JPS5977306A - Interferometer type measuring device - Google Patents

Interferometer type measuring device

Info

Publication number
JPS5977306A
JPS5977306A JP57186696A JP18669682A JPS5977306A JP S5977306 A JPS5977306 A JP S5977306A JP 57186696 A JP57186696 A JP 57186696A JP 18669682 A JP18669682 A JP 18669682A JP S5977306 A JPS5977306 A JP S5977306A
Authority
JP
Japan
Prior art keywords
light
frequency
optical
mirror
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57186696A
Other languages
Japanese (ja)
Inventor
Hiroshi Takeuchi
弘 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57186696A priority Critical patent/JPS5977306A/en
Publication of JPS5977306A publication Critical patent/JPS5977306A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To make a device compact, by splitting the light from a light source into a light beam, which is inputted to a Bragg cell, and a light beam, which is inputted to an object to be measured, through a half mirror. CONSTITUTION:Part of light 100 having a frequency f0, which is outputted from a laser light source 1, is reflected by a half mirror 5 and inputted to a Bragg cell 2. Then, a first modulated light beam having a frequency of f0+f1 is obtained. The light beam is reflected by a reflecting mirror 4 and inputted to a light receivig device 7 through the Bragg cell 2 and the mirror 5 again. Meanwhile, the rest of the light 100, which has passed the mirror 5, is projected to a reflecting mirror 6, which is attached to an object to be measured. The light reflected by the mirror 6 becomes the light having a frequency of f0+DELTAf. The light is reflected by the mirror 5 and merged with the light 103. The result reaches the light receiving device 7. An electric signal 105 of f1+ or -DELTAf is obtained from the light receiving device. The signal 105 and an electric signal 106 having a frequency f1 from a driving circuit 3 are inputted to a measuring circuit 8, and a moving distance l is obtained.

Description

【発明の詳細な説明】 a)技術分野 本発明は変動する物体の変動距離を測定する4測装置、
に係シ、特に音響光学素子を用いた光干渉形計測装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION a) Technical Field The present invention relates to a four-measurement device for measuring the distance of a moving object;
In particular, the present invention relates to an optical interference type measuring device using an acousto-optic element.

b)技術的背景とその問題点 ブラッグセルの様な音響光学素子を用いて光の周波数を
音波の周波数だけシフトできることは周知である。この
周波数がシフトされた光と元の周波数の元を干渉させ、
その際に生じる差の周波数の信号から種々の被測定対象
の変位量を検出することができる。この技術はヘテロゲ
イン検出法と云われ、周波数が差の周波数に低減された
信号4二測定対象の変位にの情報(周波数変化1位相変
化)が変換される所シー特徴がある。
b) Technical Background and Problems It is well known that the frequency of light can be shifted by the frequency of sound waves using an acousto-optic device such as a Bragg cell. This frequency-shifted light interferes with the original frequency,
The amount of displacement of various objects to be measured can be detected from the difference frequency signals generated at this time. This technique is called a heterogain detection method, and has the characteristic that information (one frequency change, one phase change) is converted into a signal 42 whose frequency is reduced to a difference frequency, and the displacement of the object to be measured (one frequency change, one phase change).

%1図は従来の移動距離測定用の光干渉形計測装置9の
ブロックII晟図である。
Figure 1 is a block II diagram of a conventional optical interference type measuring device 9 for measuring moving distance.

レーザ光源1から出射した周波数f。の光100はブラ
ッグセル2(二人射される。ブラッグセル2は駆11の
回路3から周波if1の信号が付勢され、元の周波数f
。のま−のθ次元102、周波数がf。十ムにシフトさ
れた1次変調光103、周波数がf。+2人にシフトさ
れた2次賀調光104等の光を分離して出力する。
Frequency f emitted from laser light source 1. The light 100 is emitted from the Bragg cell 2 (two people).
. The current θ dimension 102, the frequency is f. First-order modulated light 103 shifted by 100 m, the frequency is f. The light of the secondary light control 104 etc. shifted to +2 is separated and output.

