), or by attaching a shield plate to the tip of a rod to form the pendulum like the reference electrode. It may be shaken between the sample electrode and the sample electrode.
【0007】また、誘電率を変化させる他の方法として
は基準電極と試料電極に挟まれた空間を誘電率の異なる
2種類の気体または液体により交互に満たせばよい。た
とえば、大気で満たされている空間に大気と異なる誘電
率を持つ気体または液体を断続的に放出すればよい。ま
た、誘電率の異なる2種類の気体または液体を交互に上
記空間に放出してもよい。As another method of changing the dielectric constant, the space between the reference electrode and the sample electrode may be alternately filled with two kinds of gases or liquids having different dielectric constants. For example, a gas or a liquid having a dielectric constant different from that of the atmosphere may be intermittently discharged into the space filled with the atmosphere. Further, two kinds of gases or liquids having different permittivities may be alternately discharged into the space.
【0008】[0008]
【作用】両電極により構成されるコンデンサの静電容量
は両電極が対向する面積および電極間距離と、両電極間
に挟まれた空間を満たしている物質(真空を含む)の持
つ誘電率により決まる。したがって、この誘電率を変化
させれば従来の技術に示したような電極間距離を変化さ
せる方法と同等の効果を得ることができる。表面電位の
異なる1組の電極を導体により電気的に接続して向かい
合わせると、両電極に挟まれた空間には両電極の表面電
位差に対応した電界が生じ、この電界に応じた電荷が両
電極表面に蓄積される。この状態で、両電極により構成
されるコンデンサの静電容量を変化させると電極表面に
蓄積されている電荷量が変化するが、この変化は両電極
を電気的に接続している導体を介して行なわれる。した
がって、該導体の途中に抵抗を介しておけば、誘電率変
化に同期し、両電極の表面電位差に比例した交流起電圧
が抵抗両端に発生する。[Function] The capacitance of a capacitor composed of both electrodes depends on the area where both electrodes face each other, the distance between the electrodes, and the dielectric constant of the substance (including vacuum) that fills the space sandwiched between the electrodes. Decided. Therefore, if the dielectric constant is changed, it is possible to obtain the same effect as the method of changing the inter-electrode distance as shown in the conventional technique. When a pair of electrodes with different surface potentials are electrically connected by a conductor and face each other, an electric field corresponding to the surface potential difference between both electrodes is generated in the space sandwiched between the electrodes, and an electric charge corresponding to this electric field is applied to both electrodes. Accumulates on the electrode surface. In this state, if the capacitance of the capacitor composed of both electrodes is changed, the amount of charge accumulated on the electrode surface changes, but this change is caused by the conductor electrically connecting both electrodes. Done. Therefore, if a resistor is provided in the middle of the conductor, an AC electromotive voltage proportional to the surface potential difference between both electrodes is generated at both ends of the resistor in synchronization with the change in the dielectric constant.
【0009】このため両電極により構成されるコンデン
サの静電容量を変化させられるような遮蔽板としては、
両電極に挟まれた空間の物質と異なる誘電率を持つ絶縁
性材料を用いればよい。このようにすると、両電極間に
絶縁性遮蔽板を挿入することにより、両電極間の空間の
見掛けの誘電率が変化してコンデンサの静電容量が変化
する。この場合には、遮蔽板を挿入していない状態、す
なわち、大気,真空等の試料電極を露出している雰囲気
と、遮蔽板自身の誘電率の比、すなわち、比誘電率に応
じて起電圧が発生する。したがって、雰囲気と遮蔽板の
誘電率の比は大きい方が良く、一般的には比誘電率の高
い材料を用いて遮蔽板を作製するのがよい。For this reason, as a shield plate that can change the electrostatic capacity of a capacitor composed of both electrodes,
An insulating material having a dielectric constant different from that of the substance in the space sandwiched between the electrodes may be used. In this case, by inserting the insulating shield plate between both electrodes, the apparent dielectric constant of the space between both electrodes changes and the capacitance of the capacitor changes. In this case, the electromotive voltage is changed in accordance with the ratio of the dielectric constant of the shield plate itself, that is, the condition in which the shield plate is not inserted, that is, the atmosphere in which the sample electrode is exposed, such as the atmosphere or vacuum, and the dielectric constant. Occurs. Therefore, it is better that the ratio of the dielectric constant between the atmosphere and the shield plate is larger, and it is generally preferable to manufacture the shield plate using a material having a high relative dielectric constant.
