JPH0634647A - Measuring equipment for speed - Google Patents

Measuring equipment for speed

Info

Publication number
JPH0634647A
JPH0634647A JP18661692A JP18661692A JPH0634647A JP H0634647 A JPH0634647 A JP H0634647A JP 18661692 A JP18661692 A JP 18661692A JP 18661692 A JP18661692 A JP 18661692A JP H0634647 A JPH0634647 A JP H0634647A
Authority
JP
Japan
Prior art keywords
distance
light
light irradiation
measured
calculator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18661692A
Other languages
Japanese (ja)
Inventor
Koji Ichie
更治 市江
Yukio Maruhashi
幸雄 丸橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP18661692A priority Critical patent/JPH0634647A/en
Publication of JPH0634647A publication Critical patent/JPH0634647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To prevent occurrence of an error even when distance information varies and thereby to enable measurement of a correct ground speed by determining a difference signal between distance detectors on the basis of the information on distances to light application points in prescribed numbers on an object of measurement. CONSTITUTION:Three distance detectors A, B and C are provided at an interval (d) on the same axis being parallel to the direction of movement of a moving body. The detectors A, B and C project light at a right angle substantially onto the surface of an object of measurement and receive it therefrom and they output information on distances to the surface of the object of measurement, i.e., unevenness signals (a), (b) and (c). Differential computation units 51 and 52 execute differential computation and determine difference signals a-b and b-c respectively. A correlative speed computation unit 6 executes mutual correlation computations between the difference signals a-b and b-c, detects a delay time Z0 between the two signals and calculates a speed V of the moving body on the basis of this time. By determining the two difference signals between the distance detectors, in other words, noise of the same phase (noise of the same phase and the same amplitude superposed on unevenness information of an output signal of each detector) generated due to variation of the distance can be cleared.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粗面を有する被測定物に
移動物体から光線を照射して、その被測定物の表面の凹
凸情報を得ることにより、移動物体の速度を算出する非
接触式速度計測装置であり、より具体的に言えば、例え
ば自動車等の対地速度を計測する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a non-contact method for calculating the speed of a moving object by irradiating a measuring object having a rough surface with a light beam from the moving object and obtaining information on the surface roughness of the object. More specifically, the present invention relates to a device for measuring the ground speed of an automobile or the like.

【0002】[0002]

【従来の技術】非接触式の速度計測方式の1つに、レー
ザドップラー方式がある。また、非測定物の表面の明暗
のムラ模様に基き速度を算出する方式がある。この技術
は、「特公昭55−44346」および「相関を用いる
自動車の速度測定(昭和50年8月 計測自動制御学会
論文集 第11巻 第4号)」に詳しく記載されてい
る。さらに、凹凸情報に基き速度を算出する方式とし
て、「特開平4−47286」に記載されている技術が
ある。
2. Description of the Related Art A laser Doppler system is one of non-contact velocity measuring systems. There is also a method of calculating the velocity based on the uneven brightness pattern on the surface of the non-measurement object. This technology is described in detail in "Japanese Patent Publication No. 55-44346" and "Vehicle speed measurement using correlation (August 1975, Transactions of the Society of Instrument and Control Engineers, Vol. 11, No. 4)". Further, as a method of calculating the velocity based on the unevenness information, there is a technique described in "Japanese Patent Laid-Open No. 4-47286".

【0003】被測定物表面の凹凸情報に基づき、被測定
物の移動速度を推定する方式の速度計測装置の従来例の
構成図を図14に示す。被測定物の移動方向に沿って配
置された2個の前記距離検出器からそれぞれ被測定物表
面の凹凸情報を取り出し、相互相関演算を行うことによ
り、2信号の時間的ずれ量(遅延時間=Zo)を検出
し、v=d/Zo(dは距離検出器の組の間の距離)に
より速度を算出するものである。
FIG. 14 shows a block diagram of a conventional example of a speed measuring device of a system that estimates the moving speed of an object to be measured based on information on the surface roughness of the object to be measured. The unevenness information on the surface of the object to be measured is taken out from each of the two distance detectors arranged along the moving direction of the object to be measured, and the cross-correlation operation is performed to calculate the time shift amount of the two signals (delay time = Zo) is detected, and the velocity is calculated by v = d / Zo (d is the distance between the pair of distance detectors).

【0004】[0004]

【発明が解決しようとする課題】レーザドップラー方式
は、空間分解能が高く、ミクロの領域の速度計測に適し
ているが、車の対地速度計などには不向きとされる。こ
れに対し、明暗のムラ模様に基き速度を算出する方式
は、被測定物表面のマクロの領域の速度計測に適してい
るが、原理的に被測定物表面の明暗のコントラストが極
端に低い場合や、被測定物に大きな起伏がある場合、速
度計測の精度および確度が低下するという問題点があ
る。
The laser Doppler system has a high spatial resolution and is suitable for speed measurement in a micro region, but is not suitable for a ground speedometer of a vehicle or the like. On the other hand, the method of calculating the velocity based on the uneven pattern of light and dark is suitable for measuring the velocity of the macro area on the surface of the DUT, but in principle when the contrast of light and dark on the surface of the DUT is extremely low. In addition, when the object to be measured has a large undulation, there is a problem in that the accuracy and accuracy of the speed measurement decrease.

【0005】また、従来の凹凸情報に基き速度を算出す
る方式における凹凸情報とは、被測定物表面の特定され
た微小部分と距離検出器間の距離情報である。従って、
距離検出器自体に位置的変動があり距離情報が変動した
場合、距離検出器はその影響を同じ様に受けて変動して
しまう。
Further, the unevenness information in the conventional method of calculating the velocity based on the unevenness information is the distance information between the specified minute portion of the surface of the object to be measured and the distance detector. Therefore,
When the distance detector itself has a positional change and the distance information changes, the distance detector is also affected by the influence and changes.

【0006】例えば、距離検出器を自動車の対地速度計
測装置として用いた場合、被測定物は一般に道路とな
る。このとき、車のバウンドやエンジンの振動等による
変動がある場合において、バウンドおよび振動は距離検
出器自体のバウンドおよび振動となり、道路面と距離検
出器間の距離の変動をもたらし、各距離検出器の出力信
号には、道路の凹凸情報の上に、同位相同振幅のノイズ
(以下、同相ノイズと呼ぶ)が重なることになる。その
結果として計測速度に誤差を生じてしまう。
For example, when the distance detector is used as a ground speed measuring device for an automobile, the object to be measured is generally a road. At this time, if there are fluctuations due to vehicle bounces or engine vibrations, the bounces and vibrations become the bounces and vibrations of the distance detector itself, causing fluctuations in the distance between the road surface and the distance detectors. In this output signal, noise having the same phase and the same amplitude (hereinafter referred to as “in-phase noise”) is superimposed on the road unevenness information. As a result, an error occurs in the measurement speed.