1次変調光103):l、反射鏡4で反射され、ノ・−
フミラー5を透過して受光器7へ到達する。一方、0次
光102は−・−フミラー5を透過して測定対象に向け
て出射され、そこに取付けられた反射鏡6で反射されて
再びノヘーフミラー5(=戻シ、ここで反射されて90
’方向を変え1次変調光103と合流して受光器7(二
到達する。
Primary modulated light 103): l, reflected by the reflecting mirror 4, no.
The light passes through the fumirror 5 and reaches the light receiver 7. On the other hand, the zero-order light 102 passes through the mirror 5 and is emitted toward the measurement target, is reflected by the reflecting mirror 6 attached thereto, and is reflected back to the mirror 5 (= return), where it is reflected at 90
'The light changes direction and merges with the primary modulated light 103 and reaches the light receiver 7 (secondary modulated light 103).

ここで、測定対象が速度Vで移動すると反射鏡6で反射
されたO次光102の周波数はドツプラー効果により速
度Vに応じた周波数Δfだけ変化しム±Δfとなる。
Here, when the object to be measured moves at a speed V, the frequency of the O-order light 102 reflected by the reflecting mirror 6 changes by a frequency Δf corresponding to the speed V due to the Doppler effect, and becomes ±Δf.

Δ〕=ニー= 2v    ・・・・・・+1)272
丁 但し、λはO次光102の出射光の波長である。
Δ〕=knee=2v ・・・・・・+1)272
However, λ is the wavelength of the output light of the O-order light 102.

受光器7の出力には前述したヘテロダイン検出法鴫二よ
シ差の周波数に低減されたL±△fの周波数の磁気信号
105が得られる。この゛電気信号105と駆動回路3
から与えられる周波数ムの電気信号106を測定回路8
(二人力し次に述べる様な手法によシ移動距離lを検知
する。即ち測定回路8は電気信号105と106の周波
数に応じたパルス信号(二よシ加算と減(ト)を行う可
逆計数回路を具備し、時刻t1から+2の期間を計数す
る。この計数値Nは(2)式の関係から2Vλを意味し
く3)式の様に変形して移動距離lを計測することがで
きる。
At the output of the photodetector 7, a magnetic signal 105 having a frequency of L±Δf, which is reduced to a frequency equal to that of the heterodyne detection method described above, is obtained. This electrical signal 105 and drive circuit 3
The circuit 8 measures the electrical signal 106 of the frequency given by the circuit 8.
(The movement distance l is detected by two people using the method described below. In other words, the measuring circuit 8 is a reversible pulse signal (two-way addition and subtraction) corresponding to the frequency of the electric signals 105 and 106. Equipped with a counting circuit, it counts a period of +2 from time t1.This counted value N means 2Vλ from the relationship in equation (2), and the moving distance l can be measured by transforming it as shown in equation (3). .

2 = T(X2  xt) = Tl    −−(2)
上述の様な従来の構成(二於て、ブラッグセル2からの
1次変調光103の偏向角φが極めて小さいという問題
がある。例えば偏向角φは14ミリラジアン程度であり
、この値はO次光102と1次変調光103の両ビーム
が1メートルの距離だけ離れても僅か14ミリメートル
しか分離しな伝。この分離距離が小さいことは反射鏡4
と−・−フミラーiの物理的形状を制限して両者の設置
を非常に困ill二し光干渉形計測装置9の小形化を妨
げる問題点となっている。
2 = T(X2 xt) = Tl --(2)
In the conventional configuration as described above (2), there is a problem that the deflection angle φ of the primary modulated light 103 from the Bragg cell 2 is extremely small. For example, the deflection angle φ is about 14 milliradians, and this value is Even if the beams 102 and 103 are separated by a distance of 1 meter, they will be separated by only 14 mm.
This is a problem that limits the physical shape of the mirror i, making it extremely difficult to install them, and hindering miniaturization of the optical interferometric measuring device 9.

C)づら明の目的 本発明は、上述の問題点に鑑みてなされたもので、光学
系を変更して小形化を可能とした光干渉形計測装置を提
供するのが目的である。
C) Purpose of the Invention The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide an optical interference type measuring device that can be made smaller by changing the optical system.