【0010】[0010]
<実施例1>本発明の一実施例として、金属単結晶の表
面電位(仕事関数)測定装置について図1から図5を用
いて説明する。<Example 1> As an example of the present invention, a surface potential (work function) measuring device for a metal single crystal will be described with reference to Figs.
【0011】図1は回転するチョッパ1を遮蔽板として
用いて、基準電極2と試料電極3の間に出し入れする機
構の構造の概略を示したものである。本実施例では、図
1に示したチョッパ1,基準電極2,試料電極3,チョ
ッパ駆動用モータ4のすべてを真空度10nPaの超高
真空容器中に設置した。チョッパ1としてはチタン酸バ
リウムの粉末を接着剤を用いて厚さ2mmの図2に示した
ようなチョッパの形に固めたものを用い、このチョッパ
を位相同期型の駆動用モータ4に取り付け300rpmの
回転数で回転させた。電極形状は基準電極2および試料
電極3のいずれも直径10mm,厚さ2mmの円盤状とし、
電極間距離は3mmとなるように固定した。これらによ
り、周波数30Hzで基準電極2と試料電極3の間の静
電容量を約0.2pF から約100pFまで変化させる
ことができる。また、約2000℃の加熱による電極表
面清浄化を行なうことができるように、両電極のいずれ
にも背面から1keV,500mA程度の電子線を照射
による試料加熱機構11を設けている。加熱機構の詳細
を図3に示す。この加熱機構はタングステンフィラメン
ト12を通電加熱し、フィラメントと電極の間に引加し
た高電圧で電子を加速して電極背面から電子線照射する
ものである。電子線の照射効率を上げるために、フィラ
メント12と電極の間の空間はフィラメントと同電位に
したタンタル板で作製した筒状シールド板13で覆って
いる。このフィラメント12に流す電流は5A程度であ
るため、電流供給のための加熱用導線14は比較的太い
ものを使用しなければならず、従来の方法で必要となる
電極の振動に対しては障害となる。FIG. 1 schematically shows the structure of a mechanism for using a rotating chopper 1 as a shield plate to insert and withdraw between a reference electrode 2 and a sample electrode 3. In this example, all of the chopper 1, the reference electrode 2, the sample electrode 3, and the chopper driving motor 4 shown in FIG. 1 were installed in an ultrahigh vacuum container having a vacuum degree of 10 nPa. As the chopper 1, a barium titanate powder is used which is hardened in the shape of a chopper as shown in FIG. 2 having a thickness of 2 mm by using an adhesive, and the chopper is attached to a phase-synchronous drive motor 4 at 300 rpm. It was rotated at the number of rotations. Both the reference electrode 2 and the sample electrode 3 are disc-shaped with a diameter of 10 mm and a thickness of 2 mm.