【0007】本発明は以上の問題に鑑み、距離検出器自
体に変動があり被測定物との距離情報が変動した場合で
も誤差を生じないで、正確な対地速度を計測することが
できる速度計測装置を提供することを目的とする。
In view of the above problems, the present invention can accurately measure the ground speed without causing an error even when the distance detector itself fluctuates and the distance information to the object to be measured fluctuates. The purpose is to provide a device.

【0008】[0008]

【課題を解決するための手段】以上の問題を解決するた
め、所定方向に移動する被測定物に光を照射して被測定
物からの反射光を受光することにより、被測定物の第
1、第2、第3の光照射点までの距離情報を求めるそれ
ぞれ第1、第2、第3の距離検出手段と、第1の距離検
出手段からの距離情報と第2の距離検出手段からの距離
情報との差演算を行う第1の差動演算器と、第2の距離
検出手段からの距離情報と第3の距離検出手段からの距
離情報との差演算を行う第2の差動演算器と、第1の差
動演算器の出力と第2の差動演算器の出力との相互相関
の演算を行い、第1の差動演算器の出力と第2の差動演
算器の出力との遅延時間を算出する相関演算器と、相関
演算器で得た遅延時間を基に、被測定物の速度を算出す
る速度演算器とから構成され、第1、第2、第3の光照
射点は被測定物の移動する所定方向に平行な軸の上にあ
り、第2の光照射点は、この所定方向に対して前記第1
の光照射点よりも後方に所定間隔離れており、第3の光
照射点は、この所定方向に対して前記第2の光照射点よ
りも後方に前述した所定間隔と同じ間隔だけ離れている
ことを特徴とする。
In order to solve the above problems, the first object to be measured is irradiated by irradiating the object to be measured which moves in a predetermined direction with light and receiving the reflected light from the object to be measured. , Second, third distance detecting means for obtaining distance information to the second and third light irradiation points, respectively, distance information from the first distance detecting means, and distance information from the second distance detecting means. A first differential calculator that calculates a difference from the distance information, and a second differential calculator that calculates a difference between the distance information from the second distance detecting means and the distance information from the third distance detecting means. And the output of the first differential computing unit and the output of the second differential computing unit are calculated, and the output of the first differential computing unit and the output of the second differential computing unit are calculated. From the correlation calculator that calculates the delay time with and the speed calculator that calculates the speed of the DUT based on the delay time obtained by the correlation calculator Made is, first, second, third light irradiation point is on the axis parallel to the predetermined direction of movement of the object, the second light irradiation point, the first with respect to the predetermined direction
Is separated from the light irradiation point by a predetermined distance, and the third light irradiation point is separated from the second light irradiation point by the same distance as the above-described predetermined distance in the predetermined direction. It is characterized by

【0009】また、被測定物に光を照射して被測定物か
らの反射光を受光することにより、被測定物の光照射点
までの距離情報を求めるそれぞれ第1、第2、第3、第
4の距離検出手段と、第1の距離検出手段からの距離情
報と第2の距離検出手段からの距離情報との差演算を行
う第1の差動演算器と、第3の距離検出手段からの距離
情報と第4の距離検出手段からの距離情報との差演算を
行う第2の差動演算器と、第1の差動演算器の出力と第
2の差動演算器の出力との相互相関の演算を行い、第1
の差動演算器の出力と第2の差動演算器の出力との遅延
時間を算出する相関演算器と、相関演算器で得た遅延時
間を基に、被測定物の速度を算出する速度演算器とから
構成され、第3の光照射点は、第1の光照射点を通り所
定方向に平行な軸の上で、かつ、所定方向に対して第1
の光照射点よりも後方に所定間隔離れており、第4の光
照射点は、第2の光照射点を通り所定方向に平行な軸の
上で、かつ、所定方向に対して第2の光照射点よりも後
方に前述の所定間隔と同じ間隔だけ離れていることを特
徴とする。この時、第1、第3の光照射点を通る軸と、
第2、第4の光照射点を通る軸とは同一の軸であること
を特徴としても良い。
Further, the distance information to the light irradiation point of the object to be measured is obtained by irradiating the object to be measured with light and receiving the reflected light from the object to be measured, respectively. Fourth distance detecting means, a first differential calculator for calculating a difference between the distance information from the first distance detecting means and the distance information from the second distance detecting means, and a third distance detecting means A second differential calculator for performing a difference calculation between the distance information from the first distance calculator and the distance information from the fourth distance detector, and the output of the first differential calculator and the output of the second differential calculator. The cross-correlation calculation of
Correlation calculator for calculating the delay time between the output of the differential calculator and the output of the second differential calculator, and a speed for calculating the speed of the DUT based on the delay time obtained by the correlation calculator And a third light irradiation point on the axis which passes through the first light irradiation point and is parallel to the predetermined direction and which is first with respect to the predetermined direction.
The fourth light irradiation point is separated from the second light irradiation point by a predetermined distance, and the fourth light irradiation point passes through the second light irradiation point on an axis parallel to the predetermined direction and in the second direction with respect to the predetermined direction. It is characterized in that it is separated from the light irradiation point by the same distance as the above-mentioned predetermined distance. At this time, an axis passing through the first and third light irradiation points,
The axis passing through the second and fourth light irradiation points may be the same axis.

【0010】上述した距離検出手段は、被測定物に光ビ
ームを投光する投光手段と、被測定物から反射される光
の方向を検出する受光レンズおよび光の入射位置検出素
子からなる受光手段を備え、3角測量の原理に基づいて
被測定物までの距離情報信号を出力することを特徴とし
ても良い。
The distance detecting means described above includes a light projecting means for projecting a light beam onto the object to be measured, a light receiving lens for detecting the direction of light reflected from the object to be measured, and a light incident position detecting element. Means may be provided to output a distance information signal to the object to be measured based on the principle of triangulation.

【0011】[0011]

【作用】距離検出器を自動車の対地速度計測装置として
用いた場合、上述したように各距離検出器の出力信号に
は、道路の凹凸情報の上に同相ノイズが重なっている。
同相ノイズは配設位置(光照射位置)の違いに関係なく
全ての距離検出器に同時に加わるため、本発明によれ
ば、2個の距離検出器間の差を取ることにより同相ノイ
ズを消去することができる。
When the distance detector is used as a ground speed measuring device of an automobile, the in-phase noise is superimposed on the road unevenness information in the output signal of each distance detector as described above.
Since the in-phase noise is added to all the distance detectors at the same time regardless of the difference in the installation position (light irradiation position), the present invention eliminates the in-phase noise by taking the difference between the two distance detectors. be able to.