d)発明の、1既要 本発明は第lの周波数の第1の光信号を出力するレーザ
光源と、渠2の周波数の駆動信号を出力゛する超音波L
1(動回路と、前記駆動信号で附勢され前記第1の周波
数の光人カイ8号を前記IZ 2の周波数だけ変化させ
偏向して出力する音響光学素子と、2周波数の光信号が
干渉して入射され差の周波数の゛磁気信号を出力する受
光回路と、前記第10光信号の一部を反射して前記音響
光学素子に入射する第2の光信号と透過して測定のため
4二出射する第3の光信号を得るー・−フミラーと、前
記音響光学素子から偏向して出力された前記第2の光信
号の1次変調光を反射して元の光路を逆進させ再度前記
音響光学素子を通過させ前記−一一フミラーを透過して
前記受光i路(二人射させる反射鏡と、前記第3の光信
号を位置が変動する測定対象(二照射しドツプラー効果
を受けたその反射光を前記−一一フミラーで反射して前
記1次変v4ブ0と干渉する様例のブロック構成図であ
る。同図)二於て弗1図と同じ符号は同一機能のものを
示す。弗2図の光干渉形計測装置10に於て、レーザ光
源1から出た周波数f。の光100の一部か−・=フミ
ン−5で反射されてブラッグセル2(二人射される。ブ
ラックセル2は駆動回路3から周波数f1の超音波信号
で附勢され周波数f。+f、01次変調光103を得、
反射鏡4により反射して元の光路へ戻し、再びブラッグ
セル2を通過させ更(ニ)・−フミラー5を透過させて
受光器7へ導く様(二構成する。
d) 1 Existing Summary of the Invention The present invention includes a laser light source that outputs a first optical signal of a first frequency, and an ultrasonic wave L that outputs a drive signal of a frequency of a conduit 2.
1 (The optical signal of two frequencies interferes with the dynamic circuit and the acousto-optic element which is energized by the drive signal and outputs the optical signal by changing the frequency of the IZ2 and deflecting the Kojin Kai No. 8 of the first frequency. a light-receiving circuit that outputs a magnetic signal having a difference frequency, and a second optical signal that reflects a part of the tenth optical signal and enters the acousto-optic element, and transmits a fourth optical signal for measurement. Obtain a third optical signal to be emitted twice - reflect the primary modulated light of the second optical signal that has been deflected and output from the acousto-optic element and travel backward along the original optical path again. The light is transmitted through the acousto-optic element and transmitted through the -11 mirror to receive the light in the i-path (the reflecting mirror that emits the two beams), and the third optical signal is transmitted to the measuring object (which is irradiated with the two beams and subjected to the Doppler effect) whose position changes. It is a block configuration diagram of an example of how the reflected light is reflected by the -11 mirror and interferes with the linear variable V4B0.The same reference numerals as in Figure 2 and 1 indicate the same functions. In the optical interferometric measurement device 10 shown in Figure 2, a part of the light 100 with a frequency f. emitted from the laser light source 1 is reflected by the Bragg cell 2 (two people irradiated). The black cell 2 is energized by an ultrasonic signal of frequency f1 from the drive circuit 3 to obtain 01st modulated light 103 with frequency f.+f.
The light is reflected by the reflecting mirror 4 and returned to the original optical path, passes through the Bragg cell 2 again, and then passes through the mirror 5 and is guided to the light receiver 7 (two configurations).

一方、レーザ光源1から出た周波数f。の光100の一
部は)・−7ミラー5を透過して測定対象(二数付けら
れた反射鏡6に向けて出射される。反射鏡6で反射され
た光は前述の様にドツプラー効果(二よりf。±Δfの
周波数の光となシノーーフミラー5で反射されて1次変
調光103と合流して受光器7じ到達する。受光器7か
らは周波数A±△fの電力して第1図の場合と同様にし
て移動距離lを検知することができる。
On the other hand, the frequency f emitted from the laser light source 1. A part of the light 100 passes through the -7 mirror 5 and is emitted toward the measurement target (two reflecting mirrors 6).The light reflected by the reflecting mirror 6 is affected by the Doppler effect as described above. (From second f. The light with the frequency of ±Δf is reflected by the synoof mirror 5, merges with the primary modulated light 103, and reaches the light receiver 7. The light with the frequency of A±Δf from the light receiver 7 The moving distance l can be detected in the same manner as in FIG.

第3図は第2図の光学系の詳細を示した構成区である。FIG. 3 shows a detailed configuration of the optical system shown in FIG. 2.