The distance between the electrodes was fixed to be 3 mm. As a result, the capacitance between the reference electrode 2 and the sample electrode 3 can be changed from about 0.2 pF to about 100 pF at a frequency of 30 Hz. Further, in order to clean the electrode surface by heating at about 2000 ° C., both of the electrodes are provided with a sample heating mechanism 11 by irradiating an electron beam of about 1 keV and 500 mA from the back surface. Details of the heating mechanism are shown in FIG. This heating mechanism electrically heats the tungsten filament 12, accelerates electrons with a high voltage applied between the filament and the electrode, and irradiates the electron beam from the back surface of the electrode. In order to increase the electron beam irradiation efficiency, the space between the filament 12 and the electrode is covered with a cylindrical shield plate 13 made of a tantalum plate having the same potential as the filament. Since the electric current flowing through the filament 12 is about 5 A, the heating lead wire 14 for supplying the electric current has to be relatively thick, which is an obstacle to the vibration of the electrode required by the conventional method. Becomes
【0012】図1に示した装置の基準電極2と試料電極
3を1kΩの検出抵抗5を介して接続し、これらを図4
に示したような構成の制御装置に接続した。この制御装
置は、コンデンサ6,ロックインアンプ7により構成さ
れており、基準電極2および試料電極3に接続した抵抗
5の両端に発生する起電圧をコンデンサ6により交流成
分のみを抽出し、ロックインアンプ8により増幅して、
その振幅値を得る。ロックインアンプ8の出力を直流電
圧計10により検出するとともに、バイアス電圧として
試料電極3に印加される。基準電極2と試料電極3の間
の表面電位に差異のある状態でチョッパ1を回転させる
と、チョッパの回転に同期しかつ両電極間の表面電位差
に比例した振幅を持つ交流起電圧が抵抗5の両端に発生
する。ロックインアンプ8の出力にはこの交流起電圧の
振幅に比例した直流起電圧が発生する。この制御装置は
ロックインアンプ8の出力であるバイアス電圧により、
両電極間の表面電位差が補正されて定常状態となる。こ
の定常状態では試料電極3の表面電位とバイアス電圧の
和が、基準電極2の表面電位と等しくなっている。両電
極間の表面電位差が補正されて同電位となっているた
め、補正に必要なバイアス電圧が基準電極2と試料電極
3の表面電位差を表わす。The reference electrode 2 and the sample electrode 3 of the apparatus shown in FIG. 1 are connected via a detection resistor 5 of 1 kΩ, and these are connected to each other as shown in FIG.
It was connected to the control device having the structure shown in FIG. This control device is composed of a capacitor 6 and a lock-in amplifier 7, and extracts only an AC component of an electromotive voltage generated at both ends of a resistor 5 connected to the reference electrode 2 and the sample electrode 3 by a lock-in. Amplify by amplifier 8,
Get its amplitude value. The output of the lock-in amplifier 8 is detected by the DC voltmeter 10 and applied to the sample electrode 3 as a bias voltage. When the chopper 1 is rotated in a state where there is a difference in surface potential between the reference electrode 2 and the sample electrode 3, an AC electromotive voltage having an amplitude which is synchronized with the rotation of the chopper and has an amplitude proportional to the surface potential difference between both electrodes is generated by the resistance 5 Occurs at both ends of. At the output of the lock-in amplifier 8, a DC electromotive voltage proportional to the amplitude of this AC electromotive voltage is generated. This control device uses the bias voltage output from the lock-in amplifier 8 to
The surface potential difference between both electrodes is corrected, and the steady state is reached. In this steady state, the sum of the surface potential of the sample electrode 3 and the bias voltage is equal to the surface potential of the reference electrode 2. Since the surface potential difference between both electrodes is corrected to the same potential, the bias voltage required for the correction represents the surface potential difference between the reference electrode 2 and the sample electrode 3.
【0013】基準電極2および試料電極3として、タン
グステン(110)単結晶を用いて測定装置を構成し
た。この装置において、両電極の清浄化を行なうことな
く測定を行なった場合には、両電極表面は同程度に大気
により汚染されているために表面電位差は検出されなか
った。次に、基準電極2と試料電極3を約2000℃で
10分間加熱して電極表面の清浄化を行なった後、10
0μPaの圧力となるように酸素ガスを導入して10分
間放置して清浄化した両電極表面に飽和吸着させた。飽
和吸着したところで導入した酸素ガスを排気し、真空度
10nPaの超高真空の中で試料電極3のみを約200
0℃で10分間の加熱による表面清浄化を行なった。こ
の時、試料電極3からの輻射熱により基準電極2が加熱
されないように両電極の間にはチョッパの代わりに熱遮
蔽板(図示略)を入れた。試料電極3の温度が室温まで
下がったところで、基準電極2と試料電極3の表面電位
差を測定したところ2.3eV であった。基準電極2に
用いているタングステン(110)単結晶の清浄表面の
仕事関数は4.6eV であることがわかっているので、
この時の試料電極3の仕事関数は6.2eV であること
がわかった。この状態で、真空度が1μPaとなるよう
に酸素を導入した時の基準電極2と試料電極3の両電極
間の表面電位差の時間変化を図5に示す。この測定時の
表面電位差変化に含まれるノイズ成分は1mV程度であ
り、表面電位差の測定再現性は10meV以下であっ
た。As the reference electrode 2 and the sample electrode 3, a measuring device was constructed using a tungsten (110) single crystal. In this device, when the measurement was performed without cleaning both electrodes, the surface potential difference was not detected because the surfaces of both electrodes were polluted by the air to the same extent. Next, the reference electrode 2 and the sample electrode 3 are heated at about 2000 ° C. for 10 minutes to clean the electrode surfaces, and then 10
Oxygen gas was introduced so that the pressure became 0 μPa, and the mixture was allowed to stand for 10 minutes to be saturated and adsorbed on the cleaned surfaces of both electrodes. The oxygen gas introduced at the saturated adsorption was evacuated, and only about 200 of the sample electrode 3 was evacuated in an ultrahigh vacuum with a vacuum degree of 10 nPa.