【0012】また、この当該差演算を行う2個の距離検
出器を1組とする。この1組の一方の距離検出器(「第
1組のA」と呼ぶ)と別に用意した他の組の一方の距離
検出器(「第2組のA」と呼ぶ)とによる両方の光照射
点が移動方向と平行な同一軸上に存在するように両距離
検出器を配設する。さらに、他方の距離検出器(「第1
組のB」と呼ぶ)と別に用意した他の組の他方の距離検
出器(「第2組のB」と呼ぶ)とによる両方の光照射点
が移動方向と平行な同一軸上に存在するように両距離検
出器を配設する。
Further, one set of two distance detectors for performing the difference calculation is set. Both light irradiation by one distance detector of this one set (referred to as "first set A") and another distance detector of another set prepared separately (referred to as "second set A") Both distance detectors are arranged so that the points are on the same axis parallel to the moving direction. Further, the other distance detector (“first
Both of the light irradiation points by the other distance detector of another set (referred to as "B of the second set") and the other distance detector of another set (referred to as "B of the second set") exist on the same axis parallel to the moving direction. Both distance detectors are arranged in this manner.

【0013】このようにすることで、各組のそれぞれ対
応する距離検出器(「第1組のA」と「第2組のA」、
または、「第1組のB」と「第2組のB」)は、時間を
ずらして同じ被測定物表面の地点の凹凸情報を検出す
る。さらに、「第1組と第2組のA」による照射点の間
隔と「第1組と第2組のB」による照射点の間隔が同じ
なので、同じ地点の凹凸情報を検出する時間のずれ量
(「第1組のA」と「第2組のA」のずれ量と「第1組
のB」と「第2組のB」のずれ量)が同じである。
By doing so, the distance detectors corresponding to each set (“first set of A” and “second set of A”,
Alternatively, the “first set of B” and the “second set of B”) detect the unevenness information at the same point on the surface of the DUT at different times. Furthermore, since the interval between the irradiation points according to the “first set and the second set of A” is the same as the interval between the irradiation points according to the “first set and the second set of B”, there is a time lag for detecting unevenness information at the same point. The amounts are the same (the amount of shift between "A of the first set" and "A of the second set" and the amount of shift between "B of the first set" and "B of the second set").

【0014】そして、2組の距離検出器を用いることに
より、同相ノイズが消去された同じ組の2個の距離検出
器による光照射点における合成された道路の凹凸情報
と、この凹凸情報と検出時間がずれただけの振幅位相が
略一致する凹凸情報を得ることができる。
By using the two sets of distance detectors, the road unevenness information synthesized by the two distance detectors of the same set in which the in-phase noise has been eliminated and the road unevenness information synthesized and detected It is possible to obtain unevenness information in which the amplitudes and phases are substantially the same as the time is shifted.

【0015】[0015]

【実施例】図面を参照しながら、本発明の実施例を説明
する。
Embodiments of the present invention will be described with reference to the drawings.

【0016】図1は本実施例に係わる速度計測装置の構
成図である。被測定物(速度計測装置)の移動方向に平
行な同一軸上に3個の距離検出器A、B、Cを間隔dを
もって設置する。この時、距離検出器A、B、Cは被測
定物の表面に対して略直角に投光および受光する。以
下、各距離検出器A、B、Cの出力信号をそれぞれ
(a)、(b)、(c)とする。
FIG. 1 is a block diagram of a speed measuring device according to this embodiment. Three distance detectors A, B, and C are installed at intervals d on the same axis parallel to the moving direction of the object to be measured (speed measuring device). At this time, the distance detectors A, B, and C project and receive light substantially at right angles to the surface of the object to be measured. Hereinafter, the output signals of the distance detectors A, B and C will be referred to as (a), (b) and (c), respectively.

【0017】差動演算器51、52により(a)−
(b)と(b)−(c)とを求める。相関・速度演算器
6によって、この2つの差信号(a)−(b)と(b)
−(c)間の相互相関演算を行い、先ず両信号の遅延時
間(Zo)を検出し、その後、演算式v=d/Zo(d
は距離検出器の組の間の距離)を用いて速度vを算出す
る。
The differential calculators 51 and 52 (a)-
Find (b) and (b)-(c). The correlation / velocity calculator 6 calculates the two difference signals (a)-(b) and (b).
-(C) is cross-correlated, first the delay time (Zo) of both signals is detected, and then the calculation formula v = d / Zo (d
Is the distance between the set of distance detectors) to calculate the velocity v.

【0018】これに使用される距離検出器1の構成を図
2に示す。LED2より発射された投光ビームは、投光
用レンズ21を介して被測定物4の表面で反射される。
反射光は受光用レンズ31を介して集光され、光入射位
置検出素子(PSD)3の受光面に入射する。
The structure of the distance detector 1 used for this is shown in FIG. The projection beam emitted from the LED 2 is reflected by the surface of the DUT 4 via the projection lens 21.
The reflected light is condensed through the light receiving lens 31 and is incident on the light receiving surface of the light incident position detection element (PSD) 3.

【0019】光入射位置距離検出素子3の電流出力値I
A 、IB は、受光面上に集光されたスポット光の重心位
置に対応している。よって、当該距離検出器1と被測定
物4表面、詳しくは被測定物4表面上のLED2による
光照射点41までの距離情報は、このときの電流出力値
A 、IB をもとにIA /IB 、または(IA −IB
/(IA +IB )を求めることにより得られる。
Current output value I of the light incident position distance detecting element 3
A, I B corresponds to the center-of-gravity position of the spot light focused on the light receiving surface. Therefore, the distance information from the distance detector 1 to the surface of the DUT 4, more specifically, to the light irradiation point 41 by the LED 2 on the surface of the DUT 4 is based on the current output values I A and I B at this time. I A / I B or, (I A -I B)
It is obtained by calculating / (I A + I B ).

【0020】また、距離検出から速度の算出までの演算
処理系統のブロック図を図3に示す。被測定物までの凹
凸信号(a)、(b)、(c)は、それぞれ距離検出器
A、B、Cから出力される。差動演算器51により差信
号(a)−(b)を、差動演算器52により差信号
(b)−(c)を相関演算器61に出力する。相関演算
器61は2つの差信号(a)−(b)と(b)−(c)
間の相互相関演算を行い、(a)−(b)と(b)−
(c)との波形のずれの時間量である遅延時間Zoを算
出する。速度演算器62は、遅延時間Zoを基に速度v
を算出する。
FIG. 3 shows a block diagram of an arithmetic processing system from distance detection to speed calculation. The unevenness signals (a), (b) and (c) up to the object to be measured are output from the distance detectors A, B and C, respectively. The differential calculator 51 outputs the difference signals (a)-(b), and the differential calculator 52 outputs the difference signals (b)-(c) to the correlation calculator 61. The correlation calculator 61 has two difference signals (a)-(b) and (b)-(c).
Perform cross-correlation calculation between (a)-(b) and (b)-
The delay time Zo, which is the amount of time that the waveform deviates from (c), is calculated. The speed calculator 62 calculates the speed v based on the delay time Zo.
To calculate.