同図に於て、レーザ光源から−・−7ミラー5に入射し
た周波数にの光100はその一部が反射されてブラッグ
セル2へ入射する。ブラッグセル2を駆動回路3によシ
図示の如く左側から周波数f、の超音波信号で駆動し、
入射した光が負のドツプラー効果を生じさせA −f、
の周波数の1次変調光103を得る。この1次変調光1
03は入射した光がそのまま直進して通過する0次光1
02の光路108に対し光路107の如く左側に角度φ
だけ偏向される。反射鏡4はその反射面が1次変調光1
03と直角をなす様に設置し反射光が光路107を通っ
てブラッグセル2の元の位置C二戻る様にする。(この
場合、0次光102の反射光はブラッグセル2の元の位
置から1〜2ミリメートルずれた位置(二戻る。この反
射光はブラッグセル2に入射しない様(二遮光してもよ
い。) 光路107を通って戻った1次変調光103は再び周波
数変調されることなくそのままブラッグセル2を直進し
て光路109を通ってノ〜−フミラー5を透過し受光器
7に入射する。
In the figure, light 100 at a frequency that is incident on the -.-7 mirror 5 from the laser light source is partially reflected and enters the Bragg cell 2. The Bragg cell 2 is driven by the drive circuit 3 from the left side as shown in the figure with an ultrasonic signal of frequency f,
The incident light causes a negative Doppler effect, A - f,
primary modulated light 103 having a frequency of is obtained. This primary modulated light 1
03 is the 0th order light 1 where the incident light goes straight and passes through.
The angle φ is on the left side as in the optical path 107 with respect to the optical path 108 of 02.
only deflected. The reflecting mirror 4 has a reflecting surface that receives the primary modulated light 1.
03 so that the reflected light passes through the optical path 107 and returns to the original position C2 of the Bragg cell 2. (In this case, the reflected light of the 0th order light 102 is shifted from the original position of the Bragg cell 2 by 1 to 2 millimeters (backward). This reflected light is prevented from entering the Bragg cell 2 (it may be blocked). The optical path The primary modulated light 103 that has returned through 107 is not frequency modulated again, goes straight through the Bragg cell 2, passes through the optical path 109, passes through the nof mirror 5, and enters the light receiver 7.

一方、−一一フミラー5を透過して測定対象(二向った
周波数f。の入射光100の一部は測定対象と共に移動
する反射鏡6で反射角αを有して反射され周波数fo±
Δfの光となシ光路110を通って)−一フミラー5に
戻シそこで反射されて光路109の透過光と合流して受
光器7(二到達する。この様にして受光器7(二はL±
Δfの周波数差を有する2周波数の光信号が干渉して入
射され前述の様にh±Δfの周波数の電気信号105を
得、測定対象の移動距離を計測することができる。
On the other hand, a part of the incident light 100 having a frequency f which passes through the -11 mirror 5 and faces the measurement object (two directions) is reflected at a reflection angle α by the reflection mirror 6 that moves together with the measurement object, and is reflected at a frequency fo±.
The light of Δf passes through the optical path 110) and returns to the first mirror 5, where it is reflected and merges with the transmitted light of the optical path 109 to reach the light receiver 7 (2). L±
Optical signals of two frequencies having a frequency difference of Δf interfere and enter, and as described above, an electric signal 105 of a frequency of h±Δf is obtained, and the moving distance of the object to be measured can be measured.

この様な第3図の構成(二於ては、受光器7へ向う2周
波数の光のビームを一致させるには幾何光学の原理によ
シα=φの条件が必要である。即ちハーフミラ−5に対
して光路109と110が対称の関係(−ある必要がめ
る。測定対象が移動して反射鏡6が点線で示した位置x
2に変化すると光路1100反射光のビームは元の位置
からずれて一致しなくなる。しかしながら、レーザビー
ムの有効径は1關φ前後の値があシ、加えて前述した通
シのαはφに等しく極めて微少な角度であシ、測定対象
の夢動距離が限定された範囲の長さであれば上記ビーム
のす1しは問題にならず所期の目的を達し十分積度の良
い移動距離の測定を行うことができる、光路110のレ
ーザビームの径を大きくすれば測定の範囲は更(二拡大
することができる。
In the configuration shown in FIG. 3 (2), in order to match the beams of light of two frequencies toward the receiver 7, the condition α = φ is required according to the principle of geometric optics. The optical paths 109 and 110 must have a symmetrical relationship (-) with respect to
2, the beams of reflected light on the optical path 1100 are shifted from their original positions and no longer match. However, the effective diameter of the laser beam is around 1 φ, and in addition, the above-mentioned through angle α is equal to φ, which is an extremely small angle, and the distance of movement of the object to be measured is limited. As long as the diameter of the laser beam in the optical path 110 is large, the beam width will not be a problem and the desired purpose can be achieved and a sufficiently comprehensive measurement can be performed. The range can be expanded further.