Surface cleaning was performed by heating at 0 ° C. for 10 minutes. At this time, in order to prevent the reference electrode 2 from being heated by the radiant heat from the sample electrode 3, a heat shield plate (not shown) was inserted between the two electrodes instead of the chopper. When the temperature of the sample electrode 3 dropped to room temperature, the surface potential difference between the reference electrode 2 and the sample electrode 3 was measured and found to be 2.3 eV. Since the work function of the clean surface of the tungsten (110) single crystal used for the reference electrode 2 is known to be 4.6 eV,
It was found that the work function of the sample electrode 3 at this time was 6.2 eV. FIG. 5 shows the time change of the surface potential difference between the reference electrode 2 and the sample electrode 3 when oxygen is introduced so that the degree of vacuum is 1 μPa in this state. The noise component included in the change in surface potential difference during this measurement was about 1 mV, and the measurement reproducibility of the surface potential difference was 10 meV or less.
【0014】ここでは基準電極2としてタングステン単
結晶を用いた例を示したが、表面電位が既知のものであ
ればよく、タングステン以外にも高融点金属であるタン
タル,モリブデンを加熱洗浄して基準電極2として用い
ても同様に測定することができた。また、チタン酸鉛,
チタン酸ストロンチウムの粉末を用いてチョッパ1を形
成しても測定することができた。Although an example in which a tungsten single crystal is used as the reference electrode 2 is shown here, any material having a known surface potential may be used, and in addition to tungsten, refractory metals such as tantalum and molybdenum may be heated and washed to obtain a reference electrode. Even when used as the electrode 2, the same measurement was possible. Also, lead titanate,
It was possible to measure even if the chopper 1 was formed using the powder of strontium titanate.
【0015】<実施例2>図6はバイモルフ型の圧電ア
クチュエータを用いた表面電位測定装置の実施例を示し
ている。基準電極2と試料電極3を3mmの間隔で対向さ
せ、二酸化チタンの単結晶を2mmの厚さに切断して作成
した遮蔽板16を、両端をそれぞれ固定端,自由端とし
たバイモルフ型の圧電アクチュエータ17の自由端に取
り付け、これを駆動させることにより両電極に挟まれた
空間を出入りできるようにした。これに図7に示した測
定回路を接続し、実施例1と同様に酸素吸着にともなう
タングステン結晶の表面電位を測定したところ、実施例
1と同様の結果が得られた。また、遮蔽板16として三
酸化タングステン,二酸化スズ,酸化鉛の結晶を用いて
も同様の測定が可能であった。<Embodiment 2> FIG. 6 shows an embodiment of a surface potential measuring device using a bimorph type piezoelectric actuator. A shield plate 16 made by cutting a single crystal of titanium dioxide to a thickness of 2 mm with a reference electrode 2 and a sample electrode 3 facing each other at a distance of 3 mm, and a bimorph type piezoelectric plate having both fixed ends and free ends. The actuator 17 was attached to the free end of the actuator 17 and was driven so that the space between the electrodes could be moved in and out. The measurement circuit shown in FIG. 7 was connected to this, and the surface potential of the tungsten crystal accompanying oxygen adsorption was measured in the same manner as in Example 1, and the same result as in Example 1 was obtained. The same measurement was possible even if crystals of tungsten trioxide, tin dioxide and lead oxide were used as the shielding plate 16.