【0021】以下、図1に示した速度計測装置を用い
て、本発明における速度計測の実施形態の概略構成を図
4に示し、順次、速度算出までを従来例と比較しながら
詳しく説明する。
FIG. 4 shows a schematic configuration of an embodiment of the speed measurement according to the present invention using the speed measurement device shown in FIG. 1, and a detailed description will be given in sequence until the speed calculation is compared with the conventional example.

【0022】被測定物の表面の凹凸は図に示されるよう
な状態であり、その情報に速度計測装置を配置する。距
離検出器はこの速度計測装置の移動方向の前方からA、
B、Cの順で配設されている。そして、図に示す距離検
出器A、B、Cの表示位置は、それぞれt=0における
移動方向に係わる空間的初期位置を表す。
The unevenness on the surface of the object to be measured is as shown in the figure, and the speed measuring device is arranged for the information. The distance detector is A from the front in the moving direction of the speed measuring device,
B and C are arranged in this order. The display positions of the distance detectors A, B, and C shown in the drawing each represent a spatial initial position relating to the moving direction at t = 0.

【0023】この速度計測装置を速度vで動かす時、各
距離検出器はノイズを含まない場合は図5、ノイズを含
む場合は図8のような距離情報を出力する。実際には、
この距離情報は各距離検出器と被測定物との相対的な距
離、すなわち、各距離の変化分を示す情報である。な
お、図5、図6、図8、図9における波形は、これらの
図の時間1に対して図4の距離1となるような一定速度
vで、速度計測装置を移動させた場合のものである。
When the speed measuring device is moved at the speed v, each distance detector outputs distance information as shown in FIG. 5 when no noise is included and as shown in FIG. 8 when noise is included. actually,
This distance information is information indicating the relative distance between each distance detector and the object to be measured, that is, the amount of change in each distance. The waveforms in FIGS. 5, 6, 8 and 9 are obtained when the speed measuring device is moved at a constant speed v such that the distance 1 in FIG. Is.

【0024】同相ノイズが無い時の距離検出器A、B、
Cからの出力信号波形(a)、(b)、(c)を時間的
初期位置を一致させて、それぞれ図5(イ)、(ロ)、
(ハ)に示す。従来の方式では距離検出器A、Bからの
出力(a)、(b)に対して、本実施例においては距離
検出器がA、B、Cと3個あるため出力も(a)、
(b)、(c)と3個得られる。
Distance detectors A, B when there is no in-phase noise,
The output signal waveforms (a), (b), and (c) from C are made to coincide with each other at the initial positions in time, and are respectively shown in FIGS.
As shown in (c). In the conventional method, the outputs (a) and (b) from the distance detectors A and B are different from the outputs (a) and (b) in this embodiment.
Three pieces (b) and (c) are obtained.

【0025】この図より、ノイズを含んでいないため配
設位置の差による時間ずれ、すなわち、遅延時間Zoだ
けずれて(a)、(b)、(c)各信号が繰り返されて
いることが相関演算をするまでもなくわかる。
From this figure, it is understood that the signals (a), (b) and (c) are repeated with a time lag due to the difference in the arrangement position, that is, with a delay time Zo, since no noise is included. You don't need to calculate the correlation to understand.

【0026】さらに、本実施例の方法である速度計測装
置の差動演算器による差信号(a)−(b)と差信号
(b)−(c)の波形を、それぞれ図6(イ)、(ロ)
に示す。この図においても、図5と同様に、配設位置の
差による時間ずれ(遅延時間Zo)だけずれて各差信号
が繰り返されている。
Further, the waveforms of the difference signals (a)-(b) and the difference signals (b)-(c) by the differential calculator of the speed measuring device according to the method of this embodiment are respectively shown in FIG. , (B)
Shown in. Also in this figure, as in FIG. 5, each difference signal is repeated with a time difference (delay time Zo) due to the difference in the arrangement position.

【0027】同相ノイズが無い場合、すなわち図5およ
び図6のような信号が得られる時の相関演算の結果は図
7(イ)および図7(ロ)のようになり、遅延時間Zo
の値は両方式とも正しく等しい値を示す。ただし、ここ
でZは相関演算の推移量を示す。
When there is no in-phase noise, that is, when the signals shown in FIGS. 5 and 6 are obtained, the results of the correlation calculation are as shown in FIGS. 7A and 7B, and the delay time Zo
The values of are both equal and correct. However, here, Z indicates the amount of change in the correlation calculation.

【0028】次に、同相ノイズが加わった場合におい
て、従来例と本実施例を比べながら考える。
Next, when common-mode noise is added, consideration will be given by comparing this example with the conventional example.

【0029】同相ノイズが存在する場合の距離検出器
A、B、Cからの出力(a)、(b)、(c)の波形を
それぞれ図8(イ)、(ロ)、(ハ)に示す。また、本
実施例の方法である速度計測装置の差動演算器による差
信号(a)−(b)、(b)−(c)の波形をそれぞれ
図9(イ)、(ロ)に示す。
The waveforms of outputs (a), (b) and (c) from the distance detectors A, B and C in the presence of in-phase noise are shown in FIGS. 8 (a), 8 (b) and 8 (c), respectively. Show. Further, the waveforms of the difference signals (a)-(b) and (b)-(c) by the differential calculator of the speed measuring device according to the method of this embodiment are shown in FIGS. 9 (a) and 9 (b), respectively. .

【0030】図8からは、図5のように遅延時間Zoを
見出だすことはできない。しかしながら、本実施例によ
るならば、同相ノイズが加わった場合においても、ノイ
ズがない状態での図6と同様に、遅延時間Zoだけずれ
て各差信号が繰り返されていることが容易にわかる。
The delay time Zo cannot be found from FIG. 8 as in FIG. However, according to the present embodiment, even when in-phase noise is added, it is easily understood that each difference signal is repeated with a delay time Zo, as in FIG. 6 in the absence of noise.

【0031】この時従来例の場合の相関結果は、図10
(イ)となり、相関値の極大値は基本的にZ=ZoとZ
=0の2点に現れ、一般的に遅延時間は実際より短くな
る傾向を示し、状況により0または0に近い値となる。
これに対し、本実施例の方式によれば差信号(a)−
(b)と(b)−(c)とは、それぞれ減算により同相
ノイズ成分は除去される。結果として正しい遅延時間Z
oが算出されるとことになる(図10(ロ))。
At this time, the correlation result in the case of the conventional example is shown in FIG.
(A), and the maximum value of the correlation value is basically Z = Zo and Z
It appears at two points of = 0, and generally the delay time tends to be shorter than it actually is, and it becomes 0 or a value close to 0 depending on the situation.
On the other hand, according to the method of this embodiment, the difference signal (a) −
In (b) and (b)-(c), in-phase noise components are removed by subtraction. As a result, the correct delay time Z
This means that o is calculated (FIG. 10B).