本発明の光干渉形計測装置は振動振幅の計測(−有効で
あるのは云うまでもない。
It goes without saying that the optical interferometric measuring device of the present invention is effective in measuring vibration amplitude.

f)発明の他の実施例 本発明の光干渉形計測装置は空間距離の変位を測定する
ものに限るものではなく光ファイバーの光路長変化を検
出するものであってもよい。第4図は光ファイバ11に
対する光入出力条件を第3図の反射鏡6(二於ける反射
角αに等しくなる様に設置して光ファイバ11の光路長
の変化を計測する本発明による他の実施例の光干渉計測
装置である。
f) Other Embodiments of the Invention The optical interferometric measurement device of the present invention is not limited to one that measures displacement in spatial distance, but may also be one that detects changes in the optical path length of an optical fiber. FIG. 4 shows an alternative method according to the present invention in which the optical input/output conditions for the optical fiber 11 are set so as to be equal to the reflection angle α of the reflector 6 (2) shown in FIG. 3, and changes in the optical path length of the optical fiber 11 are measured. This is an optical interference measuring device according to an embodiment of the present invention.

前述の様(−光の波長λの単位の精度で測定できるので
光ファイバの僅かな伸縮に対する測定が可能であシ光フ
ァイバの伸縮と相関々係を有する他の物理量の測定に応
用することができる。
As mentioned above, it can be measured with an accuracy of the unit of light wavelength λ, so it is possible to measure slight expansion and contraction of optical fibers, and it can also be applied to the measurement of other physical quantities that have a correlation with the expansion and contraction of optical fibers. can.

g)発明の効果 本発明によればブラッグセル等の音響光学素子を用い小
形化した光干渉形計測装置を得ることができる。
g) Effects of the Invention According to the present invention, it is possible to obtain a miniaturized optical interference type measuring device using an acousto-optic element such as a Bragg cell.

【図面の簡単な説明】[Brief explanation of the drawing]

耶1図は従来の光子゛渉形計測装置のブロック構成図、
第2図は本発明(二よるブC干渉形計測装置dのブロツ
ク41間成図、第3図は第2図の光学系の詳?、IB4
tl成図、第4(凶は本シる明の他の実施例の光干渉形
計σI11装置ii’tの仔I成図C必る。 1・・・レーザ光源 2・・・ブラッグセル(fr J光学素子)3・・・j
lXl回動 4.6・・・反射鏡 5・・・−へ−7ミラー 7・・・受光器 8・・・NJiり定回路 11・・・光ファイバー 102・・・0次光 103・・・1次変調光 (7317)  代理人 弁理士 則 近 憲 右(ほ
か1名)第2図 1ハ 第3図
Figure 1 is a block diagram of a conventional photon waveform measurement device.
Figure 2 is a schematic diagram of the block 41 of the interferometric measuring device d according to the present invention, Figure 3 is a detailed diagram of the optical system shown in Figure 2, IB4
tl diagram, 4th (unfortunately, the optical interferometer σI11 device II't component diagram C of other embodiments of this invention is required. 1... Laser light source 2... Bragg cell (fr J optical element) 3...j
lXl rotation 4.6...Reflector 5...-7 Mirror 7...Receiver 8...NJi constant circuit 11...Optical fiber 102...0th order light 103... Primary modulated light (7317) Agent Patent attorney Norihiro Chika Right (and 1 other person) Figure 2, 1C, 3

Claims (1)