【0016】<実施例3>図8はノズルビームを用いた
大気圧中での表面電位測定装置の実施例である。基準電
極2と試料電極3を5mmの間隔で対向させてコンデンサ
を形成し、流速10m/秒で窒素を流している測定用ダ
クト19中に窒素の流れる方向と両電極が平行になる向
きに設置した。それぞれ直径10mm,厚さ3mmの基準電
極2と試料電極3を2mmの間隔で対向させてあり、電磁
バルブ21により断続することができる他のガスをノズ
ル20を通して両電極の間に流すことができる。両電極
間に窒素を流している状態でノズル20から窒素と誘電
率の異なるガスを断続的に噴出することにより、両電極
により構成されるコンデンサの静電容量を変化させるこ
とができる。<Embodiment 3> FIG. 8 shows an embodiment of a surface potential measuring device using a nozzle beam at atmospheric pressure. The reference electrode 2 and the sample electrode 3 are opposed to each other at an interval of 5 mm to form a capacitor, and the condenser is installed in a measurement duct 19 in which nitrogen is flowed at a flow rate of 10 m / sec. did. The reference electrode 2 and the sample electrode 3 each having a diameter of 10 mm and a thickness of 3 mm are opposed to each other at an interval of 2 mm, and another gas that can be intermittently connected by the electromagnetic valve 21 can be flown between the two electrodes through the nozzle 20. . By intermittently ejecting a gas having a dielectric constant different from that of nitrogen from the nozzle 20 while flowing nitrogen between both electrodes, it is possible to change the capacitance of the capacitor formed by both electrodes.
【0017】基準電極2としてステンレス鋼表面に厚さ
1μmの多結晶金膜を形成したものを用い、試料電極3
として鏡面研磨したクロム結晶を用いて図8に示した装
置を構成した。この状態で基準電極2および試料電極3
に図9に示した制御回路を接続し、ノズル20から噴出
させるガスとして水蒸気を用いて0.5 秒の周期で0.
2 秒噴出させた。噴出時に両電極間のガスが十分に置
換するように、両電極間で窒素の流量の3〜5倍となる
ように噴出量を制御した。これにより、両電極間の静電
容量は約0.2pF から約50pFまで変化させること
ができた。この装置で、水分によるクロム表面の腐食状
態を調べるため平均の湿度が90%となるように水蒸気
の噴出量を調整して表面電位の変化を調べたところ、
4.2eVから4.5eV へと変化するのを測定するこ
とができた。A sample electrode 3 was used as the reference electrode 2 with a polycrystalline gold film having a thickness of 1 μm formed on the surface of stainless steel.
As a result, the apparatus shown in FIG. 8 was constructed using mirror-polished chrome crystals. In this state, the reference electrode 2 and the sample electrode 3
9, the control circuit shown in FIG. 9 is connected to the nozzle 20, and steam is used as a gas to be ejected from the nozzle 20.
It was ejected for 2 seconds. The ejection amount was controlled so as to be 3 to 5 times the flow rate of nitrogen between both electrodes so that the gas between both electrodes was sufficiently replaced during ejection. As a result, the electrostatic capacitance between both electrodes could be changed from about 0.2 pF to about 50 pF. With this device, in order to check the corrosion state of the chromium surface due to moisture, the amount of water vapor injection was adjusted so that the average humidity was 90%, and the change in surface potential was examined.
It was possible to measure the change from 4.2 eV to 4.5 eV.
【0018】[0018]
【発明の効果】本発明を用いることにより、高温での熱
処理や特殊な雰囲気への露出等の試料処理を伴った表面
電位変化の測定を、容易に行なうことができるようにな
る。EFFECTS OF THE INVENTION By using the present invention, it becomes possible to easily measure the change in surface potential accompanying sample treatment such as heat treatment at high temperature or exposure to a special atmosphere.
【図1】誘電体チョッパを用いた表面電位測定装置の斜
視図。FIG. 1 is a perspective view of a surface potential measuring device using a dielectric chopper.
【図2】チョッパの平面図。FIG. 2 is a plan view of a chopper.
【図3】試料加熱装置の原理の説明図。FIG. 3 is an explanatory view of the principle of the sample heating device.
【図4】チョッパを用いた表面電位測定制御回路のブロ
ック図。FIG. 4 is a block diagram of a surface potential measurement control circuit using a chopper.
【図5】測定結果の特性図。FIG. 5 is a characteristic diagram of measurement results.