【0032】上述した実施例によれば、距離検出器が3
個で良く、速度計測装置を小形化することができる。ま
た、投光受光を被測定面に対し略直角とする距離検出器
を4個使用する場合の変形例を図11から図13に示
す。
According to the above-described embodiment, the distance detector has three
The number of units is sufficient, and the speed measuring device can be downsized. 11 to 13 show modified examples in which four distance detectors that project and receive light at a right angle to the surface to be measured are used.

【0033】移動方向と平行な同一軸上に距離検出器を
ABCDの順で配設し、距離検出器Aの出力と距離検出
器Bの出力との差演算、距離検出器Cの出力と距離検出
器Dの出力との差演算を行う速度計測装置を図11
(イ)に示す。ここで、距離検出器AとCによる光照射
点の間隔と距離検出器BとDによる光照射点の間隔とは
等しくする必要がある。言い換えれば、各距離検出器の
投光受光を被測定面に対し略直角としてあるので、距離
検出器ACの間隔と距離検出器BDの間隔とは等しい。
Distance detectors are arranged in the order of ABCD on the same axis parallel to the moving direction, and the difference between the output of the distance detector A and the output of the distance detector B is calculated, and the output of the distance detector C and the distance are calculated. FIG. 11 shows a speed measuring device that calculates the difference from the output of the detector D.
Shown in (a). Here, it is necessary to make the distance between the light irradiation points by the distance detectors A and C equal to the distance between the light irradiation points by the distance detectors B and D. In other words, since the projected light and received light of each distance detector are set substantially at right angles to the surface to be measured, the distance between the distance detector AC and the distance between the distance detector BD is equal.

【0034】また、光照射点同士の間隔、この場合は距
離検出器ACの間隔と距離検出器BDの間隔とを等しく
保つならば、図11(イ)の距離検出器の順番を入れ替
えてACBDの順で配設し、図11(ロ)のようにして
も良い。このとき、差演算は距離検出器Aの出力と距離
検出器Bの出力の間、距離検出器Cの出力と距離検出器
Dの出力の間で行うものとする。
Further, if the distance between the light irradiation points, in this case, the distance between the distance detector AC and the distance between the distance detectors BD is kept equal, the order of the distance detectors in FIG. 11B may be arranged in this order. At this time, the difference calculation is performed between the output of the distance detector A and the output of the distance detector B, and between the output of the distance detector C and the output of the distance detector D.

【0035】図12は、光照射点を結ぶ軸(ここでは距
離検出器の配設軸)が同一軸ではなく移動方向と平行な
2つの軸の上に配設する変形例を示す。ここで、距離検
出器Aの出力と距離検出器Bの出力との差演算、距離検
出器Cの出力と距離検出器Dの出力との差演算を行うと
すれば、距離検出器Aと距離検出器Cとを同一軸に、そ
して、距離検出器Bと距離検出器Dとを同一軸にする必
要がある。
FIG. 12 shows a modification in which the axis connecting the light irradiation points (here, the axis on which the distance detector is arranged) is not arranged on the same axis but on two axes parallel to the moving direction. Here, if the difference calculation between the output of the distance detector A and the output of the distance detector B and the difference calculation between the output of the distance detector C and the output of the distance detector D are performed, the distance detector A and the distance It is necessary that the detector C is on the same axis, and the distance detector B and the distance detector D are on the same axis.

【0036】さらに、距離検出器AとCによる光照射点
の間隔と距離検出器BとDによる光照射点の間隔とを等
しくするならば、距離検出器AとB、または距離検出器
CとDの位置関係は、図13(上面図)に示すように移
動方向に対して垂直に揃える必要はない。
Further, if the distance between the light irradiation points by the distance detectors A and C is made equal to the distance between the light irradiation points by the distance detectors B and D, the distance detectors A and B or the distance detector C are obtained. The positional relationship of D does not need to be aligned perpendicular to the moving direction as shown in FIG. 13 (top view).

【0037】また、速度計測に必要な凹凸情報はその変
化分を測定すれば良いので、各距離検出器は被測定物ま
での距離を全て略一致させることはなく、被測定物まで
の距離はそれぞれの距離検出器で異なっても良く、すな
わち、図13(側面図)に示すように距離検出器が全て
被測定物の表面と略平行な同じ平面上になくても良い。
上述した各距離検出器と被測定物との距離は問わないと
いう条件は、上面より見たときに移動方向と平行な同一
線上に、3個および4個の距離検出器が配設されている
場合(図1(上面図)および図11(上面図)等)にも
当てはまる。
Further, since the unevenness information necessary for speed measurement may be measured by the change, the distance detectors do not substantially match the distance to the object to be measured, and the distance to the object to be measured is The distance detectors may be different, that is, the distance detectors need not all be on the same plane substantially parallel to the surface of the object to be measured as shown in FIG. 13 (side view).
As long as the distance between each distance detector and the object to be measured does not matter, the three and four distance detectors are arranged on the same line parallel to the moving direction when viewed from the top. The same applies to cases such as FIG. 1 (top view) and FIG. 11 (top view).

【0038】ここで、各距離検出器の配設間隔は、速度
計測装置としての必要精度、計測範囲、投受光器の周波
数応答特性、各距離検出器における光照射点のずれ量の
許容特性、被測定物表面の凹凸や起伏の空間的周波数特
性、および、装置の外観、形状等が決定要因となる。
Here, the disposition intervals of the distance detectors are required accuracy as a speed measuring device, measurement range, frequency response characteristics of the light emitter / receiver, allowable characteristics of deviation amount of light irradiation point in each distance detector, The determinants are the spatial frequency characteristics of irregularities and undulations on the surface of the object to be measured, and the appearance and shape of the device.