【特許請求の範囲】[Claims] 第1の周波数の第1の光信号を出力するレーザ光源と、
第2の周波数の駆動信号を出力する超音波駆動回路と、
前記駆動信号で附勢され前記第1の周波数の光入力信号
を前記第2の周波数だけ変化させ偏向して出力する音響
光学素子と、2周波数の光信号が干渉して入射され差の
周波数の電気信号を出力する受光回路と、前記第1の光
信号の一部を反射して前記音響光学素子く二人対する第
2の光信号と透過してm111定のために出射する弗3
の光信号を肖るハーフミラ−と、前記音響光学素子から
偏向して出力された前記第2の光信号の1次変調光を反
射して元の光路を逆進させ再度前記音響光学素子を通過
させ前記−・−フミラーを透過して前記受光回路(二人
対させる反射鏡と7前記第3の光信号を測定対象(二照
射しその反射光を前記ハーフミラ−で反射して前記1次
変調光と干渉する様(二前記受光回路に入射させること
を特徴とした光干渉形計測装置。
a laser light source that outputs a first optical signal at a first frequency;
an ultrasonic drive circuit that outputs a drive signal of a second frequency;
An acousto-optic element energized by the drive signal changes the optical input signal of the first frequency by the second frequency, deflects it, and outputs it; a light-receiving circuit that outputs an electric signal; and a light-receiving circuit that reflects a part of the first optical signal and transmits it as a second optical signal to the acousto-optic element and emits it for m111 constant.
a half mirror that reflects the optical signal; and a half mirror that reflects the primary modulated light of the second optical signal that is deflected and output from the acousto-optic element to reverse the original optical path and pass through the acousto-optic element again. The third optical signal is transmitted through the half mirror to the light receiving circuit (two reflecting mirrors) and the third optical signal is irradiated to the measurement target (two, and the reflected light is reflected by the half mirror to be modulated by the first modulation). An optical interference type measuring device characterized in that the light is made to enter the light receiving circuit in such a manner as to interfere with the light.
JP57186696A 1982-10-26 1982-10-26 Interferometer type measuring device Pending JPS5977306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57186696A JPS5977306A (en) 1982-10-26 1982-10-26 Interferometer type measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57186696A JPS5977306A (en) 1982-10-26 1982-10-26 Interferometer type measuring device

Publications (1)

Publication Number Publication Date
JPS5977306A true JPS5977306A (en) 1984-05-02

Family

ID=16193029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57186696A Pending JPS5977306A (en) 1982-10-26 1982-10-26 Interferometer type measuring device

Country Status (1)

Country Link
JP (1) JPS5977306A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224230A (en) * 1985-07-25 1987-02-02 Nippon Telegr & Teleph Corp <Ntt> Induced brillouin suppressing light source device
JPH04503868A (en) * 1989-03-02 1992-07-09 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー A device that generates a comb of toothed light of different frequencies

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224230A (en) * 1985-07-25 1987-02-02 Nippon Telegr & Teleph Corp <Ntt> Induced brillouin suppressing light source device
JPH04503868A (en) * 1989-03-02 1992-07-09 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー A device that generates a comb of toothed light of different frequencies

Similar Documents

Publication Publication Date Title
JP3279116B2 (en) Laser Doppler velocimeter
JP2859292B2 (en) Method and apparatus for optical detection of transient motion from scattering surfaces
US4969736A (en) Integrated fiber optic coupled proximity sensor for robotic end effectors and tools
US9285385B2 (en) Vector velocimeter
US6876441B2 (en) Optical sensor for distance measurement
JP2015111160A (en) Compact fiber optic geometry for counter chirp fmcw coherent laser rader
JP2755757B2 (en) Measuring method of displacement and angle
US5774218A (en) Laser Doppler velocimeter with electro-optical crystal
US5541729A (en) Measuring apparatus utilizing diffraction of reflected and transmitted light
JP4026929B2 (en) Interference measuring device
JPH06174844A (en) Laser distance measuring apparatus
JPH10332354A (en) Interference measuring device
JPS5977306A (en) Interferometer type measuring device
JPH06186337A (en) Laser distance measuring equipment
JPS6355035B2 (en)
JPS6064284A (en) Laser distance measuring apparatus
JP3842301B2 (en) Interference measurement device
JPH0875433A (en) Surface form measuring device
JP3161879B2 (en) Angle measuring method and device
JPH06323810A (en) Multiprobe displacement measuring apparatus
JP2655647B2 (en) Optical integrated circuit interferometer
JP2024056589A (en) Optical rangefinder
JPH0425787A (en) Doppler speed indicator
JP2000121322A (en) Laser length measuring machine
JP2023136314A (en) Straightness measurement device and method