【図6】圧電アクチュエータを用いた表面電位測定装置
の斜視図。FIG. 6 is a perspective view of a surface potential measuring device using a piezoelectric actuator.
【図7】圧電アクチュエータを用いた表面電位測定制御
回路のブロック図。FIG. 7 is a block diagram of a surface potential measurement control circuit using a piezoelectric actuator.
【図8】ノズルビームを用いた表面電位測定装置の説明
図。FIG. 8 is an explanatory diagram of a surface potential measuring device using a nozzle beam.
【図9】ノズルビームを用いた表面電位測定制御回路の
ブロック図。FIG. 9 is a block diagram of a surface potential measurement control circuit using a nozzle beam.
1…チョッパ、2…基準電極、3…試料電極、4…チョ
ッパ駆動用モータ、11…試料加熱機構。DESCRIPTION OF SYMBOLS 1 ... Chopper, 2 ... Reference electrode, 3 ... Sample electrode, 4 ... Chopper drive motor, 11 ... Sample heating mechanism.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 絵実子 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 佐々木 進 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Emiko Yamada 1-280, Higashi Koikekubo, Kokubunji, Tokyo Inside Hitachi Central Research Laboratory (72) Inventor Susumu Sasaki 1-280 Higashi Koikeku, Tokyo Kokubunji City Hitachi, Ltd. Central Research Center
Claims (13)
測定対象の試料電極を対向させてコンデンサを形成し、
前記コンデンサの静電容量を変化させることにより発生
する起電圧を測定して、前記試料電極と前記基準電極の
表面電位差を測定する装置において、前記基準電極と前
記試料電極の両電極間に挟まれた空間の誘電率を変化さ
せる機構を設けたことを特徴とする表面電位測定装置。1. A capacitor is formed by making a fixed reference electrode and a sample electrode of a measurement target, which are also fixed, face each other,
In an apparatus for measuring the electromotive voltage generated by changing the capacitance of the capacitor and measuring the surface potential difference between the sample electrode and the reference electrode, the device is sandwiched between the reference electrode and the sample electrode. A surface potential measuring device having a mechanism for changing the permittivity of the space.
料電極に挟まれた空間に、絶縁性材料でできた遮蔽板を
出し入れする機構を有する表面電位測定装置。2. The surface potential measuring device according to claim 1, further comprising a mechanism for putting a shield plate made of an insulating material in and out of a space sandwiched between the reference electrode and the sample electrode.
含む材料でできている表面電位測定装置。3. The surface potential measuring device according to claim 2, wherein the shielding plate is made of a material containing an oxide.
ン,テルビウム,タングステン,鉛,スズ,ランタンの
うち少なくとも1種の元素を含む酸化物材料でできてい
る表面電位測定装置。4. The surface potential measuring device according to claim 2, wherein the shielding plate is made of an oxide material containing at least one element of titanium, terbium, tungsten, lead, tin and lanthanum.
チタン,三酸化タングステン,チタン酸バリウム,酸化
鉛,二酸化鉛,二酸化スズのうち、少なくとも1種を含
む表面電位測定装置。5. The surface potential measuring device according to claim 2, wherein the shielding plate contains at least one of titanium dioxide, tungsten trioxide, barium titanate, lead oxide, lead dioxide and tin dioxide.
するチョッパを用いて、前記基準電極と前記試料電極の
間に前記遮蔽板を出し入れする表面電位測定装置。6. The surface potential measuring device according to claim 2, 3, 4 or 5, wherein the rotating chopper is used to insert and remove the shielding plate between the reference electrode and the sample electrode.
て、前記基準電極がタングステン,タンタル,モリブデ
ンである表面電位測定装置。7. The surface potential measuring device according to claim 1, 2, 3, 4, 5 or 6, wherein the reference electrode is tungsten, tantalum or molybdenum.
て、前記基準電極の少なくとも前記試料電極に対向した
側の表面が金で覆われている表面電位測定装置。8. The surface potential measuring device according to claim 1, 2, 3, 4, 5 or 6, wherein at least the surface of the reference electrode facing the sample electrode is covered with gold.
持つガスを断続的に、前記基準電極と前記試料電極に挟
まれた空間に満たすことのできる機構を有する表面電位
測定装置。9. The surface potential measuring device according to claim 1, further comprising a mechanism capable of intermittently filling a space between the reference electrode and the sample electrode with a gas having a dielectric constant different from that of a vacuum.