【0039】特に、各距離検出器における光照射点のず
れ量の許容特性、すなわち、相関演算を行う各組の距離
検出器における被測定物表面上の光照射点の移動方向と
これと直角をなす方向のずれ量の許容特性が問題とな
る。言い換えれば、相関演算を行う各組の距離検出器の
間隔、すなわち、dが大きくなり過ぎると、移動速度及
び移動方向の変化、および、その変化過程等において、
同一地点の凹凸情報を検出すべきこれらの距離検出器の
光照射点が同一地点を通過せずに、あるずれ量を有する
様になり、この場合のずれ量の許容範囲が問題となる。
In particular, the allowable characteristic of the deviation amount of the light irradiation point in each distance detector, that is, the moving direction of the light irradiation point on the surface of the object to be measured in each pair of distance detectors performing the correlation calculation and the right angle thereto. There is a problem with the allowable characteristic of the amount of deviation in the forming direction. In other words, when the distance between the distance detectors of each set for performing the correlation calculation, that is, d becomes too large, in the change of the moving speed and the moving direction, and the changing process,
The light irradiation points of these distance detectors, which should detect the unevenness information at the same point, do not pass through the same point but have a certain amount of deviation, and the allowable range of the amount of deviation in this case becomes a problem.

【0040】また、本発明の速度計測装置を車に搭載す
るような場合は、差演算を行う2つの距離検出器間の間
隔が大きくなり過ぎると、ピッチング等の影響により当
該距離検出器に同一ノイズが加わらなくなり、速度の誤
差が大きくなってしまう。
Further, in the case where the speed measuring device of the present invention is mounted on a vehicle, if the distance between two distance detectors for performing the difference calculation becomes too large, the distance detector will be the same as the distance detector due to the influence of pitching or the like. Noise is no longer added and the speed error increases.

【0041】以上の点を考慮して、距離検出器の配設間
隔を決定し、また、配設位置として有利なタイプを選択
をする必要がある。
In consideration of the above points, it is necessary to determine the arrangement interval of the distance detectors and select an advantageous type as the arrangement position.

【0042】実施例では、速度計測装置が移動するが、
速度計測装置を固定し被測定物が移動するような場合で
も使用できる。この場合においても、被測定物および速
度計測装置の同相ノイズは除去できる。また、実施例で
は差演算は(a)−(b)等としているが、(b)−
(a)等と差演算の順番を逆にしても良いことは言うま
でもない。
In the embodiment, the speed measuring device moves,
It can be used even when the speed measurement device is fixed and the measured object moves. Even in this case, the in-phase noise of the DUT and the velocity measuring device can be removed. Further, in the embodiment, the difference calculation is (a)-(b), but (b)-
It goes without saying that the order of the difference calculation may be reversed from that of (a) and the like.

【0043】さらに、実施例では被測定物の平面に対し
投光ビームを略直角に照射しているが、速度計測に必要
な凹凸情報の変化分を測定できるならば斜めに照射して
も良く、また、投光手段と受光手段とを相当距離離して
も良い。しかしながら、測定誤差を考慮する時、略直角
に投光および受光することが望ましい。
Further, in the embodiment, the projection beam is applied to the plane of the object to be measured substantially at a right angle, but it may be applied obliquely as long as the variation of the unevenness information necessary for speed measurement can be measured. Also, the light projecting means and the light receiving means may be separated by a considerable distance. However, when considering the measurement error, it is desirable to project and receive light at a substantially right angle.

【0044】[0044]

【発明の効果】同相ノイズはその原因により様々なある
特定な周波数を有し、また、被測定物表面の凹凸から得
られる信号は被測定物の移動速度により変化する。本発
明によれば、同相ノイズと当該凹凸信号の周波数のこの
ような関係にかかわりなく、当該同相ノイズをカットす
ることができる。
The in-phase noise has various specific frequencies due to its cause, and the signal obtained from the unevenness of the surface of the object to be measured changes depending on the moving speed of the object to be measured. According to the present invention, the common-mode noise can be cut regardless of the relationship between the common-mode noise and the frequency of the uneven signal.

【0045】また、ノイズをカットする方法として、他
に電気的フィルターを用いることも考えられるが、この
方法では同相ノイズをカットする過程において多少の必
要情報の信号劣化を伴う。本発明によれば、フィルター
を用いる方法とは異なり、同相ノイズをカットする過程
において、相関演算を適用する上での不都合な点、即
ち、被測定物表面の凹凸信号からの必要な情報の喪失の
恐れは全くない。
Although an electric filter may be used as a method of cutting noise, this method involves some signal deterioration of necessary information in the process of cutting in-phase noise. According to the present invention, unlike the method using the filter, in the process of cutting the in-phase noise, a disadvantage in applying the correlation calculation, that is, the loss of necessary information from the uneven signal of the surface of the DUT. There is no fear of.

【0046】すなわち、本発明の構成により、同相ノイ
ズが消去された同じ組の2個の距離検出器による光照射
点における合成された被測定物表面の凹凸情報と、この
凹凸情報と検出時間がずれただけの振幅位相がほぼ同じ
凹凸情報を得ることができる。そして、これらの凹凸情
報の間で相関演算を行うことで、精度の高い相関を取る
ことが可能となる。よって、精度の高い光照射点の位置
の差による遅延時間が算出ができるので、精度の高い移
動速度の算出が可能となる。
That is, according to the configuration of the present invention, the combined unevenness information of the surface of the object to be measured at the light irradiation point by the two distance detectors of the same set in which the in-phase noise is eliminated, this unevenness information and the detection time. It is possible to obtain the unevenness information in which the amplitude and the phase are substantially the same just with the shift. Then, by performing a correlation calculation between these pieces of unevenness information, it becomes possible to obtain a highly accurate correlation. Therefore, since the delay time due to the difference in the positions of the light irradiation points can be calculated with high accuracy, it is possible to calculate the moving speed with high accuracy.

【0047】また、同相ノイズが大きく加わるような環
境においても使用が可能となり、より広い使用条件下で
同相ノイズの影響に左右されない高精度の速度計測装置
を実現することができる。また、本発明は、被測定物表
面の凹凸情報に基づくために、従来技術の明暗情報に基
づき速度を算出する方式の弱点を埋めることができる。
Further, it can be used even in an environment where a large amount of common-mode noise is added, and it is possible to realize a highly accurate speed measuring device which is not affected by the influence of common-mode noise under wider usage conditions. Further, since the present invention is based on the unevenness information of the surface of the object to be measured, it is possible to fill the weak points of the conventional method of calculating the speed based on the light and dark information.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係わる速度計測装置の構成図
である。
FIG. 1 is a configuration diagram of a speed measuring device according to an embodiment of the present invention.

【図2】本発明の実施例に係わる距離検出器の構成図で
ある。
FIG. 2 is a configuration diagram of a distance detector according to an embodiment of the present invention.

【図3】本発明の実施例の距離検出から速度の算出まで
の演算処理系統のブロック図である。
FIG. 3 is a block diagram of an arithmetic processing system from distance detection to speed calculation according to an embodiment of the present invention.

【図4】本発明の実施例における速度計測の実施形態の
概略構成図である。
FIG. 4 is a schematic configuration diagram of an embodiment of speed measurement in an example of the present invention.