試料電極の間の空間に、誘電率の異なる二種のガスまた
は液体を交互に放出することにより前記空間の誘電率を
変化させる表面電位測定装置。10. The surface potential for changing the dielectric constant of the space by alternately discharging two kinds of gas or liquid having different dielectric constants into the space between the reference electrode and the sample electrode according to claim 1. measuring device.
をノズルを用いて前記空間に放出する表面電位測定装
置。11. The surface potential measuring device according to claim 9, wherein the gas or liquid is discharged into the space using a nozzle.
記ガスが、水蒸気,硫化水素,塩化メチル,一酸化炭
素,一酸化窒素のうち、少なくとも1種を含む表面電位
測定装置。12. The surface potential measuring device according to claim 9, 10 or 11, wherein the gas contains at least one of steam, hydrogen sulfide, methyl chloride, carbon monoxide and nitric oxide.
8,9,10,11または12において、前記試料電極
の少なくとも基準電極に面した表面が、大気,水蒸気,
圧力100μPa以下の真空のいずれかの雰囲気にさらさ
れる構造を有している表面電位測定装置。13. Claims 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11 or 12, at least the surface of the sample electrode facing the reference electrode is
A surface potential measuring device having a structure which is exposed to any one of a vacuum atmosphere having a pressure of 100 μPa or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19506292A JPH0634687A (en) | 1992-07-22 | 1992-07-22 | Surface potential measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19506292A JPH0634687A (en) | 1992-07-22 | 1992-07-22 | Surface potential measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0634687A true JPH0634687A (en) | 1994-02-10 |
Family
ID=16334926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19506292A Pending JPH0634687A (en) | 1992-07-22 | 1992-07-22 | Surface potential measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0634687A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100376799C (en) * | 2001-09-27 | 2008-03-26 | 三洋电机株式会社 | Compressor and its producing method, frost removing device of coolant loop, and freezing device |
-
1992
- 1992-07-22 JP JP19506292A patent/JPH0634687A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100376799C (en) * | 2001-09-27 | 2008-03-26 | 三洋电机株式会社 | Compressor and its producing method, frost removing device of coolant loop, and freezing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Plummer et al. | Atomic binding of transition metals on clean single‐crystal tungsten surfaces | |
Richardson | The emission of electricity from hot bodies | |
Surplice et al. | A critique of the Kelvin method of measuring work functions | |
US5136247A (en) | Apparatus and methods for calibrated work function measurements | |
AU2005249348B2 (en) | Method and apparatus for controlling the concentration of a sterilant chemical in a fluid | |
JP4729626B2 (en) | Exposed conductor system and method for sensing an electron beam | |
US4393434A (en) | Capacitance humidity sensor | |
JPS6199851A (en) | Method for detecting at least one component of one substanceor mixture of substance and vibrating condenser for executing said method | |
US3461306A (en) | Electron probe microanalyzer for measuring the differential energy response of auger electrons | |
JPH0634687A (en) | Surface potential measuring device | |
US3453143A (en) | Method of making a moisture sensitive capacitor | |
US4100442A (en) | Electrically driven oscillating capacitor device | |
Spassov et al. | Piezoelectric sorption sensor for mercury vapors in air using a quartz resonator | |
Shurmer et al. | Development of an electronic nose | |
Cotter | Liquid secondary ion time-of-flight mass spectrometry | |
Waugh | An imaging atom probe using a single time-gated channel plate | |
JPH0696721A (en) | X-ray detector | |
SU1053186A1 (en) | Gas concentration measuring device | |
Ramaley et al. | Instrumentation for the Measurement of the Electrical Double Layer Capacitance at Solid Electrodes | |
RU2821217C1 (en) | Electron work function determination device | |
JP3084961B2 (en) | Halogen gas leak detector | |
Swanson et al. | 1. Work function measurements | |
Knighton et al. | Physical parameters affecting the quantitative response of the constant current electron-capture detector | |
JPS59139929A (en) | Membrane preparing apparatus | |
Myers | A Simple Varying Capacitor Method for the Measurement of Contact Potential Difference in High Vacuum |