【図5】同相ノイズが無い時の距離検出器A、B、Cか
らの出力信号波形を示す図である。
FIG. 5 is a diagram showing output signal waveforms from distance detectors A, B, and C when there is no in-phase noise.

【図6】同相ノイズが無い時の本発明の実施例の方法で
ある速度計測装置の差動演算器による差信号(a)−
(b)と差信号(b)−(c)の波形を示す図である。
FIG. 6 is a difference signal (a) -by the differential calculator of the speed measuring device which is the method of the embodiment of the present invention when there is no in-phase noise.
It is a figure which shows the waveform of (b) and difference signal (b)-(c).

【図7】同相ノイズが無い場合の従来と本発明における
方式との相関演算の結果を示す図である。
FIG. 7 is a diagram showing a result of a correlation calculation between the conventional method and the method of the present invention when there is no in-phase noise.

【図8】同相ノイズを含んだ時の距離検出器A、B、C
からの出力信号波形を示す図である。
FIG. 8: Distance detectors A, B, C when in-phase noise is included
It is a figure which shows the output signal waveform from.

【図9】同相ノイズを含んだ時の本発明の実施例の方法
である速度計測装置の差動演算器による差信号(a)−
(b)と差信号(b)−(c)の波形を示す図である。
FIG. 9 is a difference signal (a) − by the differential calculator of the speed measuring device which is the method of the embodiment of the present invention when the common-mode noise is included.
It is a figure which shows the waveform of (b) and difference signal (b)-(c).

【図10】同相ノイズを含んだ場合の従来と本発明にお
ける方式との相関演算の結果を示す図である。
FIG. 10 is a diagram showing a result of correlation calculation between the conventional method and the method according to the present invention when common-mode noise is included.

【図11】距離検出器を4個使用する場合の変形例を示
す図である。
FIG. 11 is a diagram showing a modification in which four distance detectors are used.

【図12】距離検出器を4個使用する場合の変形例を示
す図である。
FIG. 12 is a diagram showing a modified example when four distance detectors are used.

【図13】距離検出器を4個使用する場合の変形例を示
す図である。
FIG. 13 is a diagram showing a modified example in which four distance detectors are used.

【図14】従来の速度計測装置の構成を示す図である。FIG. 14 is a diagram showing a configuration of a conventional speed measuring device.

【符号の説明】[Explanation of symbols]

A,B,C,D…距離検出器、1…距離検出器、2…L
ED、21…投光用レンズ、3…PSD、31…集光用
レンズ、4…被測定物、41…照射点、51…差動演算
器、52…差動演算器、6…相関・速度演算器、61…
相関演算器、62…速度演算器。
A, B, C, D ... Distance detector, 1 ... Distance detector, 2 ... L
ED, 21 ... Projection lens, 3 ... PSD, 31 ... Focusing lens, 4 ... DUT, 41 ... Irradiation point, 51 ... Differential calculator, 52 ... Differential calculator, 6 ... Correlation / speed Calculator, 61 ...
Correlation calculator, 62 ... Speed calculator.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 所定方向に移動する被測定物に光を照射
して前記被測定物からの反射光を受光することにより、
前記被測定物の第1、第2、第3の光照射点までの距離
情報を求めるそれぞれ第1、第2、第3の距離検出手段
と、 前記第1の距離検出手段からの距離情報と前記第2の距
離検出手段からの距離情報との差演算を行う第1の差動
演算器と、 前記第2の距離検出手段からの距離情報と前記第3の距
離検出手段からの距離情報との差演算を行う第2の差動
演算器と、 前記第1の差動演算器の出力と前記第2の差動演算器の
出力との相互相関の演算を行い、前記第1の差動演算器
の出力と前記第2の差動演算器の出力との遅延時間を算
出する相関演算器と、 前記相関演算器で得た前記遅延時間を基に、前記被測定
物の速度を算出する速度演算器とから構成され、 前記第1、第2、第3の光照射点は前記所定方向に平行
な軸の上にあり、 前記第2の光照射点は、前記所定方向に対して前記第1
の光照射点よりも後方に所定間隔離れており、 前記第3の光照射点は、前記所定方向に対して前記第2
の光照射点よりも後方に前記所定間隔離れていることを
特徴とする速度計測装置。
1. By irradiating an object to be measured that moves in a predetermined direction with light and receiving reflected light from the object to be measured,
First, second, and third distance detecting means for obtaining distance information to the first, second, and third light irradiation points of the measured object, and distance information from the first distance detecting means, respectively. A first differential calculator for performing a difference calculation with distance information from the second distance detecting means; distance information from the second distance detecting means and distance information from the third distance detecting means A second differential arithmetic unit that performs a difference calculation of the first differential arithmetic unit and an output of the first differential arithmetic unit and an output of the second differential arithmetic unit. A correlation calculator for calculating the delay time between the output of the calculator and the output of the second differential calculator, and the speed of the object to be measured based on the delay time obtained by the correlation calculator. A speed calculator, and the first, second, and third light irradiation points are on an axis parallel to the predetermined direction, and Light irradiation point, the first with respect to the predetermined direction 1
A predetermined distance behind the light irradiation point of the second light irradiation point, and the third light irradiation point is the second light irradiation point with respect to the second direction with respect to the predetermined direction.
2. The speed measuring device, characterized in that the predetermined distance is provided behind the light irradiation point.
【請求項2】 前記距離検出手段は、被測定物に光ビー
ムを投光する投光手段と、前記被測定物から反射される
光の方向を検出する受光レンズおよび光の入射位置検出
素子からなる受光手段を備え、3角測量の原理に基づい
て前記被測定物までの距離情報を出力することを特徴と
する請求項1記載の速度計測装置。
2. The distance detecting means comprises a light projecting means for projecting a light beam onto an object to be measured, a light receiving lens for detecting the direction of light reflected from the object to be measured, and a light incident position detecting element. The speed measuring device according to claim 1, further comprising: a light receiving unit that outputs distance information to the object to be measured based on the principle of triangulation.
【請求項3】 所定方向に移動する被測定物に光を照射
して前記被測定物からの反射光を受光することにより、
前記被測定物の第1、第2、第3、第4の光照射点まで
の距離情報を求めるそれぞれ第1、第2、第3、第4の
距離検出手段と、 前記第1の距離検出手段からの距離情報と前記第2の距
離検出手段からの距離情報との差演算を行う第1の差動
演算器と、 前記第3の距離検出手段からの距離情報と前記第4の距
離検出手段からの距離情報との差演算を行う第2の差動
演算器と、 前記第1の差動演算器の出力と前記第2の差動演算器の
出力との相互相関の演算を行い、前記第1の差動演算器
の出力と前記第2の差動演算器の出力との遅延時間を算
出する相関演算器と、 前記相関演算器で得た前記遅延時間を基に、前記被測定
物の速度を算出する速度演算器とから構成され、 前記第3の光照射点は、前記第1の光照射点を通り前記
所定方向に平行な軸の上で、かつ、前記所定方向に対し
て前記第1の光照射点よりも後方に所定間隔離れてお
り、 前記第4の光照射点は、前記第2の光照射点を通り前記
所定方向に平行な軸の上で、かつ、前記所定方向に対し
て前記第2の光照射点よりも後方に前記所定間隔離れて
いることを特徴とする速度計測装置。
3. By irradiating a measured object moving in a predetermined direction with light and receiving reflected light from the measured object,
First, second, third, and fourth distance detecting means for obtaining distance information to the first, second, third, and fourth light irradiation points of the measured object, and the first distance detection A first differential calculator for calculating a difference between the distance information from the distance detector and the distance information from the second distance detector, the distance information from the third distance detector, and the fourth distance detector A second differential calculator that performs a difference calculation with distance information from the means, and a cross-correlation calculation between the output of the first differential calculator and the output of the second differential calculator, A correlation calculator that calculates a delay time between the output of the first differential calculator and the output of the second differential calculator, and the measured object based on the delay time obtained by the correlation calculator. And a velocity calculator for calculating the velocity of the object, wherein the third light irradiation point passes through the first light irradiation point and is flat in the predetermined direction. On a different axis and at a predetermined distance behind the first light irradiation point with respect to the predetermined direction, the fourth light irradiation point passes through the second light irradiation point, and A velocity measuring device, characterized in that the velocity measuring device is on the axis parallel to the predetermined direction and at a predetermined distance behind the second light irradiation point with respect to the predetermined direction.
【請求項4】 前記第1、第3の光照射点を通る軸と、
前記第2、第4の光照射点を通る軸とは同一の軸である
ことを特徴とする請求項3記載の速度計測装置。
4. An axis passing through the first and third light irradiation points,
The speed measuring device according to claim 3, wherein the axis passing through the second and fourth light irradiation points is the same axis.
【請求項5】 前記距離検出手段は、被測定物に光ビー
ムを投光する投光手段と、前記被測定物から反射される
光の方向を検出する受光レンズおよび光の入射位置検出
素子からなる受光手段を備え、3角測量の原理に基づい
て前記被測定物までの距離情報を出力することを特徴と
する請求項3又は4記載の速度計測装置。
5. The distance detecting means includes a light projecting means for projecting a light beam onto the object to be measured, a light receiving lens for detecting the direction of light reflected from the object to be measured, and a light incident position detecting element. The speed measuring device according to claim 3 or 4, further comprising: a light receiving unit that outputs distance information to the object to be measured based on the principle of triangulation.
JP18661692A 1992-07-14 1992-07-14 Measuring equipment for speed Pending JPH0634647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18661692A JPH0634647A (en) 1992-07-14 1992-07-14 Measuring equipment for speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18661692A JPH0634647A (en) 1992-07-14 1992-07-14 Measuring equipment for speed

Publications (1)

Publication Number Publication Date
JPH0634647A true JPH0634647A (en) 1994-02-10

Family

ID=16191701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18661692A Pending JPH0634647A (en) 1992-07-14 1992-07-14 Measuring equipment for speed

Country Status (1)

Country Link
JP (1) JPH0634647A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674517B2 (en) 2002-01-31 2004-01-06 Sharp Kabushiki Kaisha Optical motion detector, transport system and transport processing system
WO2004034065A1 (en) * 2002-10-11 2004-04-22 The Timken Company Speed sensing method and apparatus
US6859266B2 (en) 2002-01-17 2005-02-22 Sharp Kabushiki Kaisha Optical movement detecting device and transport system using the same
US7012691B2 (en) 2002-08-06 2006-03-14 Sharp Kabushiki Kaisha Optical moving information measuring apparatus and carrier system incorporating the same
JP2010513897A (en) * 2006-12-21 2010-04-30 レニショウ パブリック リミテッド カンパニー Object detector apparatus and method
CN116046594A (en) * 2023-03-27 2023-05-02 福建省计量科学研究院(福建省眼镜质量检验站) Non-contact type material testing machine displacement rate calibration method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859266B2 (en) 2002-01-17 2005-02-22 Sharp Kabushiki Kaisha Optical movement detecting device and transport system using the same
US6674517B2 (en) 2002-01-31 2004-01-06 Sharp Kabushiki Kaisha Optical motion detector, transport system and transport processing system
US7012691B2 (en) 2002-08-06 2006-03-14 Sharp Kabushiki Kaisha Optical moving information measuring apparatus and carrier system incorporating the same
WO2004034065A1 (en) * 2002-10-11 2004-04-22 The Timken Company Speed sensing method and apparatus
US7174269B2 (en) 2002-10-11 2007-02-06 The Timken Company Speed sensing method and apparatus
JP2010513897A (en) * 2006-12-21 2010-04-30 レニショウ パブリック リミテッド カンパニー Object detector apparatus and method
US8537359B2 (en) 2006-12-21 2013-09-17 Renishaw Plc Object detector apparatus and method
CN116046594A (en) * 2023-03-27 2023-05-02 福建省计量科学研究院(福建省眼镜质量检验站) Non-contact type material testing machine displacement rate calibration method

Similar Documents

Publication Publication Date Title
JP3031529B2 (en) Method and apparatus for measuring sectional dimensions of H-section steel
US5026162A (en) Optical interference position measurement system
JPH0634647A (en) Measuring equipment for speed
US8195421B2 (en) Velocity detector
US4725146A (en) Method and apparatus for sensing position
JP3235368B2 (en) Laser Doppler velocity measuring device
JPH0980154A (en) Laser doppler wheel speed measuring apparatus
JP3059714B1 (en) Relative position measurement device
Kotus et al. Localization of sound sources with dual acoustic vector sensor
JP3239682B2 (en) Segment position measurement method
JPH04324324A (en) Device and method for measuring moving sound source
JP2022180009A (en) Surface shape measuring device and method for measuring surface shape
JPH07167879A (en) Laser doppler flow velocity meter
JPH0233186Y2 (en)
JPH06281429A (en) Dimension measuring device of shape steel
JPH11257943A (en) Measuring apparatus for dimension of running car
JPH06230097A (en) Moving body position detector
JPH07294537A (en) Speed and distance detector
JPS599514A (en) Gyroscope
JPS5977306A (en) Interferometer type measuring device
Guenther et al. O1. 1-Laser-Doppler-Distance-Sensor Using Phase Evaluation for Position, Shape and Vibration Measurements
Dändliker Measuring displacement, velocity and vibration by laser interferometry
JPH04301583A (en) System for measuring position of moving body
JPH10221055A (en) Method and apparatus for measuring surface profile
JPH0447286A (en) Speed measuring device